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Inhomogeneous Erdés-Rényi random graph

Random graph G : ° o
m vertices {1,...,n} o
® edges 1y; j1eq ~ Bernoulli(p;;), °
independent. © ¢
Examples : po t °
® homogeneous Erdés-Rényi graph : p;; = p. @
m Stochastic Block Model. Partition vertices
into communities : {1,...,n} =], Na. »
pi; depends only on the communities 0
Ny 2dand N3 3 j. P
(1]

In this talk :

®m A := adjacency matrix of G
m Eigenvalues of A : A\ (A) > > A\, (A)
>, DPij zpij(n)



Example 1 : homogeneous graph (p;; = d/n for all 7, j)

Theorem [Krivelevich, Sudakov; 2003 + Vu; 2007].

(logn)'/? if d < (logn)'/?
A(4)  ~
d if d > (logn)'/?

(logn)'/? if d < (logn)'/?
A2(4)  ~
2/d if d > (logn)?

(up to loglogn factors)

< What about \y(A) if (logn)'/? < d < (logn)*? (question related to the
spectral gap)

Conjecture : transition at d ~ logn (graph connectivity threshold)
A=A—-—EA+EA hence by Weyl's interlacing inequality :
S As(A) € Ma(A — EA) < Mo(A) < A\ (A — EA) < Ay(4)



Example 2 : Stochastic Block Model (SBM)

Partition vertices into communities : {1,...,n} =| |, Na, pi; depends only on
the communities N, 3¢ and Ng > j.

Question : how to recover the communities from the graph observation ?

Spectral clustering algorithm :

m Spectral decomposition of A : Ay > Ao+, 171) 172), e
® )\, ..., )\, : isolated eigenvalues

=

® Apply k-means or EM to the rows of the n x 7 matrix [f/:



SBM n = 1000, 3 classes (3.5% of misclustered vertices)
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When and why does spectral clustering work well ?

Spectral clustering algorithm :

m Spectral decomposition of A : A\ > Ao+, 17{, \7;, e
® )\, ..., )\, : isolated eigenvalues
m Apply k-means or EM to the rows of the n x r matrix [17; 17;]

Usually, spectral clustering works well when || A — EA| < ||[EA||

Explanation :

a) Eigenvectors of EA is where the information about communities lies
b) A=EA+ (A—-EA)
c) By perturbation theory (Davis-Kahan theorem),

_— >

|A—EA| < ||[EA| and \;(A) isolated = V;(A) ~ V;(EA)

(or use BBP if ||A —EA| < ¢||EA|| for ¢ of order one, large enough)



Main results

Conjecture in example 1 (homogeneous graph) and spectral clustering efficiency
assessment in example 2 (SBM) both lead to the study of the largest
eigenvalues of A — EA.

Hypothesis : G is an inhomogeneous Erd8s-Rényi random graph with :

® constant mean degree d (i.e. for all 4, } . p;; = d),

B max; jp;; < n 1T, for some x> 0 small.



Theorem 1. [BBK; 2017] W.h.p.,

|A—EA]| U : logn
IA=2A e 9po 1 th 1= .
Vd = et 1Viogn W K d

Bound ”A;\/[UEIA” < 2+ 0(n*3) also in a recent preprint by Latata, van Handel
and Youssef.

Consequence : If d >> logn, then empirical spectral distributions
1 n
020
Lt

of A—EA and A look like :

T ““-x\
/ -
/! N / \
/ \ / \"-
\' ‘ | |
-2v'd 2v'd —-2v'd 2v'd d
(a) Centered matrix A—EA : semicircle (b) Adjacency matrix A : semicircle
law with no outlier law with outliers at the positions of the

eigenvalues of (usual) order d of EA



Theorem 2. [BBK; 2017] Define the ordered degrees D, through
Df>Dy>...> D}

For d < logn, for any k < n%9, we have

log(n/k
M(A—EA) ~ \/D} ~ 1c>g((gl<()g/n))/d)

Consequence :

—+/ logn —2v' d 2v'd v logn

Centered matrix A — EA : spectrum distributed according to the semicircle law, plus
n%9 eigenvalues in a cloud up to v/Iogn



Consequence for the adjacency matrix A when d < logn :

—+/ logn —2v'd 2v'd y/ logn

d < +/logn : no outlier

A S

—/ logn —2v'd 2vd i/ logn d

d > +/logn : outliers at the positions of the eigenvalues of (usual) order d of EA



Corollary 1. For homogeneous Erd6s-Rényi graphs, the transition mentioned
above is actually at d ~ logn.

Corollary 2. In the SBM, when the non zero eigenvalues of EA have order d and
have gaps with order d, spectral clustering works well if and only if d > +/logn.



Interpretation of the case d < logn

Ve <n%% A\ (A—EA) ~ +/log(n/k)
Consequence : asymptotic "density” of eigenvalues of A/\/logn at « € (0,1) :
2 (logn) n' =

Previously, in random matrix theory, two types of behaviour have been observed
for extreme eigenvalues (out of finite sets of outliers at deterministic positions) :

(a) convergence to the edge of the limit support, usually with Tracy-Widom
fluctuation (e.g. Wigner matrices) ;

(b) convergence (after rescaling) to a Poisson point process (e.g. heavy-tailed
random matrices).

Our theorem 2 implies that neither is true here when d < logn. In fact, there

is no deterministic sequence a,, such that the point process

{0571>\k(A) -2 S k S n0.99}

converges to a nondegenerate process.



Proof of the d < logn case

We want to prove that for k < n%9% A\ (A —EA) ~ \/Dt, with Dt the k-the
largest degree.

Remark. Spectrum of a star-graph with degree D :

—VD,VD,0,0,....

log(n/k)

1
Lemma. Dy ~ Toa((logn)/d) -

Lemma. Let G’ be the graph of the n%99 |argest stars, where we have removed
all edges joining centers of stars in 1 or 2 steps. Then w.h.p.,

m the stars present in G’ are disjoint and have degrees Di —-0(1)
® the matrix A — EA rewrites

A —EA = Adj(G’) + (matrix with norm < 1Oi)
loglogn

(Le, Levina, Vershynin).

Then use perturbation inequalities to prove Ay (A —EA) ~ Di



Proof of the d > logn case

Goal : estimate | H|| with H := d~'/?2(A — EA).

Let A = (Aq,..., \,) be the eigenvalues of H.

Goal : || M||g=.  Much easier to estimate ||A||¢» for large (even) p.
Elementary fact : ||A||¢» is close to |[A|¢= if p > logn.

Thus, we have to estimate || A||¢» for p > log(n). More precisely,

Higiy - Hiiy -

E[Af, =ETxH? =E > H,

1182
1<i1,...ip<n

Right-hand side analyzed using that entries of H are independent and have
mean zero (Fiiredi-Komlés-approach).



Use graphs to encode terms arising from >°, i) B(Hiyio Higig -+ Hiiy ).

Vertices = {i1,%2,...,0p}-
Edges = {{ix,ix+1} : k=1,...,p}.
Each non zero term : a walk 41,2, ..., 1, of length p on a graph, such that

each edge is visited at least twice.

i1

in

Works well when d > (logn)*, but a fundamental problem arises otherwise :
proliferation of subtrees, which leads to very complicated combinatorics.



Nonbacktracking matrix

To make combinatorics manageable, we try to kill all subtrees.

Key observation : each leaf of the graph gives rise to a backtracking piece of

the walk : 451 = igq1. o
o—=0 i

Tk41

To H we associate its nonbacktracking matrix B = (Bef)e, feq1,...,n}2 indexed
by directed edges :

Bij)ap) = Hap Lj=a Lizp -
io/ji*\ob
Note that B is n? x n? and non-Hermitian.

E Tr BP(B*)P can be written in terms of walks on graphs with no subtrees :
nonbacktracking walks.



Estimates of E Tr B?(B*)P (made possible by the non-backtracking structure)
give :
Proposition 1 [BBK]. W.h.p.,

C
B) := (Spectral Radius of B) < 1+ —.
p(B) = (Sp ) 7
Proposition 2 [BBK, Ihara-Bass type formula]. We have
B
A1 < 1A £ (A ) 4 T o
([ H || 200

for f(z) =2 1,<1 + (z+ 1) - 1,1 and

1H 200 == max |3 [Hy2,  |[H|1oe = max|Hij|
7 ;

Lemma. If d > log(n), then |H||2— 00 = 1 (Bennett’s inequality)

Consequence :

As < 2 and Theorem 1 follows.




