Extreme eigenvalues of Erdős-Rényi random graphs

Florent Benaych-Georges j.w.w. Charles Bordenave and Antti Knowles

MAP5, Université Paris Descartes

May 18, 2018 IPAM – UCLA

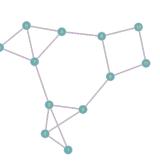
Inhomogeneous Erdős-Rényi random graph

Random graph G:

- vertices $\{1,\ldots,n\}$
- edges $\mathbb{1}_{\{i,j\}\in G} \sim \operatorname{Bernoulli}(p_{ij})$, independent.

Examples:

- homogeneous Erdős-Rényi graph : $p_{ij} = p$.
- Stochastic Block Model. Partition vertices into communities : $\{1,\ldots,n\}=\bigsqcup_{\alpha}N_{\alpha}$, p_{ij} depends only on the communities $N_{\alpha}\ni i$ and $N_{\beta}\ni j$.



In this talk:

- A := adjacency matrix of G
- Eigenvalues of $A: \lambda_1(A) \geq \cdots \geq \lambda_n(A)$
- $n \gg 1, p_{ij} = p_{ij}(n)$

Example 1 : homogeneous graph $(p_{ij} = d/n \text{ for all } i, j)$

Theorem [Krivelevich, Sudakov; 2003 + Vu; 2007].

$$\lambda_1(A) \sim \begin{cases} (\log n)^{1/2} & \text{if } d \ll (\log n)^{1/2} \\ d & \text{if } d \gg (\log n)^{1/2} \end{cases}$$

$$\lambda_2(A) \sim \begin{cases} (\log n)^{1/2} & \text{if } d \ll (\log n)^{1/2} \\ 2\sqrt{d} & \text{if } d \gg (\log n)^4 \end{cases}$$

(up to $\log \log n$ factors)

 \hookrightarrow What about $\lambda_2(A)$ if $(\log n)^{1/2} \ll d \ll (\log n)^4$? (question related to the spectral gap)

Conjecture: transition at $d \sim \log n$ (graph connectivity threshold)

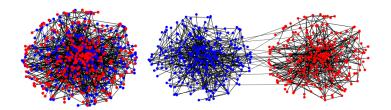
 $A = A - \mathbb{E}A + \mathbb{E}A$ hence by Weyl's interlacing inequality :

$$\cdots \lambda_3(A) \le \lambda_2(A - \mathbb{E}A) \le \lambda_2(A) \le \lambda_1(A - \mathbb{E}A) \le \lambda_1(A)$$

Example 2: Stochastic Block Model (SBM)

Partition vertices into communities : $\{1,\ldots,n\}=\bigsqcup_{\alpha}N_{\alpha},\ p_{ij}$ depends only on the communities $N_{\alpha}\ni i$ and $N_{\beta}\ni j$.

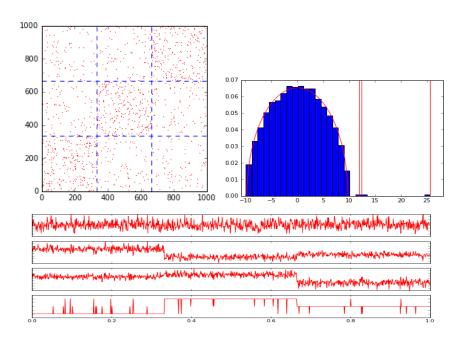
Question: how to recover the communities from the graph observation?



Spectral clustering algorithm:

- Spectral decomposition of $A: \lambda_1 \geq \lambda_2 \cdots, \overrightarrow{V_1}, \overrightarrow{V_2}, \ldots$
- $\lambda_1, \ldots, \lambda_r$: isolated eigenvalues
- lacksquare Apply k-means or EM to the rows of the n imes r matrix $[\overrightarrow{V_1} \ \cdots \ \overrightarrow{V_r}]$

SBM n = 1000, 3 classes (3.5% of misclustered vertices)



When and why does spectral clustering work well?

Spectral clustering algorithm:

- Spectral decomposition of $A: \lambda_1 \geq \lambda_2 \cdots$, $\overrightarrow{V_1}, \overrightarrow{V_2}, \ldots$
- $\lambda_1, \ldots, \lambda_r$: isolated eigenvalues
- lacksquare Apply k-means or EM to the rows of the n imes r matrix $\left[\overrightarrow{V_1} \quad \cdots \quad \overrightarrow{V_r}
 ight]$

Usually, spectral clustering works well when $||A - \mathbb{E}A|| \ll ||\mathbb{E}A||$

Explanation:

- a) Eigenvectors of $\mathbb{E} A$ is where the information about communities lies
- b) $A = \mathbb{E}A + (A \mathbb{E}A)$
- c) By perturbation theory (Davis-Kahan theorem),

$$\|A - \mathbb{E}A\| \ll \|\mathbb{E}A\|$$
 and $\lambda_i(A)$ isolated $\implies \overrightarrow{V_i(A)} \approx \overrightarrow{V_i(\mathbb{E}A)}$

(or use BBP if $||A - \mathbb{E}A|| \le c||\mathbb{E}A||$ for c of order one, large enough)

Main results

Conjecture in example 1 (homogeneous graph) and spectral clustering efficiency assessment in example 2 (SBM) both lead to the study of the largest eigenvalues of $A - \mathbb{E}A$.

Hypothesis : G is an inhomogeneous Erdős-Rényi random graph with :

- constant mean degree d (i.e. for all i, $\sum_{j} p_{ij} = d$),
- $\max_{i,j} p_{i,j} \leq n^{-1+\kappa}$, for some $\kappa > 0$ small.

Theorem 1. [BBK; 2017] W.h.p.,

$$\frac{\|A - \mathbb{E}A\|}{\sqrt{d}} \; \leq \; 2 + C \frac{\eta}{\sqrt{1 \vee \log \eta}} \,, \qquad \text{with} \quad \; \eta := \sqrt{\frac{\log n}{d}}.$$

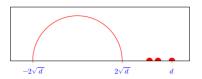
Bound $\frac{\|A-\mathbb{E}A\|}{\sqrt{d}} \le 2 + O(\eta^{2/3})$ also in a recent preprint by Latała, van Handel and Youssef.

Consequence : If $d \gg \log n$, then empirical spectral distributions

$$\frac{1}{n} \sum_{i=1}^{n} \delta_{\lambda_i}$$

of $A - \mathbb{E}A$ and A look like :

(a) Centered matrix $A - \mathbb{E}A$: semicircle law with no outlier



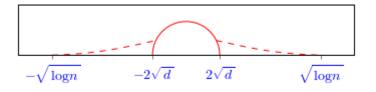
(b) Adjacency matrix A: semicircle law with outliers at the positions of the eigenvalues of (usual) order d of $\mathbb{E} A$

Theorem 2. [BBK; 2017] Define the **ordered degrees** D_i through $D_1^{\downarrow} \geq D_2^{\downarrow} \geq \cdots \geq D_n^{\downarrow}$.

For $d \ll \log n$, for any $k \leq n^{0.99}$, we have

$$\lambda_k(A - \mathbb{E}A) \sim \sqrt{D_k^{\downarrow}} \sim \sqrt{\frac{\log(n/k)}{\log((\log n)/d)}}$$

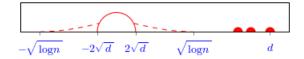
Consequence:



Centered matrix $A-\mathbb{E}A$: spectrum distributed according to the semicircle law, plus $n^{0.99}$ eigenvalues in a cloud up to $\sqrt{\log n}$

Consequence for the adjacency matrix A when $d \ll \log n$:

 $d \ll \sqrt{\log n}$: no outlier



 $d\gg\sqrt{\log n}$: outliers at the positions of the eigenvalues of (usual) order d of $\mathbb{E}A$

Corollary 1. For homogeneous Erdős-Rényi graphs, the transition mentioned above is actually at $d \sim \log n$.

Corollary 2. In the SBM, when the non zero eigenvalues of $\mathbb{E}A$ have order d and have gaps with order d, spectral clustering works well if and only if $d \gg \sqrt{\log n}$.

Interpretation of the case $d \ll \log n$

$$\forall k \le n^{0.99}, \quad \lambda_k(A - \mathbb{E}A) \sim \sqrt{\log(n/k)}$$

Consequence : asymptotic "density" of eigenvalues of $A/\sqrt{\log n}$ at $x \in (0,1)$:

$$2\left(\log n\right)n^{1-x^2}x$$

Previously, in random matrix theory, two types of behaviour have been observed for extreme eigenvalues (out of finite sets of outliers at deterministic positions):

- (a) convergence to the edge of the limit support, usually with Tracy-Widom fluctuation (e.g. Wigner matrices);
- (b) convergence (after rescaling) to a Poisson point process (e.g. heavy-tailed random matrices).

Our theorem 2 implies that neither is true here when $d \ll \log n$. In fact, there is no deterministic sequence α_n such that the point process

$$\{\alpha_n \lambda_k(A) : 2 \le k \le n^{0.99}\}$$

converges to a nondegenerate process.

Proof of the $d \ll \log n$ case

We want to prove that for $k \leq n^{0.99}$, $\lambda_k(A - \mathbb{E}A) \sim \sqrt{D_k^{\downarrow}}$, with D_k^{\downarrow} the k-the largest degree.

Remark. Spectrum of a star-graph with degree D:

$$-\sqrt{D}, \sqrt{D}, 0, 0, \dots$$

Lemma.
$$D_k^{\downarrow} \sim \frac{\log(n/k)}{\log((\log n)/d)}$$
.

Lemma. Let G' be the graph of the $n^{0.99}$ largest stars, where we have removed all edges joining centers of stars in 1 or 2 steps. Then w.h.p.,

- the stars present in G' are disjoint and have degrees $D_k^{\downarrow} O(1)$
- the matrix $A \mathbb{E}A$ rewrites

$$A - \mathbb{E}A = \operatorname{Adj}(G') + (\operatorname{matrix} \text{ with norm} \ll \sqrt{\frac{\log n}{\log \log n}})$$

(Le, Levina, Vershynin).

Then use perturbation inequalities to prove $\lambda_k(A - \mathbb{E}A) \sim \sqrt{D_k^{\downarrow}}$.

Proof of the $d \gg \log n$ case

Goal : estimate ||H|| with $H := d^{-1/2}(A - \mathbb{E}A)$.

Let $\lambda = (\lambda_1, \dots, \lambda_n)$ be the eigenvalues of H.

Goal : $\|\lambda\|_{\ell^{\infty}}$. Much easier to estimate $\|\lambda\|_{\ell^{p}}$ for large (even) p.

Elementary fact : $\|\lambda\|_{\ell^p}$ is close to $\|\lambda\|_{\ell^{\infty}}$ if $p \gg \log n$.

Thus, we have to estimate $\|\lambda\|_{\ell^p}$ for $p \gg \log(n)$. More precisely,

$$\mathbb{E}\|\lambda\|_{\ell^p}^p = \mathbb{E}\operatorname{Tr} H^p = \mathbb{E}\sum_{1 \leq i_1, \dots, i_p \leq n} H_{i_1 i_2} H_{i_2 i_3} \cdots H_{i_p i_1}.$$

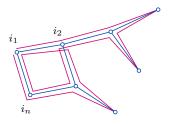
Right-hand side analyzed using that entries of H are independent and have mean zero (Füredi-Komlós-approach).

Use graphs to encode terms arising from $\sum_{i_1,\dots,i_n}\mathbb{E}(H_{i_1i_2}H_{i_2i_3}\cdots H_{i_pi_1}).$

 $Vertices = \{i_1, i_2, \dots, i_p\}.$

Edges =
$$\{\{i_k, i_{k+1}\}: k = 1, \dots, p\}.$$

Each non zero term : a walk i_1,i_2,\ldots,i_p of length p on a graph, such that each edge is visited at least twice.



Works well when $d \gg (\log n)^4$, but a fundamental problem arises otherwise : proliferation of subtrees, which leads to very complicated combinatorics.

Nonbacktracking matrix

To make combinatorics manageable, we try to kill all subtrees.

Key observation : each leaf of the graph gives rise to a backtracking piece of the walk : $i_{k-1}=i_{k+1}.$ i_{k-1}

$$i_{k-1}$$

$$i_{k+1}$$
 i_{k+1}

To H we associate its nonbacktracking matrix $B=(B_{ef})_{e,f\in\{1,...,n\}^2}$ indexed by directed edges :

$$B_{(i,j)(a,b)} := H_{ab} \, \mathbb{1}_{j=a} \, \mathbb{1}_{i \neq b} \,.$$

$$j = a$$
 b

Note that B is $n^2 \times n^2$ and non-Hermitian.

 $\mathbb{E} \operatorname{Tr} B^p(B^*)^p$ can be written in terms of walks on graphs with no subtrees : nonbacktracking walks.

Estimates of $\mathbb{E}\operatorname{Tr} B^p(B^*)^p$ (made possible by the non-backtracking structure) give :

Proposition 1 [BBK]. W.h.p.,

$$\rho(B) := (\text{Spectral Radius of } B) \leq 1 + \frac{C}{\sqrt{d}}.$$

Proposition 2 [BBK, Ihara-Bass type formula]. We have

$$||H|| \le ||H||_{2\to\infty} f\left(\frac{\rho(B)}{||H||_{2\to\infty}}\right) + 7||H||_{1\to\infty},$$

for $f(x) := 2 \cdot \mathbb{1}_{x \le 1} + \left(x + \frac{1}{x}\right) \cdot \mathbb{1}_{x \ge 1}$ and

$$||H||_{2\to\infty} := \max_i \sqrt{\sum_i |H_{ij}|^2}, \qquad ||H||_{1\to\infty} := \max_{i,j} |H_{ij}|.$$

Lemma. If $d \gg \log(n)$, then $||H||_{2\to\infty} \approx 1$ (Bennett's inequality)

Consequence:

As $||H||_{1\to\infty} \ll 1$, $||H|| \lesssim 2$ and Theorem 1 follows.