How small a universal differentiability set can be?

Olga Maleva

University of Birmingham

April 2013

Background

We consider real-valued Lipschitz functions $f: X \to \mathbb{R}$.

- lacktriangledown If X is finite-dimensional, then Rademacher theorem implies f is differentiable almost everywhere.
 - ▶ If *A* has positive measure, then $\{x \in A : f \text{ is differentiable at } x\}$ is not empty.
 - ▶ What if A has measure 0?
- For separable X, the dual X* must be separable as otherwise there is an equivalent norm on X which is everywhere Fréchet non-differentiable.
- \bullet If X^* is separable, then every Lipschitz function is differentiable on a dense subset of X [Preiss, 1990] and ...
- ...moreover, points of differentiability can be found inside a fixed beforehand dense G_{δ} subset S of X satisfying the condition that S contains a dense set of lines.

Universal Differentiability Set (UDS)

A set $S \subseteq X$ is a UDS if for every Lipschitz function $f: X \to \mathbb{R}$ there is an $x \in S$ such that f is (Fréchet) differentiable at x.

Finite-dimensional case, Rademacher's Theorem

- **②** Every subset of \mathbb{R}^n of positive measure is a UDS.
- **Q** If $n \geq 2$ one can choose a G_{δ} set $S \subseteq \mathbb{R}^n$ to contain all rational lines and to have measure 0. Hence there are *null* universal differentiability subsets of \mathbb{R}^n , $n \geq 2$.
- **1** In \mathbb{R}^1 , however, for every subset E of measure 0 one can find a Lipschitz function which fails to have a derivative inside E.

Sharpness of the result, $n \ge 2$

[Preiss, 1990] [Doré, M., 2010, 2011, 2012] [Dymond, M., 2013] If $n \geq 2$, then \mathbb{R}^n contains Lebesgue null universal differentiability subsets.

Examples of non-differentiability sets

Classical results

1. $E \subseteq X$ is porous.

Def. $E \subseteq X$ is porous at $x \in X$ if $\exists \lambda > 0$ s.t. for every r > 0 there is a $z \in B(x,r)$ such that $B(z,\lambda ||z-x||) \cap E = \emptyset$.

E is porous at $x \in E \Rightarrow$ $f(y) = \operatorname{dist}(y, E)$ is 1-Lipschitz and is not differentiable at x.

$$\frac{f(z)-f(x)}{\|z-x\|} \ge \lambda$$

 $E \subseteq X$ is porous if it is porous at each of its points.

Examples of non-differentiability sets of Lipschitz functions

Classical results

1. $E \subseteq X$ is porous, then $f(x) = \operatorname{dist}(x, E)$ is a 1-Lipschitz function and the set of points where f is not Fréchet differentiable contains E.

Thus porous sets are not UDS.

- 2. $E \subseteq X$ is σ -porous, i.e. a countable union of porous sets.
- B. Kirchheim, D. Preiss, L. Zajíček (1980s):

There exists a Lipschitz function $f: X \to \mathbb{R}$ that is nowhere diff. on E.

Thus σ -porous sets are **not** UDS.

3. D. Preiss (1990):

If X^* is separable and the set $E \subseteq X$ is a G_δ set containing a dense set of lines, then every Lipschitz function $f: X \to \mathbb{R}$ is Fréchet differentiable at some point $x \in E$.

This set is a UDS.

UDS

Search for null or small universal differentiability sets

1. The set constructed by D. Preiss can be chosen to be Lebesgue null in every $X = \mathbb{R}^n$, $n \ge 2$,

however its <u>closure</u> is always equal to the whole space.

2. M. Doré, O.M. (2010 + 2011):

If $n \ge 2$, there exists a compact universal differentiability set $E \subseteq \mathbb{R}^n$ of Hausdorff dimension 1 (so it is Lebesgue null).

3. M. Doré, O.M. (2012):

If X^* is separable, then there exists a closed bounded totally disconnected universal differentiability set $E\subseteq X$ of Hausdorff dimension 1.

4. M. Dymond, O.M. (2013):

If $n \ge 2$, $\exists E \subseteq \mathbb{R}^n$ a compact universal differentiability set of the upper Minkowski (box counting) dimension 1 (and it is Hausdorff dim 1 too).

Hausdorff and Minkowski dimension

Let $A \subset \mathbb{R}^n$.

Hausdorff dimension

$$\mathcal{H}^p(A) = \lim_{\delta \downarrow 0} \inf \Big\{ \sum_i \operatorname{diam}(E_i)^p : A \subseteq \bigcup_i E_i, \operatorname{diam}(E_i) \le \delta \Big\}.$$

is the p-dimensional Hausdorff measure of A.

Hausdorff dimension:

$$\dim_{\mathcal{H}}(A) = \inf\{p : \mathcal{H}^p(A) = 0\}.$$

Minkowski (box counting) dimension

Now for each $\delta>0$ let N_δ be the minimal possible number of balls of radius δ with which it is possible to cover A. Then

$$\overline{\dim}_{\mathcal{M}}(A)/\underline{\dim}_{\mathcal{M}}(A) = \inf\{p : \overline{\lim}_{\delta \downarrow 0}/\underline{\lim}_{\delta \downarrow 0}N_{\delta}\delta^{p} = 0\}$$

is the upper (lower) Minkowski dimension of A.

Universal differentiability sets

$\overline{\dim}_{\mathcal{M}}(E) \ge \underline{\dim}_{\mathcal{M}}(E) \ge \dim_{\mathcal{H}}(E) \ge 1:, E - \mathsf{UDS}$

Assume $\dim_{\mathcal{H}}(E) < 1$; let $e \in X$, $P \in X^*$ be s.t. P(e) = 1.

 $\dim_{\mathcal{H}}(P(E)) < 1 \implies S = P(E) \subseteq \mathbb{R}$ is Lebesgue null.

 $\exists \ g : \mathbb{R} \to \mathbb{R}$ Lipschitz, not differentiable everywhere on S, thus $f := g \circ P : X \to \mathbb{R}$ is Lipschitz and

 $\forall x \in E$, directional derivative f'(x, e) does not exist

 $\Rightarrow \forall x \in E$, f is not differentiable at x.

Finding a point of differentiability in a set

 $E \subseteq X$, $f: X \to \mathbb{R}$ is Lipschitz How to find a point $x^* \in E$ s.t. f is differentiable at x^* ?

Step by step

We construct a sequence (x_k, e_k) , $x_k \in E$ and $||e_k|| = 1$ such that $f'(x_k, e_k)$ exists and is "almost maximal" among f'(x, e) when $x \in E$, $||x - x_k||$ is small and e is arbitrary direction.

 $x_k \to x^*$ by completeness,

 $e_k \to e^*$ by adjusting f on each step: $f_n(x) \approx f_{n-1}(x) + \alpha_n \langle e_{n-1}, x \rangle$ and $f'(x^*, e^*)$ exists, is equal to $\lim f'(x_k, e_k)$ and is therefore "almost maximal" in every neighbourhood of x^* .

We then prove f is differentiable at x^* and $f'(x^*)(u) = f'(x^*, e^*)\langle e^*, u \rangle$.

Finding a point of differentiability

$$\begin{array}{c|c}
 & y \\
\hline
 & a=r/d \\
\hline
 & f(y) > f(x^*) + \varepsilon r \\
f(z) \approx f(x^*) - f'(x^*, e^*)d
\end{array}$$

$$\frac{f(y) - f(z)}{\|y - z\|} \ge \frac{Md + \varepsilon r}{\sqrt{d^2 + r^2}} = \frac{M + \varepsilon a}{\sqrt{1 + a^2}} > M + \varepsilon a + O(a^2) > M + \tau$$

Finding a point of differentiability

Therefore there exists $w \in [y,z]$ such that $f'(w, \frac{y-z}{\|y-z\|}) > f'(x^*,e^*) + \tau$

If $[y, z] \subseteq E$, we get a contradiction.

Thus
$$f'(x^*, e^{*\perp}) = 0$$
.

Essential properties of a UDS

- ► The limit point x* must not be a porosity point of the set E to be constructed
- ► Our argument works if around each limit point x^* the set E contains straight line segments in a dense set of directions

Key Geometric Lemma

If $n \ge 2$ and

$$E = \bigcup_{\lambda \in (0,1)} E_{\lambda} \subseteq \mathbb{R}^{n},$$

where (E_{λ}) is an increasing sequence of closed sets, and for all $0<\lambda<\lambda'<1$ and $\eta>0$ there is a threshold $\delta^*=\delta^*(\lambda,\lambda',\eta)$ such that $x\in E_{\lambda}, \ \|v_i\|\leq 1 \ (i=1,2,3), \ 0<\delta<\delta^*\Longrightarrow$ there exist $[x+\delta u_1,x+\delta u_2]\cup [x+\delta u_2,x+\delta u_3]\subseteq E_{\lambda'}$ with $\|u_i-v_i\|<\eta$, then E is a universal differentiability set.

- ▶ To get a UDS E of Hausdorff dimension 1 we can choose a G_δ set G of Hausd. dim. 1 that contains **all** rational lines in it, and to construct $E \subseteq G$.
- ▶ This is not possible if we look for a UDS of Minkowski dimension 1: any set containing dense set of lines has maximal possible Minkowski dimension.

Construction

$$R = R_{k+1} = Q^s$$
, $Q > 1$, $w_{k+1} = w_k/R$

Total number of cubes $w_{k+1} \times w_{k+1}$: $R + s \times Q^s + sQ \times Q^{s-1} + \cdots + sQ^{s-1} \times Q \sim s^2Q^s = R(\log R)^2$ Repeat for \forall new tube $\implies R(\log R)^4$,

Again and again: $R(\log R)^{2m}$ cubes. $N_{w_{k+1}} \leq N_{w_k} \times mR(\log R)^{2m}$

$$rac{N_{w_{k+1}}w_{k+1}^{p}}{N_{w_{k}}w_{k}^{p}} \leq (\log R)^{2m+1}R^{1-p} < 1, R \text{ large}$$

For
$$\delta \in (w_{k+1}, w_k)$$
: $N_\delta \delta^p \le N_{w_{k+1}} w_k^p = N_{w_{k+1}} w_{k+1}^p R^p$.

We show:
$$N_{w_{k+1}}w_{k+1}^pR_{k+1}^p o 0$$

Geometric measure theory

Equivalent definitions of a u.p.u. sets

Theorem. G. Alberti, M. Csörnyei, D. Preiss (2010): $S \subseteq \mathbb{R}^n$ The following two conditions are equivalent:

- **●** There exists a Lipschitz function $f : \mathbb{R}^n \to \mathbb{R}$ such that $\forall x \in S$ and $\forall ||e|| = 1$ the directional derivative f'(x, e) does not exist
- ② S is C-null for every cone C, i.e. for every $C = \{v : \|v v_0\| < \alpha\}$ and for every $\varepsilon > 0$ there exists an open set G_{ε} with $S \subseteq G_{\varepsilon}$ and

$$\mathcal{H}^1(\gamma \cap G_{\varepsilon}) \leq \varepsilon$$

for every C^1 -curve γ whose tangents lie in C.

$u.p.u. \Rightarrow p.u.$

Each uniformly purely unrectifiable set is **purely unrectifiable**: its intersection with any smooth curve has 1-dimensional measure 0.

Geometric measure theory: Open question

Does there exist a purely unrectifiable set which is NOT uniformly purely unrectifiable?

Question

Does there exist a purely unrectifiable UDS?

- ▶ In our original construction the final set contains many straight line intervals ⇒ not p.u.
- However we know how to eliminate all straight line intervals from the UDS
 - ▶ Now eliminate the *measure* from these intervals (and smooth curves)
 - \blacktriangleright In the construction, replace straight segments by broken lines or curves with Lipschitz constants $\to \infty$
- ▶ If the measure of $E \cap I$ is zero for straight line intervals I then we cannot have a sequence of points $x_n \in E$ (nothing to start with!) so $x_n \in E_n$ for each $n \ge 1$
 - ▶ If $x_n \in E_n \setminus E_{n+1}$ then how to find $x_{n+1} \in E_{n+1}$ close to x_{n+1} ?

Open questions

Conjecture 1

In \mathbb{R}^d , $d \geq 2$, every set of positive measure contains a (closed) universal differentiability subset of Lebesgue measure zero;

Conjecture 2

Every UDS contains a closed universal differentiability subset.