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The Spectral Theorem and the Power method 

 A is a symmetric matrix.  
𝐹 𝑢 = (𝐴𝑢 ⋅ 𝑢) 

Theorem: there exists orthogonal basis 𝑒1, … , 𝑒𝑚, such that 

𝐹 𝑢 =  𝜆𝑖 𝑢 ⋅ 𝑒𝑖
2  

How to find 𝑒𝑖, given access to 𝐹? 

The Power Method: 𝑒𝑖 are fixed points of the dynamical system 

on the sphere 

𝑢 →
𝐴𝑢 

||𝐴𝑢||
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This talk: what, why and how 

What: an algorithmic primitive, hidden basis recovery.  

 

 Why: examples.  

 PCA, ICA, tensor decomposition, GMM learning, multi-way spectral clustering. 

 How: gradient iteration algorithm. Dynamical system on the sphere. 

 Generalization of the power method for matrices/tensors. 

 Analysis: 

 “Hidden convexity”. 

 Perturbation analysis, generalization of Davis-Kahan theorem for matrices.  

 Fast convergence in clean and noisy settings. 

 Applications: 

 ICA 

 Spectral clustering 
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Hidden Basis Recovery 

 Orthonormal basis: 𝑒1, … , 𝑒𝑚 [partial basis ok] 

 Basis Encoding Function (BEF):  

 

𝐹 𝑢 =  𝑔𝑖(𝑢 ⋅ 𝑒𝑖)

𝑚

𝑖=1

 

 Problem: given evaluation access to 𝐹 and 𝛻𝐹, 

recover 𝑒𝑖. 
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The Spectral Theorem 
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Example: tensor decomposition 

Orthogonal tensor decomposition (odeco tensors): 

Given 𝑇 = 𝑇𝑗𝑙𝑚𝑡 =  𝑤𝑖  𝑒𝑖 ⊗ 𝑒𝑖 ⊗ 𝑒 ⊗ 𝑒𝑖𝑖 , Basis 

Encoding Function is 

𝐹 𝑢 = 𝑇 𝑢, 𝑢, 𝑢, 𝑢 =   𝑤𝑖  𝑢 ⋅ 𝑒𝑖
4

𝑖

=  𝑔𝑖(𝑢 ⋅ 𝑒𝑖)

𝑖

 

with 𝑔𝑖 𝑡 = 𝑤𝑖𝑡
4. 

 E.g., [Anandkumar, Ge, Hsu, Kakade, Telgarsky 2013] for model recovery with 

tensors and using the tensor power method. 
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Example: Independent component Analysis 

 Independent Component Analysis 

Given samples from 𝑥 given by 𝑥 = 𝐴𝑠, with  

 𝑥, 𝑠 𝑑-dim. random vectors,  

 𝑠 with independent coordinates,  

 𝐴 square invertible matrix.  

 Goal: Recover 𝐴. 

 After whitening/isotropy, can assume 𝐴 is orthogonal. 

 BEF: 𝐹 𝑢 = 𝜅4 𝑢 ⋅ 𝑥 =  𝜅4 𝑠𝑖 𝑢 ⋅ 𝐴𝑖
4

𝑖  with 𝑔𝑖 𝑡 =
𝜅4 𝑠𝑖 𝑡4. 

(𝜅4 is the fourth cumulant, here 𝜅4 𝑇 = 𝐸 𝑇4 − 3) 
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Example: Gaussian Mixture Models 

 Parameter estimation for spherical Gaussian mixture 

model (cf.  [Hsu Kakade 2012]).  

 

Directional third moment for a mixture can be 

rewritten in terms of a basis encoding function.  
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Heat map of 𝐹𝑔 evaluations on 𝕊𝑘−1 

Spectral clustering 

 We maximize an admissible contrast 𝑔 over directional 

projections of the embedded data 

  𝐹𝑔 𝐮 =
1

𝑛
 𝑔 𝐮, 𝐱𝑖

𝑛
𝑖=1   

 Idea:  The local maxima of 𝐹𝑔 on 𝕊𝑘−1 correspond to the 

desired clusters. 
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Recovering the basis: “gradient iteration” algorithm 

 

𝐹 𝑢 =  𝑔𝑖(𝑢 ⋅ 𝑒𝑖)

𝑚

𝑖=1

 

 

 “Gradient Iteration”: a fixed point iteration of the gradient: 
 

𝑢 →
𝛻𝐹 𝑢

𝛻𝐹 𝑢  
 

 

Repeat until convergence. 

 

Generalization of the power method for matrices and tensors. 
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Gradient iteration 

 “Gradient Iteration” is an extension of tensor power 

iteration to a functional setting without multi-linear 

algebra:  

 

 For example: 𝐹 𝑢 = 𝑇 𝑢, 𝑢, 𝑢, 𝑢 , then tensor 

power iteration is 𝑢 →
𝑇 𝑢,𝑢,𝑢,⋅

𝑇 𝑢,𝑢,𝑢,⋅
 

Gradient iteration is u →
𝛻𝐹 𝑢

𝛻𝐹 𝑢
  

with 𝛻𝐹 𝑢 = 𝑐 𝑇 𝑢, 𝑢, 𝑢,⋅  
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Gradient iteration 

𝐹 𝑢 =  𝑔𝑖(𝑢 ⋅ 𝑒𝑖)

𝑚

𝑖=1

 

 

 ℎ𝑖 = 𝑔𝑖 𝑡  

 “Gradient Iteration”: [suppressing some signs] 

 

u → 𝛻𝐹 𝑢 = 2  ℎ𝑖
′ 𝑢 ⋅ 𝑒𝑖

2

𝑚

𝑖=1

u ⋅ 𝑒𝑖 𝑒𝑖 

 
 compare to Power Iteration:       u → 2  𝜆𝑖 u ⋅ 𝑒𝑖 𝑒𝑖 
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Analog to 𝜆𝑖  



Conditions on 𝑔𝑖 

 

 “Contrast functions” 𝑔𝑖 are either odd or even. 

 ±𝑔𝑖 𝑥  is strictly convex on [0,1] 



𝑑

𝑑𝑥
𝑔𝑖 𝑥  

0+
= 0 

[All previous examples except PCA satisfy these] 

 

Under the assumptions on contrasts 𝑔𝑖 : 

Thm 1 [Optimization point of view]: The set  of {±𝑒𝑖}, 
the hidden basis vectors, are the only local extrema of 

𝐹 on the sphere. 

 

 

 

Lots of other critical 

(saddle) points. 
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Hidden convexity 

 

Choose coordinates corresponding to the hidden basis 𝑒𝑖 , 𝑢 =  𝑥𝑖𝑒𝑖. 

 

 

 𝜏: (𝑥1, … , 𝑥𝑚) → ( 𝑥1, … , 𝑥𝑚 ) 

         sphere       (hidden) simplex  

 

If 𝑔𝑖 𝑥  are convex,  

G 𝑢 =    𝑔𝑖 𝑢, 𝑒𝑖
𝑚
𝑖=1  is convex on the simplex (sum of  convex functions).  

Max of F over sphere  Max G over simplex.  

 

Local maxima of convex functions are at extreme points, that is, 𝑒𝑖.  

 

 

 

 

𝑒1 

𝑒2 

Maxima, not more 

usual minima. 
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Finding the hidden basis 

Under the assumptions on contrasts 𝑔𝑖 : 

 

 Thm 2 [dynamical systems point of view]:  

The set of stable fixed points of gradient iteration is exactly 
±𝑒𝑖 . Other fixed points (exponentially many) are unstable 

(hyperbolic). 

 

 Thm 3: Gradient iteration will converge to a local 
extremum almost everywhere.  

 

 Thm 4 [super-linear convergence]: If 𝑔𝑖 𝑡𝑟
 are convex, 

then convergence of gradient iteration is of order 𝑟 − 1. 
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Perturbation Analysis: model  

 

Additive noise model for F.  

𝐹 = 𝐹 + Ε =  𝑔𝑖(𝑢 ⋅ 𝑧𝑖)

𝑚

𝑖=1

+ 𝐸 

Control up to second derivative 𝛻 (F − 𝐹 )
∞

+ ℋ(F − 𝐹 )
∞

< 𝜖  

 

Need to quantify convexity of  𝑔𝑖 𝑥  on [0,1]:  

 

𝛽𝑥𝛿−1 ≤ 𝑔𝑖 𝑥 ′′ ≤ 𝛼𝑥𝛾−1 , 𝛼, 𝛽, 𝛿, 𝛾 > 0 

 

E.g.,  𝑔𝑖 𝑥 = 𝑥2+0.01 works. 
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Perturbation Analysis  

𝛽𝑥𝛿−1 ≤ 𝑔𝑖 𝑥 ′′ ≤ 𝛼𝑥𝛾−1 , 𝛼, 𝛽, 𝛿, 𝛾 > 0 

Sufficiently small perturbation size 𝜖. 

Thm 5: “Gradient iteration” recovers 𝑒1, … , 𝑒𝑚   up to error  

  4 2𝛿𝑚𝛿𝜖/𝛽. 

 

E.g. for 𝑔𝑖 𝑥 = 𝑥3,we have 3 2𝑚0.5 𝜖.  

 

Thm 6 [Fast convergence]:  

Need N = 4 log1+2𝛾 log2
𝛽

𝛿𝜖
+ 𝐶    iterations. 

 

E.g. for 𝑔𝑖 𝑥 = 𝑥3, 4 log2 log2
3

2𝜖
 + 𝐶  

Cf. Davis-Kahan:  

𝑚 eigenvectors of 𝜖 -
perturbed matrix 

error   𝜖/𝜆. 

More general perturbation 

model.  
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Application 1:Independent Component Analysis 

 

Y = AS     Recover independent variables by observing linear combinations. 
(Cocktail party problem.) 

 

     

Step 1. Whitening: normalizing covariance to I. (Use PCA). 

Step 2. ICA: Recovering the rotation. 
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Cumulants 

 

 Cumulant generating function h t =  log (𝐸 exp 𝑡𝑥 ) 

 

 ℎ 𝑡 =  
1

𝑙!
𝑘𝑙𝑡

𝑙   

 

 Polynomial in moments:  
𝑘2 = 𝜇2, 𝑘3 = 𝜇3, 𝑘4 = 𝜇4 − 3𝜇2 … 

 

 Key property: 𝑘𝑙 𝑎𝑋 + 𝑏𝑌 = 𝑎𝑙𝑘𝑙 𝑋 + 𝑏𝑙𝑘𝑙 𝑌  for independent  

𝑋, 𝑌.   
 

Recent rebirth of moment/cumulant methods in Theoretical CS and Machine 
Learning.  E.g. Hsu, Kakade,12 for learning Gaussian mixtures. 
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Student’s drawing , 1927 (taken from the web site of K. Wuensch). 

Kurtosis 𝑘4 
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Independent Component Analysis (Step 2). 

 

 Cumulant generating function h t =  log (𝐸 exp 𝑡𝑥 ) 

 ℎ 𝑡 =  
1

𝑙!
𝑘𝑙𝑡

𝑙   

 Define 𝑓 𝑣 = 𝐸𝑥 𝑘𝑙 v, 𝑥  , l > 2  

 

     

 

Theorem:  the only maxima of 

|𝑓 𝑣 | correspond to the 

original coordinate directions.                            

 
𝑣 
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Estimating from data 

 

 𝑓 𝑣 = 𝐸𝑥 𝑘𝑙 v, 𝑥  ≈
1

𝑛
 𝑘𝑙 v, 𝑥𝑖  

 

     

Other contrast functions are also used in practice but only 

cumulants are guaranteed to work.  
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ICA as basis encoding 

 

 

From cumulant properties:  𝑘𝑙 𝑣 = 𝑘𝑙  a𝑖𝑒𝑖 =  a𝑖
𝑙𝑘𝑙(𝑒𝑖) 

Put 𝑔𝑖 𝑥 = 𝑤𝑖𝑥
𝑙 , 𝑤𝑖 =  𝑘𝑙 𝑒𝑖 , 𝑍𝑖 = 𝑒𝑖    

 

 𝐹 𝑣 =    𝑔𝑖 v, 𝑍𝑖
𝑘
𝑖=1 .  

 

Gradient iteration – GI-ICA algorithm (Voss, Rademacher, Belkin, NIPS13) 

Recovery under Gaussian noise model. 

 

The basis recovery theorem guarantees  ICA recovery. 

Stability of ICA with arbitrary (small) noise  

[Belkin, Rademacher, Voss, 15] 
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Spectral clustering: Laplacian Embedding 

2/15/2016 
The Hidden Convexity of Spectral Clustering / Voss, Belkin, and 

Rademacher 

24 

 𝑊 – Weighted adjacency matrix for 𝑛-vertex graph 𝐺 
(a.k.a., the similarity matrix) 

 𝐷 – Degree matrix with 𝐷𝑖𝑖 =  𝑊𝑖𝑗
𝑛
𝑗=1  

 𝐿 ∶=  𝐷 −  𝑊 is the graph Laplacian 

We can also handle the normalized Laplacians. 

 𝑋 – Columns form the lowest 𝑘 eigenvectors of 𝐿 scaled 
to have 𝑛-norm. 

 Row expansion: 𝑋 =
𝐱1

𝑇

⋮
𝐱𝑛

𝑇
. 

𝐱1, … , 𝐱𝑛 are the 

embeddings of the 𝑛 

vertices of 𝐺 



Multi-way clustering with 𝑘-means 

        Graph → ℝ𝑘  
𝜙: 𝑥𝑖 → ( 𝑒1 𝑖 , 𝑒2 𝑖 , … , 𝑒𝑘 𝑖) 

 

 Apply 𝑘-means in the embedding space. 

(Shi, Malik 00, Ng, et al, 01, Yu, Shi 03, Bach, Jordan, 06…) 

 

Can be justified as a relaxation of a partition problem. 

However, initialization dependent and the objective function has 

certain peculiarities. 
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Spectral Embedding’s Basis 

 Vertices embedded into ℝ𝑘 using 

the spectral embedding. 

 𝐱𝑖 is the 𝑖th embedded point 
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Fact.  If 𝐺 has 𝑘 connected 

components 𝑆1, … , 𝑆𝑘, then there 

exists 𝐳1, … , 𝐳𝑘  an orthonormal 

basis of ℝ𝑘 such that 

𝐱𝑖 = 𝑆𝑗
−1

2 
𝐳𝑗 for all 𝑖 ∈ 𝑆𝑗 𝐳1 

𝐳2 

𝑆1 𝑆2 

Clean Case 



Spectral Embedding’s Basis 

 The basis structure persists under 

realistic conditions. 
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Lemma (Informal).  If 𝐺 has 𝑘 

“clusters” 𝑆1, … , 𝑆𝑘 with low weight 

cross-edges, then there exists 

𝐳1, … , 𝐳𝑘 an orthonormal basis of 

ℝ𝑘 such that 

𝐱𝑖 is near 𝑆𝑗
−1

2 
𝐳𝑗 for all 𝑖 ∈ 𝑆𝑗 

𝑆1 𝑆2 

𝐳1 
𝐳2 

Realistic Case 



Spectral clustering as hidden basis recovery 

Weighted basis vectors. 

 

 

 

 

 

𝑍1 

w1 

𝑍2 

𝑍3 

w2 

w3 

Basis vectors:  𝑍1, … , 𝑍𝑘 Weights: w1, … wk 

Key identity (choose 𝑔): 

 F 𝑣 =
1

𝑛
 𝑔 | v, 𝜙 𝑥𝑖 |𝑛

𝑖=1 =   𝑤𝑖𝑔 | v, 𝑍𝑖 |𝑘
𝑖=1  

BEF:                             𝑔𝑖(𝑡) = 𝑤𝑖𝑔(𝑡/ 𝑍𝑖 ) 
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Spectral clustering as hidden basis recovery  

Data after spectral embedding. 

 

 

 

 

 

 

Claim: all local maxima of 𝐹 “point” at the clusters. 

 

𝑓 

Choose  allowable “contrast function” 𝑔: 𝑅+ → 𝑅.  

Define  𝑓: 𝒮𝑘−1 → ℝ  by F 𝑣 =  𝑔 | 𝑣, 𝜙 𝑥𝑖 |𝑛
𝑖=1  

(a sort of “generalized moment”) 
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Heat map of 𝐹𝑔 evaluations on 𝕊𝑘−1 

Basis Recovery for Clustering 

 We maximize an admissible contrast 𝑔 over directional 

projections of the embedded data 

  𝐹𝑔 𝐮 =
1

𝑛
 𝑔 𝐮, 𝐱𝑖

𝑛
𝑖=1   

 Idea:  The local maxima of 𝐹𝑔 on 𝕊𝑘−1 correspond to the 

desired clusters. 
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Allowable contrast functions 

Conditions:  

 𝑔 𝑥  is strictly convex on [0, ∞). 



𝑑

𝑑𝑥
𝑔 𝑥  

0+
is 0 or +∞ 

 

Some examples:  

 −|𝑥|   

 𝑥𝑝 , 𝑝 > 2 

 exp −𝑥2  

 log cosh 𝑥  [from Independent Component Analysis] 
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Image segmentation 

 

  Our method (left) vs k-means (right) 
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Stochastic block model 

 

 

Stochastic block model with three unbalanced clusters + between-cluster  noise. 

 

Accuracy: 99.9% vs 42.1% for k-means.  

 

Explanation: K-means objective function likes to split big blocks.  
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Clustering Accuracy Comparison 

k-means 

(baseline) 

Choice of contrast 𝒈 

−|𝒙| 𝒙 𝟑 𝐥𝐨𝐠 𝐜𝐨𝐬𝐡 𝒙  

E. coli 69.0 80.9 79.3 81.2 

flags 33.1 36.8 36.6 36.8 

glass 46.8 47.0 47.0 47.0 

thyroid 80.4 82.4 82.2 82.2 

car eval 36.4 37.0 36.3 35.2 

cell cycle 62.7 64.3 63.8 64.5 
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• Clustering accuracy (%) comparison of UCI data sets. 

– Compares unsupervised clusters with true data labels. 

• Similarity matrices constructed via Gaussian kernel. 



Summary 

 

 Non-linear (and non-tensorial) generalization of the classical 

spectral decomposition and power iteration.  

 Lots of (harmless) saddle points but all local maxima are “good”. 

 An efficient algorithmic primitive + theoretical analysis. 

 An alternative for spectral clustering. 

 

A non-convex yet efficient optimization technique. 

Should we look for “hidden convexity” elsewhere? 
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