Cascades in networks: a simple theory and applications

Graduate Summer School: Games and Contracts for Cyber-Physical Security IPAM, UCLA

21 July 2015 (4:30-5:15)

Yongwhan Lim, Asuman Ozdaglar, Alex Teytelboym

MIT, MIT, Oxford

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

A simple model of cascades

<日

<</p>

- Many cascade phenomena that occur in social, economic, and physical networks are **irreversible** (at least temporarily):
 - positive: innovation/technology adoption, social platform use, mobile phone contracts etc.
 - negative: spread of incurable diseases, bank failures, outages in power grids, drug addiction, dropping out of high school etc.

• We call any such irreversible change a **switch**.

- Many cascade phenomena that occur in social, economic, and physical networks are **irreversible** (at least temporarily):
 - positive: innovation/technology adoption, social platform use, mobile phone contracts etc.
 - negative: spread of incurable diseases, bank failures, outages in power grids, drug addiction, dropping out of high school etc.
- We call any such irreversible change a switch.

- These cascade phenomena:
 - exhibit **path dependence** initial conditions matter.
 - exhibit network effects agents are heterogeneously affected by their neighbors - so network structure matters.

A B F A B F

- Granovetter's familiar **linear threshold model** on networks captures all these features:
 - Initially, all agents in a network are in their default state.
 - ▶ Then, some agents ("seeds") are switched.
 - Subsequent agents switch if the proportion of their neighbors who have switched exceeds some individual threshold.
 - Once an agent switches, he is switched forever.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

◆□▶ ◆舂▶ ◆吾▶ ◆吾▶ 善吾 … 釣�?

◆□▶ ◆舂▶ ◆吾▶ ◆吾▶ 善吾 … 釣�?

◆□▶ ◆舂▶ ◆吾▶ ◆吾▶ 善吾 … 釣�?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

- This model is useful, but notoriously difficult to analyse (size $2^{\binom{n}{2}} \times 2^n$ with *n* agents). Three multidimensional parameters:
 - network topology
 - each agent's threshold
 - initial seeds

- Necessary and sufficient condition for *complete contagion* for regular infinite lattices with single seeds using *cohesive sets* (Morris, 2000). We cover general graphs, any cascade size and arbitrary seed sets.
- Complete characterization of the *switch set* also in terms of cohesive sets (Acemoglu et al., 2011). More clustering → fewer switches. We consider the expected number of switches and show that general comparative statics do not depend on macroscopic properties of graphs.

<日

<</p>

- Necessary and sufficient condition for *complete contagion* for regular infinite lattices with single seeds using *cohesive sets* (Morris, 2000). We cover general graphs, any cascade size and arbitrary seed sets.
- Complete characterization of the *switch set* also in terms of cohesive sets (Acemoglu et al., 2011). More clustering → fewer switches. We consider the expected number of switches and show that general comparative statics do not depend on macroscopic properties of graphs.

< 回 > < 回 > < 回 >

- Necessary and sufficient condition for *complete contagion* for regular infinite lattices with single seeds using *cohesive sets* (Morris, 2000). We cover general graphs, any cascade size and arbitrary seed sets.
- Complete characterization of the *switch set* also in terms of cohesive sets (Acemoglu et al., 2011). More clustering → fewer switches. We consider the expected number of switches and show that general comparative statics do not depend on macroscopic properties of graphs.

< 回 > < 回 > < 回 >

- Necessary and sufficient condition for *complete contagion* for regular infinite lattices with single seeds using *cohesive sets* (Morris, 2000). We cover general graphs, any cascade size and arbitrary seed sets.
- Complete characterization of the *switch set* also in terms of cohesive sets (Acemoglu et al., 2011). More clustering → fewer switches. We consider the expected number of switches and show that general comparative statics do not depend on macroscopic properties of graphs.

.

- Algorithms for choosing a seed set to maximize or minimize switches (Kempe et al., 2003; Blume et al., 2011). We focus on network design rather than on seed set selection.
- Evolutionary models (ergodic Markov chains) where agents can switch back and forth (Young, 2006). Our process is progressive/monotonic i.e. initial conditions matter.
- For some applications, such as complete contagion, path-dependent and ergodic models are equivalent (Adam et al., 2013).

• • = • • = •

- Algorithms for choosing a seed set to maximize or minimize switches (Kempe et al., 2003; Blume et al., 2011). We focus on network design rather than on seed set selection.
- Evolutionary models (ergodic Markov chains) where agents can switch back and forth (Young, 2006). Our process is progressive/monotonic i.e. initial conditions matter.
- For some applications, such as complete contagion, path-dependent and ergodic models are equivalent (Adam et al., 2013).

伺 ト イ ヨ ト イ ヨ ト

- Algorithms for choosing a seed set to maximize or minimize switches (Kempe et al., 2003; Blume et al., 2011). We focus on network design rather than on seed set selection.
- Evolutionary models (ergodic Markov chains) where agents can switch back and forth (Young, 2006). Our process is progressive/monotonic i.e. initial conditions matter.
- For some applications, such as complete contagion, path-dependent and ergodic models are equivalent (Adam et al., 2013).

伺 ト イ ヨ ト イ ヨ ト

- Algorithms for choosing a seed set to maximize or minimize switches (Kempe et al., 2003; Blume et al., 2011). We focus on network design rather than on seed set selection.
- Evolutionary models (ergodic Markov chains) where agents can switch back and forth (Young, 2006). Our process is progressive/monotonic i.e. initial conditions matter.
- For some applications, such as complete contagion, path-dependent and ergodic models are equivalent (Adam et al., 2013).

• • = • • = •

- Algorithms for choosing a seed set to maximize or minimize switches (Kempe et al., 2003; Blume et al., 2011). We focus on network design rather than on seed set selection.
- Evolutionary models (ergodic Markov chains) where agents can switch back and forth (Young, 2006). Our process is progressive/monotonic i.e. initial conditions matter.
- For some applications, such as complete contagion, path-dependent and ergodic models are equivalent (Adam et al., 2013).

• • = • • = •

Outline of this talk

- We develop a tractable model of cascades in networks.
- We introduce a new centrality concept called **cascade centrality**.
- We characterize the expected number of switches using cascade centrality in various classes graphs.

3

<ロト <問ト < 国ト < 国ト

- Simple, undirected graph G(V, E) with a set of n agents
 V := {1,..., n} and a set of m links E.
- Neighbors of i ∈ V denoted N_i(G) := {j|(j, i) ∈ E} and the degree of i as d_i := |N_i(G)|.
- A threshold for agent i is a random variable Θ_i drawn from a probability distribution with support [0, 1].
- The associated multivariate probability distribution for all the nodes in the graph is $f(\theta)$.
- Each agent is *i* ∈ V assigned a threshold θ_i. Let's define the threshold profile of agents as θ := (θ_i)_{i∈V}. A network G_θ is a graph endowed with a threshold profile.

イロト 不得 トイヨト イヨト

- Simple, undirected graph G(V, E) with a set of n agents
 V := {1,..., n} and a set of m links E.
- Neighbors of i ∈ V denoted N_i(G) := {j|(j, i) ∈ E} and the degree of i as d_i := |N_i(G)|.
- A threshold for agent i is a random variable Θ_i drawn from a probability distribution with support [0, 1].
- The associated multivariate probability distribution for all the nodes in the graph is $f(\theta)$.
- Each agent is *i* ∈ V assigned a threshold θ_i. Let's define the threshold profile of agents as θ := (θ_i)_{i∈V}. A network G_θ is a graph endowed with a threshold profile.

イロト 不得 トイヨト イヨト

- Simple, undirected graph G(V, E) with a set of n agents
 V := {1,..., n} and a set of m links E.
- Neighbors of i ∈ V denoted N_i(G) := {j|(j, i) ∈ E} and the degree of i as d_i := |N_i(G)|.
- A *threshold* for agent *i* is a random variable Θ_i drawn from a probability distribution with support [0, 1].
- The associated multivariate probability distribution for all the nodes in the graph is $f(\theta)$.
- Each agent is *i* ∈ V assigned a threshold θ_i. Let's define the threshold profile of agents as θ := (θ_i)_{i∈V}. A network G_θ is a graph endowed with a threshold profile.

イロト イポト イヨト イヨト

- Simple, undirected graph G(V, E) with a set of n agents
 V := {1,..., n} and a set of m links E.
- Neighbors of i ∈ V denoted N_i(G) := {j|(j, i) ∈ E} and the degree of i as d_i := |N_i(G)|.
- A *threshold* for agent *i* is a random variable Θ_i drawn from a probability distribution with support [0, 1].
- The associated multivariate probability distribution for all the nodes in the graph is $f(\theta)$.
- Each agent is i ∈ V assigned a threshold θ_i. Let's define the threshold profile of agents as θ := (θ_i)_{i∈V}. A network G_θ is a graph endowed with a threshold profile.

イロト 不得 トイラト イラト 一日

- Simple, undirected graph G(V, E) with a set of n agents
 V := {1,..., n} and a set of m links E.
- Neighbors of i ∈ V denoted N_i(G) := {j|(j, i) ∈ E} and the degree of i as d_i := |N_i(G)|.
- A *threshold* for agent *i* is a random variable Θ_i drawn from a probability distribution with support [0, 1].
- The associated multivariate probability distribution for all the nodes in the graph is $f(\theta)$.
- Each agent is *i* ∈ V assigned a threshold θ_i. Let's define the threshold profile of agents as θ := (θ_i)_{i∈V}. A network G_θ is a graph endowed with a threshold profile.

イロト 不得 トイラト イラト 一日

Model: dynamics

- At time t = 0, a subset of agents $S_0 \subseteq V$ is selected is a seed set. We assume that at t = 0 agents switch if and only if they are in the seed set.
- For any $t \ge 0$ and any $i \in V \setminus S_0(G_{\theta})$:

$$\frac{|S_0(G_\theta) \cap N_i(G_\theta)|}{|N_i(G_\theta)|} \geq \theta_i \Rightarrow i \in S_1(G_\theta)$$

< □ > < 同 > < 回 > < 回 > < 回 >

Model: dynamics

- At time t = 0, a subset of agents S₀ ⊆ V is selected is a seed set. We assume that at t = 0 agents switch if and only if they are in the seed set.
- For any $t \ge 0$ and any $i \in V \setminus S_0(G_{\theta})$:

$$\frac{|S_0(G_\theta) \cap N_i(G_\theta)|}{|N_i(G_\theta)|} \ge \theta_i \Rightarrow i \in S_1(G_\theta)$$

Model: dynamics

- At time t = 0, a subset of agents S₀ ⊆ V is selected is a seed set. We assume that at t = 0 agents switch if and only if they are in the seed set.
- For any $t \ge 0$ and any $i \in V \setminus S_0(G_{\theta})$:

$$\frac{|S_0(G_{\boldsymbol{\theta}}) \cap N_i(G_{\boldsymbol{\theta}})|}{|N_i(G_{\boldsymbol{\theta}})|} \geq \theta_i \Rightarrow i \in S_1(G_{\boldsymbol{\theta}})$$

This means that any agent who has not switched by some period t, switches in time period t + 1 if the proportion of his neighbors who switched is greater or equal to his threshold θ_i. For a given period t ≥ 0 and node i ∈ V \ ∪^{t-1}_{τ=0}S_τ(G_θ) will switch at t if

$$\frac{|\{\cup_{\tau=0}^{t-1}S_{\tau}(G_{\theta})\}\cap N_i(G_{\theta})|}{|N_i(G_{\theta})|} \geq \theta_i \Rightarrow i \in S_t(G_{\theta})$$

For a given network G_{θ} , define the fixed point of the process as $S(G_{\theta}, S_0)$ s.t. $S = S_0(G_{\theta}) \Rightarrow S_t(G_{\theta}) = \emptyset$ for all t > 0.

- Let's fix a seed S_0 and a graph G, and re-run the process by drawing the agents' thresholds from $f(\theta)$ each time.
- The expected probability of agent *i* switching is:

$$\mathbb{P}_i(G,S_0) = \int_{\mathbb{R}^n} |S(G_{ heta},S_0) \cap \{i\}|f(heta)d heta$$

• Total expected number of switches in graph G with seed S_0 is:

$$\mathbb{E}[S(G,S_0)] = \int_{\mathbb{R}^n} |S(G_{\theta},S_0)| f(\theta) d\theta = \sum_{i=1}^n \mathbb{P}_i(G,S_0)$$

.

- Let's fix a seed S_0 and a graph G, and re-run the process by drawing the agents' thresholds from $f(\theta)$ each time.
- The expected probability of agent *i* switching is:

$$\mathbb{P}_i(G,S_0) = \int_{\mathbb{R}^n} |S(G_{m{ heta}},S_0) \cap \{i\}| f(m{ heta}) dm{ heta}$$

• Total expected number of switches in graph G with seed S_0 is:

$$\mathbb{E}[S(G,S_0)] = \int_{\mathbb{R}^n} |S(G_\theta,S_0)| f(\theta) d\theta = \sum_{i=1}^n \mathbb{P}_i(G,S_0)$$
Model

- Let's fix a seed S_0 and a graph G, and re-run the process by drawing the agents' thresholds from $f(\theta)$ each time.
- The expected probability of agent *i* switching is:

$$\mathbb{P}_i(G,S_0) = \int_{\mathbb{R}^n} |S(G_{m{ heta}},S_0) \cap \{i\}| f(m{ heta}) dm{ heta}$$

• Total expected number of switches in graph G with seed S_0 is:

$$\mathbb{E}[S(G,S_0)] = \int_{\mathbb{R}^n} |S(G_{\theta},S_0)| f(\theta) d\theta = \sum_{i=1}^n \mathbb{P}_i(G,S_0)$$

Uniform thresholds

Lemma

Let $\{G(n)\}_{n \in \mathbb{N}^+}$ be set of star networks of orders $n \in \mathbb{N}^+$ in which *i* is a center and the seed set is $S_0 \subseteq V \setminus \{i\}$, then

$$\mathbb{P}_i(G(n), S_0) = \frac{|S_0|}{d_i(G(n))}$$

for almost all G_n if and only if $\Theta_i \sim \mathcal{U}[0, 1]$.

Moreover, we can prove that

$$\mathbb{P}_i(G, S_0) = \sum_{j \in N_i(G)} \frac{\mathbb{P}_j(G | i \notin S)}{d_i}$$

A B b A B b

Uniform thresholds

Assumption

For any G_{θ} and every $i \in V$, $\Theta_i \sim \mathcal{U}(0, 1)$ and independent.

It's the Laplacian prior and not actually a very restrictive assumption.

.

Paths

Definition

A sequence of nodes $P = (i_0, \dots, i_k)$ on a graph G is a path if $i_j \in N_{i_{j-1}}(G)$ for all $1 \le j \le k$ and each $i_j \in P$ is distinct.

イロト イヨト イヨト イヨト

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Degree sequence product

Definition

For a path P, a degree sequence along any path P is $(d_i(G))_{i \in P \setminus \{i_0\}}$.

Definition

A degree sequence product along P is:

$$\chi_P := \prod_{i \in P \setminus \{i_0\}} d_i(G)$$

Key proposition

For any G and S_0 , let \mathcal{P}_{ji} be the set of all paths beginning at $j \in S_0$ and ending at $i \in V \setminus S_0$ and $\mathcal{P}_{ji}^* \subseteq \mathcal{P}_{ji}$ denote the subset of those paths that exclude any other node in S_0 .

Proposition

Given a graph G and seed S_0 , the probability that node $i \in V \setminus S_0$ switches is:

$$\mathbb{P}_i(G, S_0) = \sum_{j \in S_0} \sum_{P \in \mathcal{P}_{ji}^*} \frac{1}{\chi_P}$$

See Kempe et al. (2003).

▲ 伊 ▶ ▲ 王 ▶ ▲ 王 ▶

<□> <0>
<□> <0</p>
<□> <0</p>
<0</p>

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 臣 の�?

◆□▶ ◆舂▶ ◆吾▶ ◆吾▶ 善吾 めへぐ

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ● ●

Cascade centrality

Definition

Cascade centrality of node i in graph G is the expected number of switches in that graph given i is the seed, namely

$$\mathcal{C}_i(G) := \mathbb{E}[S(G, \{i\})] = 1 + \sum_{j \in V \setminus \{i\}} \mathbb{P}_j(G, \{i\}) = 1 + \sum_{j \in V \setminus \{i\}} \sum_{P \in \mathcal{P}_{ij}} \frac{1}{\chi_P}$$

- E > - E >

Loops

Definition

A sequence of nodes $L = (i_0, \ldots, i_k)$ on a graph G is a loop if (i_0, \ldots, i_{k-1}) is a path and $i_k \in \{i_0, \ldots, i_{k-2}\}$ for some $k \ge 2$.

イロト 不得 トイヨト イヨト

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Cascade centrality

Theorem

The cascade centrality of any node i in G is:

$$\mathcal{C}_i(G) = 1 + \textit{d}_i - \sum_{j \in \textit{V} \setminus \{i\}} \sum_{L \in \mathcal{L}_{ij}} rac{1}{\chi_L}$$

where χ_L is the degree sequence product along a loop.

< 回 > < 回 > < 回 >

Analytical Results

э

(4 回) (4 回) (4 回)

Corollary Suppose that G is a tree. Then, for all $i \in V$,

$$\mathcal{C}_i(G) = d_i(G) + 1.$$

э

◆□▶ ◆舂▶ ◆吾▶ ◆吾▶ 善吾 … 釣�?

Cycle

Corollary

Suppose that G is a cycle of order n. Then, for all $i \in V$,

$$\mathcal{C}_i(G)=3-\frac{1}{2^{n-2}}$$

Proposition

Consider a sequence of cycle graphs of order n, $\{G(n)\}_{n\in\mathbb{N}^+}$. Then, for all $i\in V$,

$$\lim_{n\to\infty}\mathcal{C}_i(G(n))=3$$

э

A B M A B M

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

<□> <0>
<□> <0</p>
<□> <0</p>
<0</p>

(日) (图) (문) (문) (문)

・ロト ・個ト ・モト ・モト

Complete graph

Corollary

Suppose that G is a complete graph of order n. Then, for all $i \in V$,

$$\mathcal{C}_i(G) = 1 + (n-1)\left(\sum_{i=1}^{n-1} \mathbf{P}(n-2,i-1)\left(\frac{1}{n-1}\right)^i\right)$$

where $\mathbf{P}(n, i) \equiv \frac{n!}{(n-i)!}$ is number of ways of obtaining an ordered subset of *i* elements from a set of *n* elements.

Proposition

Consider a sequence of complete graphs of order n, $\{G(n)\}_{n \in \mathbb{N}^+}$ Then, for all $i \in V$,

$$\lim_{n\to\infty}\frac{\mathcal{C}_i(G(n))}{\sqrt{n}}=\sqrt{\frac{\pi}{2}}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

<□> <0>
<□> <0</p>
<□> <0</p>
<0</p>

(日) (圖) (필) (필)

Random graphs

Proposition

Consider an Erdős-Rényi graph $G(n, \rho)$. Then, for a fixed n and a given $i \in V$, cascade centrality can be approximated by:

$$C_i(G(n,\rho)) = 1 + (n-1)\rho - \frac{(n-1)(n-2)}{4}\rho^3 + o(\rho^4)$$

Conjecture

Consider an Erdős-Rényi graph $G(n, \rho)$. Then, for a fixed $\overline{d} = n\rho$:

$$\lim_{n\to\infty}\frac{\sum_{i\in N}\mathcal{C}_i(G(n,\rho))}{n}=\bar{d}+1$$

· · · · · · · · ·

Lattices: self-avoiding walks

• For an approximation for cascade centrality in an infinite regular lattice, we can use the following proposition:

Proposition Suppose that G is a r-regular, infinite lattice. Then, for all $i \in V$: $C_i(G) \le 1 + r$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆

Conclusions

- Using a new notion of *cascade centrality*, we analyzed a tractable cascade process on general networks.
- We showed how these insights can help understand which networks prevent or help cascades.

- E > - E >

Conclusions

- Using a new notion of *cascade centrality*, we analyzed a tractable cascade process on general networks.
- We showed how these insights can help understand which networks prevent or help cascades.

Future research questions

- In the next talks, I'll cover competition, pricing and network design: there will be plenty of research questions.
- In the meantime, cascade centrality for classes of random graphs (Erdős-Rényi or power-law) is an open problem.

.

Future research questions

- In the next talks, I'll cover competition, pricing and network design: there will be plenty of research questions.
- In the meantime, cascade centrality for classes of random graphs (Erdős-Rényi or power-law) is an open problem.

References I

- D. Acemoglu, A. Ozdaglar, and M.E. Yildiz. Diffusion of innovations in social networks. In Proc. of IEEE Conference on Decision and Control (CDC), 2011.
- L. Blume, D. Easley, J. Kleinberg, R. Kleinberg, and É. Tardos. Which networks are least susceptible to cascading failures? In Proceedings of the 52nd Annual IEEE Symposium on Foundations of Computer Science, 2011.
- David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of influence through a social network. In SIGKDD'03 Proceedings of the ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 137–146, 2003.

Stephen Morris. Contagion. Review of Economic Studies, 67(1):57-78, 2000.

H. Peyton Young. The diffusion of innovations in social networks. In *Economy as an Evolving Complex System*, volume 3, pages 267–282. Oxford University Press, 2006.

イロト イポト イヨト イヨト