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Inhomogeneous Erdős-Rényi random graph

Random graph G :
� vertices {1, . . . , n}
� edges 1{i,j}∈G ∼ Bernoulli(pij),

independent.

Examples :
� homogeneous Erdős-Rényi graph : pij = p.
� Stochastic Block Model. Partition vertices

into communities : {1, . . . , n} =
⊔
αNα,

pij depends only on the communities
Nα 3 i and Nβ 3 j.

In this talk :
� A := adjacency matrix of G
� Eigenvalues of A : λ1(A) ≥ · · · ≥ λn(A)
� n� 1, pij = pij(n)



Example 1 : homogeneous graph (pij = d/n for all i, j)

Theorem [Krivelevich, Sudakov ; 2003 + Vu ; 2007].

λ1(A) ∼


(log n)1/2 if d� (log n)1/2

d if d� (log n)1/2

λ2(A) ∼


(log n)1/2 if d� (log n)1/2

2
√
d if d� (log n)4

(up to log log n factors)

↪→ What about λ2(A) if (log n)1/2 � d� (log n)4 ? (question related to the
spectral gap)

Conjecture : transition at d ∼ log n (graph connectivity threshold)

A = A− EA+ EA hence by Weyl’s interlacing inequality :

· · ·λ3(A) ≤ λ2(A− EA) ≤ λ2(A) ≤ λ1(A− EA) ≤ λ1(A)



Example 2 : Stochastic Block Model (SBM)

Partition vertices into communities : {1, . . . , n} =
⊔
αNα, pij depends only on

the communities Nα 3 i and Nβ 3 j.

Question : how to recover the communities from the graph observation ?

Spectral clustering algorithm :

� Spectral decomposition of A : λ1 ≥ λ2 · · · ,
# »

V1,
# »

V2, . . .

� λ1, . . . , λr : isolated eigenvalues
� Apply k-means or EM to the rows of the n× r matrix

[ # »

V1 · · · # »

Vr
]



SBM n = 1000, 3 classes (3.5% of misclustered vertices)



When and why does spectral clustering work well ?

Spectral clustering algorithm :

� Spectral decomposition of A : λ1 ≥ λ2 · · · ,
# »

V1,
# »

V2, . . .

� λ1, . . . , λr : isolated eigenvalues
� Apply k-means or EM to the rows of the n× r matrix

[ # »

V1 · · · # »

Vr
]

Usually, spectral clustering works well when ‖A− EA‖ � ‖EA‖

Explanation :

a) Eigenvectors of EA is where the information about communities lies
b) A = EA+ (A− EA)
c) By perturbation theory (Davis-Kahan theorem),

‖A− EA‖ � ‖EA‖ and λi(A) isolated =⇒
#         »

Vi(A) ≈
#             »

Vi(EA)

(or use BBP if ‖A− EA‖ ≤ c‖EA‖ for c of order one, large enough)



Main results

Conjecture in example 1 (homogeneous graph) and spectral clustering efficiency
assessment in example 2 (SBM) both lead to the study of the largest
eigenvalues of A− EA.

Hypothesis : G is an inhomogeneous Erdős-Rényi random graph with :

� constant mean degree d (i.e. for all i,
∑
j pij = d),

� maxi,j pi,j ≤ n−1+κ, for some κ > 0 small.



Theorem 1. [BBK ; 2017] W.h.p.,

‖A− EA‖√
d

≤ 2 + C
η√

1 ∨ log η
, with η :=

√
log n

d
.

Bound ‖A−EA‖√
d

≤ 2 +O(η2/3) also in a recent preprint by Latała, van Handel
and Youssef.
Consequence : If d� log n, then empirical spectral distributions

1

n

n∑
i=1

δλi

of A− EA and A look like :

(a) Centered matrix A−EA : semicircle
law with no outlier

(b) Adjacency matrix A : semicircle
law with outliers at the positions of the
eigenvalues of (usual) order d of EA



Theorem 2. [BBK ; 2017] Define the ordered degrees Di through
D↓1 ≥ D

↓
2 ≥ · · · ≥ D↓n.

For d� log n, for any k ≤ n0.99, we have

λk(A− EA) ∼
√
D↓k ∼

√
log(n/k)

log((log n)/d)

Consequence :

Centered matrix A − EA : spectrum distributed according to the semicircle law, plus
n0.99 eigenvalues in a cloud up to

√
logn



Consequence for the adjacency matrix A when d� log n :

d�
√
logn : no outlier

d�
√
logn : outliers at the positions of the eigenvalues of (usual) order d of EA



Corollary 1. For homogeneous Erdős-Rényi graphs, the transition mentioned
above is actually at d ∼ log n.

Corollary 2. In the SBM, when the non zero eigenvalues of EA have order d and
have gaps with order d, spectral clustering works well if and only if d�

√
log n.



Interpretation of the case d� log n

∀k ≤ n0.99, λk(A− EA) ∼
√

log(n/k)

Consequence : asymptotic “density” of eigenvalues of A/
√
log n at x ∈ (0, 1) :

2 (log n)n1−x
2

x

Previously, in random matrix theory, two types of behaviour have been observed
for extreme eigenvalues (out of finite sets of outliers at deterministic positions) :

(a) convergence to the edge of the limit support, usually with Tracy-Widom
fluctuation (e.g. Wigner matrices) ;

(b) convergence (after rescaling) to a Poisson point process (e.g. heavy-tailed
random matrices).

Our theorem 2 implies that neither is true here when d� log n. In fact, there
is no deterministic sequence αn such that the point process

{αnλk(A) : 2 ≤ k ≤ n0.99}

converges to a nondegenerate process.



Proof of the d� log n case

We want to prove that for k ≤ n0.99, λk(A− EA) ∼
√
D↓k, with D

↓
k the k-the

largest degree.

Remark. Spectrum of a star-graph with degree D :

−
√
D,
√
D, 0, 0, . . . .

Lemma. D↓k ∼
log(n/k)

log((logn)/d) .

Lemma. Let G′ be the graph of the n0.99 largest stars, where we have removed
all edges joining centers of stars in 1 or 2 steps. Then w.h.p.,

� the stars present in G′ are disjoint and have degrees D↓k −O(1)
� the matrix A− EA rewrites

A− EA = Adj(G′) + (matrix with norm �

√
log n

log log n
)

(Le, Levina, Vershynin).

Then use perturbation inequalities to prove λk(A− EA) ∼
√
D↓k.



Proof of the d� log n case

Goal : estimate ‖H‖ with H := d−1/2(A− EA).

Let λ = (λ1, . . . , λn) be the eigenvalues of H.

Goal : ‖λ‖`∞ . Much easier to estimate ‖λ‖`p for large (even) p.

Elementary fact : ‖λ‖`p is close to ‖λ‖`∞ if p� log n.

Thus, we have to estimate ‖λ‖`p for p� log(n). More precisely,

E‖λ‖p`p = ETrHp = E
∑

1≤i1,...,ip≤n

Hi1i2Hi2i3 · · ·Hipi1 .

Right-hand side analyzed using that entries of H are independent and have
mean zero (Füredi-Komlós-approach).



Use graphs to encode terms arising from
∑
i1,...,ip

E(Hi1i2Hi2i3 · · ·Hipi1).

Vertices = {i1, i2, . . . , ip}.

Edges = {{ik, ik+1} : k = 1, . . . , p}.

Each non zero term : a walk i1, i2, . . . , ip of length p on a graph, such that
each edge is visited at least twice.

i1
i2

in

Works well when d� (log n)4, but a fundamental problem arises otherwise :
proliferation of subtrees, which leads to very complicated combinatorics.



Nonbacktracking matrix

To make combinatorics manageable, we try to kill all subtrees.

Key observation : each leaf of the graph gives rise to a backtracking piece of
the walk : ik−1 = ik+1. ik−1

ik
ik+1

To H we associate its nonbacktracking matrix B = (Bef )e,f∈{1,...,n}2 indexed
by directed edges :

B(i,j)(a,b) := Hab 1j=a 1i 6=b .

i
j = a

b

Note that B is n2 × n2 and non-Hermitian.

ETrBp(B∗)p can be written in terms of walks on graphs with no subtrees :
nonbacktracking walks.



Estimates of ETrBp(B∗)p (made possible by the non-backtracking structure)
give :
Proposition 1 [BBK]. W.h.p.,

ρ(B) := (Spectral Radius of B) ≤ 1 +
C√
d
.

Proposition 2 [BBK, Ihara-Bass type formula]. We have

‖H‖ ≤ ‖H‖2→∞ f

(
ρ(B)

‖H‖2→∞

)
+ 7‖H‖1→∞ ,

for f(x) := 2 · 1x≤1 +
(
x+ 1

x

)
· 1x≥1 and

‖H‖2→∞ := max
i

√∑
j

|Hij |2 , ‖H‖1→∞ := max
i,j
|Hij | .

Lemma. If d� log(n), then ‖H‖2→∞ ≈ 1 (Bennett’s inequality)

Consequence :
As ‖H‖1→∞ � 1, ‖H‖ . 2 and Theorem 1 follows.


