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A simple model of cascades
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Motivation

Many cascade phenomena that occur in social, economic, and
physical networks are irreversible (at least temporarily):

I positive: innovation/technology adoption, social platform use,
mobile phone contracts etc.

I negative: spread of incurable diseases, bank failures, outages in
power grids, drug addiction, dropping out of high school etc.

We call any such irreversible change a switch.
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Motivation

These cascade phenomena:

I exhibit path dependence - initial conditions matter.
I exhibit network effects - agents are heterogeneously affected

by their neighbors - so network structure matters.
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Typical model

Granovetter’s familiar linear threshold model on networks
captures all these features:

I Initially, all agents in a network are in their default state.
I Then, some agents (“seeds”) are switched.
I Subsequent agents switch if the proportion of their neighbors

who have switched exceeds some individual threshold.
I Once an agent switches, he is switched forever.
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Motivation

This model is useful, but notoriously difficult to analyse (size

2(n
2) × 2n with n agents). Three multidimensional parameters:

I network topology
I each agent’s threshold
I initial seeds

Lim/Ozdaglar/Teytelboym (Oxford/MIT) Cascades 6 / 31



Previous work vs. this talk

Necessary and sufficient condition for complete contagion for
regular infinite lattices with single seeds using cohesive sets
(Morris, 2000). We cover general graphs, any cascade size and
arbitrary seed sets.

Complete characterization of the switch set also in terms of
cohesive sets (Acemoglu et al., 2011). More clustering → fewer
switches. We consider the expected number of switches and
show that general comparative statics do not depend on
macroscopic properties of graphs.
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Previous work vs. this talk

Algorithms for choosing a seed set to maximize or minimize
switches (Kempe et al., 2003; Blume et al., 2011). We focus on
network design rather than on seed set selection.

Evolutionary models (ergodic Markov chains) where agents can
switch back and forth (Young, 2006). Our process is
progressive/monotonic i.e. initial conditions matter.

For some applications, such as complete contagion,
path-dependent and ergodic models are equivalent (Adam et al.,
2013).

Lim/Ozdaglar/Teytelboym (Oxford/MIT) Cascades 8 / 31



Previous work vs. this talk

Algorithms for choosing a seed set to maximize or minimize
switches (Kempe et al., 2003; Blume et al., 2011). We focus on
network design rather than on seed set selection.

Evolutionary models (ergodic Markov chains) where agents can
switch back and forth (Young, 2006). Our process is
progressive/monotonic i.e. initial conditions matter.

For some applications, such as complete contagion,
path-dependent and ergodic models are equivalent (Adam et al.,
2013).

Lim/Ozdaglar/Teytelboym (Oxford/MIT) Cascades 8 / 31



Previous work vs. this talk

Algorithms for choosing a seed set to maximize or minimize
switches (Kempe et al., 2003; Blume et al., 2011). We focus on
network design rather than on seed set selection.

Evolutionary models (ergodic Markov chains) where agents can
switch back and forth (Young, 2006). Our process is
progressive/monotonic i.e. initial conditions matter.

For some applications, such as complete contagion,
path-dependent and ergodic models are equivalent (Adam et al.,
2013).

Lim/Ozdaglar/Teytelboym (Oxford/MIT) Cascades 8 / 31



Previous work vs. this talk

Algorithms for choosing a seed set to maximize or minimize
switches (Kempe et al., 2003; Blume et al., 2011). We focus on
network design rather than on seed set selection.

Evolutionary models (ergodic Markov chains) where agents can
switch back and forth (Young, 2006). Our process is
progressive/monotonic i.e. initial conditions matter.

For some applications, such as complete contagion,
path-dependent and ergodic models are equivalent (Adam et al.,
2013).

Lim/Ozdaglar/Teytelboym (Oxford/MIT) Cascades 8 / 31



Previous work vs. this talk

Algorithms for choosing a seed set to maximize or minimize
switches (Kempe et al., 2003; Blume et al., 2011). We focus on
network design rather than on seed set selection.

Evolutionary models (ergodic Markov chains) where agents can
switch back and forth (Young, 2006). Our process is
progressive/monotonic i.e. initial conditions matter.

For some applications, such as complete contagion,
path-dependent and ergodic models are equivalent (Adam et al.,
2013).

Lim/Ozdaglar/Teytelboym (Oxford/MIT) Cascades 8 / 31



Outline of this talk

We develop a tractable model of cascades in networks.

We introduce a new centrality concept called cascade
centrality.

We characterize the expected number of switches using cascade
centrality in various classes graphs.
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Model
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Model: preliminaries

Simple, undirected graph G (V ,E ) with a set of n agents
V := {1, . . . , n} and a set of m links E .

Neighbors of i ∈ V denoted Ni(G ) := {j |(j , i) ∈ E} and the
degree of i as di := |Ni(G )|.
A threshold for agent i is a random variable Θi drawn from a
probability distribution with support [0, 1].

The associated multivariate probability distribution for all the
nodes in the graph is f (θ).

Each agent is i ∈ V assigned a threshold θi . Let’s define the
threshold profile of agents as θ := (θi)i∈V . A network Gθ is a
graph endowed with a threshold profile.
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Model: dynamics

At time t = 0, a subset of agents S0 ⊆ V is selected is a seed
set. We assume that at t = 0 agents switch if and only if they
are in the seed set.

For any t ≥ 0 and any i ∈ V \ S0(Gθ):

|S0(Gθ) ∩ Ni(Gθ)|
|Ni(Gθ)|

≥ θi ⇒ i ∈ S1(Gθ)
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Model

This means that any agent who has not switched by some period
t, switches in time period t + 1 if the proportion of his neighbors
who switched is greater or equal to his threshold θi . For a given
period t ≥ 0 and node i ∈ V \ ∪t−1

τ=0Sτ (Gθ) will switch at t if

|{∪t−1
τ=0Sτ (Gθ)} ∩ Ni(Gθ)|

|Ni(Gθ)|
≥ θi ⇒ i ∈ St(Gθ)

For a given network Gθ, define the fixed point of the process as
S(Gθ, S0) s.t. S = S0(Gθ)⇒ St(Gθ) = ∅ for all t > 0.
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Model

Let’s fix a seed S0 and a graph G , and re-run the process by
drawing the agents’ thresholds from f (θ) each time.

The expected probability of agent i switching is:

Pi(G , S0) =

∫
Rn

|S(Gθ, S0) ∩ {i}|f (θ)dθ

Total expected number of switches in graph G with seed S0 is:

E[S(G , S0)] =

∫
Rn

|S(Gθ, S0)|f (θ)dθ =
n∑

i=1

Pi(G , S0)
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Uniform thresholds

Lemma

Let {G (n)}n∈N+ be set of star networks of orders n ∈ N+
in which i is

a center and the seed set is S0 ⊆ V \ {i}, then

Pi(G (n), S0) =
|S0|

di(G (n))

for almost all Gn if and only if Θi ∼ U [0, 1].

Moreover, we can prove that

Pi(G , S0) =
∑

j∈Ni (G)

Pj(G |i /∈ S)

di
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Uniform thresholds

Assumption

For any Gθ and every i ∈ V , Θi ∼ U(0, 1) and independent.

It’s the Laplacian prior and not actually a very restrictive assumption.
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Paths

Definition
A sequence of nodes P = (i0, · · · , ik) on a graph G is a path if
ij ∈ Nij−1

(G ) for all 1 ≤ j ≤ k and each ij ∈ P is distinct.

Lim/Ozdaglar/Teytelboym (Oxford/MIT) Cascades 17 / 31





i	



j	





i	



j	





i	



j	





i	



j	





i	



j	





i	



j	





i	



j	





i	



j	





i	



j	





i	



j	





i	



j	





i	



j	





i	



j	





i	



j	





Degree sequence product

Definition
For a path P , a degree sequence along any path P is (di(G ))i∈P\{i0}.

Definition
A degree sequence product along P is:

χP :=
∏

i∈P\{i0}

di(G )
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Key proposition

For any G and S0, let Pji be the set of all paths beginning at j ∈ S0

and ending at i ∈ V \ S0 and P∗ji ⊆ Pji denote the subset of those
paths that exclude any other node in S0.

Proposition

Given a graph G and seed S0, the probability that node i ∈ V \ S0

switches is:

Pi(G , S0) =
∑
j∈S0

∑
P∈P∗

ji

1

χP

See Kempe et al. (2003).
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Cascade centrality

Definition
Cascade centrality of node i in graph G is the expected number of
switches in that graph given i is the seed, namely

Ci(G ) := E[S(G , {i})] = 1 +
∑

j∈V \{i}

Pj(G , {i}) = 1 +
∑

j∈V \{i}

∑
P∈Pij

1

χP
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Loops

Definition
A sequence of nodes L = (i0, . . . , ik) on a graph G is a loop if
(i0, . . . , ik−1) is a path and ik ∈ {i0, . . . , ik−2} for some k ≥ 2.
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Cascade centrality

Theorem
The cascade centrality of any node i in G is:

Ci(G ) = 1 + di −
∑

j∈V \{i}

∑
L∈Lij

1

χL

where χL is the degree sequence product along a loop.
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Analytical Results
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Tree

Corollary
Suppose that G is a tree. Then, for all i ∈ V ,

Ci(G ) = di(G ) + 1.
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Cycle

Corollary
Suppose that G is a cycle of order n. Then, for all i ∈ V ,

Ci(G ) = 3− 1

2n−2

Proposition

Consider a sequence of cycle graphs of order n, {G (n)}n∈N+ . Then,
for all i ∈ V ,

lim
n→∞
Ci(G (n)) = 3
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Complete graph
Corollary
Suppose that G is a complete graph of order n. Then, for all i ∈ V ,

Ci(G ) = 1 + (n − 1)

(
n−1∑
i=1

P(n − 2, i − 1)

(
1

n − 1

)i
)

where P(n, i) ≡ n!
(n−i)!

is number of ways of obtaining an ordered
subset of i elements from a set of n elements.

Proposition

Consider a sequence of complete graphs of order n, {G (n)}n∈N+

Then, for all i ∈ V ,

lim
n→∞

Ci(G (n))√
n

=

√
π

2
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Random graphs

Proposition

Consider an Erdős-Rényi graph G (n, ρ). Then, for a fixed n and a
given i ∈ V , cascade centrality can be approximated by:

Ci(G (n, ρ)) = 1 + (n − 1)ρ− (n − 1)(n − 2)

4
ρ3 + o(ρ4)

Conjecture

Consider an Erdős-Rényi graph G (n, ρ). Then, for a fixed d̄ = nρ:

lim
n→∞

∑
i∈N Ci(G (n, ρ))

n
= d̄ + 1
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Lattices: self-avoiding walks

For an approximation for cascade centrality in an infinite regular
lattice, we can use the following proposition:

Proposition
Suppose that G is a r -regular, infinite lattice. Then, for all i ∈ V :

Ci(G ) ≤ 1 + r
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Conclusions

Using a new notion of cascade centrality, we analyzed a
tractable cascade process on general networks.

We showed how these insights can help understand which
networks prevent or help cascades.
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Future research questions

In the next talks, I’ll cover competition, pricing and network
design: there will be plenty of research questions.

In the meantime, cascade centrality for classes of random graphs
(Erdős-Rényi or power-law) is an open problem.
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