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Overview

1. Traditional commodity markets issues and models. Electricity

price models.

2. Energy production from exhaustible resources and renewables:

game threoretic models.

3. Financialization of commodity markets.
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Background

◮ Tang & Xiong (2009) report empirical evidence of commodity &

fuel prices moving more in sync with financial markets

throughout the 2000s, and in contrast to previously.

◮ They conjecture the financialization of commodity markets

largely due to influx of external traders: commodity index funds,

ETFs (e.g. on silver), etc.

◮ Commodities a significant part of hedge fund (and others’)

portfolios. Their trading is governed by portfolio diversification,

speculation, momentum/mean-reversion strategies in contrast to

supply/demand needs of “traditional” commodities traders.

◮ Example: hedge funds trading lean hogs to bet on a weak US $.

Puts the oddities in commodities markets.
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Oil Prices 1997-2011
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Politicization: Bernie Sanders on CNN.com, 2/28/12

◮ “Gas prices approaching $4 a gallon on average are causing

severe economic pain for millions of Americans. Pump prices

spiked 5% in the past month alone. Crude oil prices: $108”

◮ “What’s the cause? Forget what you may have read about the

laws of supply and demand. Oil and gas prices have almost

nothing to do with economic fundamentals.”

◮ “Is Big Oil to blame? Sure. Partly. Big oil companies have been

gouging consumers for years.”

◮ “But there’s another reason for the wild rise in gas prices. The

culprit is Wall Street. Speculators are raking in profits by

gambling in the loosely regulated commodity markets”

◮ “A decade ago, speculators controlled only about 30% of the oil

futures market. Today, Wall Street speculators control nearly

80% of this market.”
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Table: Correlations between the commodities and the S&P 500: 1990-2004

& 2004-11.

Commodity, correlated to S&P non-indexed period indexed period

CBOT Corn Futures 0.0099 0.2231

CSCE Cocoa Futures -0.0182 0.1473

NYMEX Crude Oil Futures -0.0546 0.3287

NYCE Cotton Futures 0.0116 0.1511

CSCE Coffee Futures 0.0290 0.1928

NYMEX Natural Gas Futures -0.0092 0.1035

CSCE Sugar No. 11 Futures -0.0082 0.1499

CBOT Soybean Futures 0.0124 0.2074

COMEX Silver Futures -0.0516 0.1848

CBOT Wheat Futures 0.0005 0.1943
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Some Recent Literature on Financialization of Commodities

◮ Tang and Xiong (2010): empirical evidence of increased

exposure of commodities prices to shocks in other asset classes.

◮ Report by FTI UK Holdings Limited (2011) on the impact of

speculation in commodity markets. Also Brunetti and

Buyuksahin (2009), Buyuksahin and Robe (2013), Silvennoinen

and Thorp (2013), Henderson, Pearson, and Wang (2012),

Gilbert (2010), Irwin and Sanders (2012), Kaufmann (2011),

Mayer (2012).

◮ Models of financialization: Basak & Pavlova (2013), Sockin &

Xiong (2013), Singleton (2013), Leclercq and Praz (2013),

Anthropelos, Kupper & Papapantaleon (2015).

◮ Discuss next work with P. Chan & M. Stein (2014).
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Reference Model (no speculators)

◮ The commodity is bought and sold by market users (reference

traders), who trade in it for direct industrial use or for hedging

operational exposure.

◮ We assume a fixed constant supply A of the commodity available

for trading each time period.

◮ The reference traders have a stochastic incomes process It, the

aggregated amount of capital available for business investment.

◮ Given the commodity price Yt, their demand is

D(Yt, It, t) =
Iλt
Yt
, λ > 0.

8



Reference Model (ctd.)

◮ In the absence of financial traders, label the price Y = Y(0).

◮ Then DEMAND = SUPPLY gives

Y
(0)
t =

Iλt
A
.

◮ Take I to be a geometric Ornstein-Uhlenbeck process (i.e. logOU

or expOU). Then Y(0) is one too, and we will write

dY
(0)
t =

(
a(m − log(Y

(0)
t ))

)
Y
(0)
t dt + bY

(0)
t dWc

t ,

where Wc is a Brownian motion. (Schwartz ’97 model of

mean-reverting commodity prices).
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Adding Portfolio Optimizers

◮ Introduce portfolio optimizers, rational investors with no direct

operational or hedging interest in the commodity, who trade to

maximize expected utility.

◮ Assume power utility of wealth x at a fixed terminal horizon T:

U(x) =
x(1−γ)

1 − γ
, γ > 0

and portfolio split between
◮ money market account with constant interest r ≥ 0;
◮ stock market index S:

dSt = µSt dt + σSt dWs
t ,

where Ws is a Brownian motion;
◮ the commodity whose price Y is determined by supply & demand.
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Fixed point characterization
A pair (π̂∗, θ̂∗), is an equilibrium solution if

1. The stock price St is GBM and the commodity price Yt is

determined by the market clearing condition

D(Yt, It) + ǫ̃
θ̂tXt

Yt
= A,

where Xt is the controlled wealth process:

dXt

Xt
=

π̂∗
t

St
dSt +

θ̂∗t
Yt

dYt + r
(

1 − π̂∗
t − θ̂∗t

)
dt.

2. The pair (π̂∗, θ̂∗) maximizes the expected utility of terminal

wealth ZT

sup
π̂,θ̂

E [U(ZT)|Ft] ,

under the budget constraint

dZt

Zt
=

π̂t

St
dSt +

θ̂t

Yt
dYt + r

(
1 − π̂t − θ̂t

)
dt.
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Some Context

◮ Models of the form

Reference traders + Noise traders → equilibrium!

have long history.

◮ In continuous time/stochastic calculus: Frey-Stremme (’95);

Schonbucher-Wilmott (’96,’00); Sircar-Papanicolaou (’98)

[SP98]; Platen-Schweizer (’98); Mitton (’05); Jones (’07);

Nayak-Papanicolaou (’08) [NP08].

◮ Related: illiquid markets, price impact, large agent:

Jonsson-Keppo (’02); Cetin-Jarrow-Protter (’04);

Bank-Kramkov (’10), ...

◮ In SP98 (for example), feedback comes from program traders

who are hedging options. Main conclusion: program trading

leads to increased volatility (destabilizing). [’87 crash, Brady

report].
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Some Context

◮ In NP08, feedback comes from portfolio optimizers of Merton

type (long only). Main conclusion: rational trading lowers

volatility (stabilizing).

◮ With hedging feedback, the noise trader demand is “easy”: the

option ∆ and the system closes “nicely” (nonlinear

Black-Scholes PDE).

◮ With portfolio optimizers, the θ comes from optimally trading a

stock whose dynamics you influence.

◮ Here: reference model is mean-reverting and feedback demand

will be long and short. Interested in impact on correlation

between commodity Y and stock S.
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Feedback iteration

... to capture the successive improvement of trading strategies due to

the increasing awareness of self-impact by the commodity traders.

Interlude - guessing 2/3 of the average: players pick an integer in

[0, 100]; winner is the one closest to 2/3 times the average .

◮ Stage-0: A typical player ignores the other players and choose a

random number between 0 and 100.

◮ Stage-1: He realizes that if the other players are following the

stage-0 strategy, the average is about 50; he can take advantage

of this and update his guess to be 100/3.

◮ Stage-2: He notices that if the other players are following the

stage-1 strategy, then the average is 100/3; he updates to 200/9.

As k → ∞, the only rational guess is zero.

Nagel (1995) experiment: many students chose 33 and 22, which are

2/3 of the midpoint 50 and 2/3 of 2/3 of the midpoint: most students

seemed to be doing between 0 and 3 rounds.
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Stage-k iteration

◮ Each individual trader is too small to affect the market price, but

their aggregate demand does have an impact, which is enforced

by the market-clearing constraint.

◮ Suppose Y(k) follows

dY(k)

Y(k)
= P(k) dt + Q(k) dWc

t + R(k) dWs
t ,

for some coefficients P(k),Q(k), and R(k).

◮ The bulk of the portfolio optimizers employ the stage-(k − 1)
strategy (π(k−1), θ(k−1)), wealth process is Xt.

◮ Suppose that P(k) = P(k)(t,Xt,Y
(k)
t ) and similarly for Q(k) and

R(k), which come from the solution of the stage-(k − 1) problem.

P(0)(t, x, y) = a (m̃ − log y) , Q(0)(t, x, y) = λb, R(0) = 0.
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Stage-k portfolio optimization problem

◮ At stage-k, all but one of the commodity traders follow the

stage-(k − 1) strategy: a single “smart” trader seeks to

outperform the others by taking into consideration the price

impact of their stage-(k − 1) strategy.

◮ Strategy (π(k), θ(k)), wealth process Zt for the “smart” trader:

dZt =
π
(k)
t

St
dSt +

θ
(k)
t

Y
(k)
t

dY
(k)
t + r(Zt − π

(k)
t − θ

(k)
t ) dt

=
(

rZt + π
(k)
t (µ − r) + θ

(k)
t

(
P(k)(t,Xt,Y

(k)
t )− r

))
dt

+ θ
(k)
t Q(k)(t,Xt,Y

(k)
t ) dWc

t

+
(
π
(k)
t σ + θ

(k)
t R(k)(t,Xt,Y

(k)
t )

)
dWs

t .

Goal is to maximize expected utility at the terminal time T:

Merton problem to determine the stage-k optimal portfolio.
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Deriving the stage-(k + 1) dynamics

◮ Given the stage-k optimal portfolio (π(k), θ(k)) of the “smart”

trader, we determine the stage-(k + 1) commodity price process.

◮ Because of power utility, the optimal Merton strategies are of the

form π
(k)
t = π̂(k)(t,Xt,Y

(k)
t )Zt and θ

(k)
t = θ̂(k)(t,Xt,Y

(k)
t )Zt.

◮ The ‘smart” trader realizes other traders will follow the same

reasoning and trade according to the stage-k strategy.

◮ The aggregate position on the commodity is then

θ̂(k)(t,Xt,Y
(k+1)
t )Xt.

◮ The stage-(k + 1) market clearing constraint is

Y
(k+1)
t =

Iλt
A

+ ǫθ̂(k)(t,Xt,Y
(k+1)
t )Xt.
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Dynamics of stage-(k + 1) commodity price process Y(k+1)

Proposition

dY
(k+1)
t

Y
(k+1)
t

= P(k+1)(t,Xt,Y(k+1)) dt + Q(k+1)(t,Xt,Y(k+1)) dWc
t

+R(k+1)(t,Xt,Y(k+1)) dWs
t ,

Q(k+1)(t, x, y) =
λb(y − ǫxθ̂(k))

y − ǫx(y∂y θ̂(k) + θ̂(k)x∂xθ̂(k) + (θ̂(k))2)
,

R(k+1)(t, x, y) =
ǫxσπ̂(k)(x∂xθ̂

(k) + θ̂(k))

y − ǫx(y∂y θ̂(k) + θ̂(k)x∂xθ̂(k) + (θ̂(k))2)
,

P(k+1)(t, x, y) = · · · .
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Value function and HJB equation

V(t, x, y, z) = sup
(π(k),θ(k))∈A

E

[
U(ZT)|Xt = x,Y

(k)
t = y,Zt = z

]
,

solves the HJB PDE: 0 =

Vt+LxV+rzVz+ sup
ν∈R2

[
1

2
ν

TC1νVzz + ν
T(µ1 − r)Vz + ν

Tσ1σ
T
2 ∇xVz

]
,

µ1 =

(
µ

P(k)

)
, σ1 =

(
0 σ

Q(k) R(k)

)
, C1 = σ1σ

T
1 .
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Proposition

The value function is given by

V(t, x, z) =
z1−γ

1 − γ
(G(t, x))γ ,

where G(t, x) solves the linear PDE problem

Gt + LxG +

(
1 − γ

γ

)(
σ2σ

−1
1 (µ1 − r)

)T

∇xG +
ζ

γ
G = 0,

with terminal condition G(T, x) = 1, where

ζ =

(
r(1 − γ) +

1 − γ

2γ
M

)
, M = (µ1 − r)T C−1

1 (µ1 − r).

The optimal portfolio ν
∗
t = (π(k), θ(k))T is given by

ν
∗
t =

(
1

γ
C−1

1 (µ1 − r) + (σ2σ
−1
1 )T ∇xG

G

)
Zt.
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The stage-0 value function is given by

V(t, y, z) =
z1−γ

1 − γ
exp

(
f0(t) + f1(t) log y + f2(t)(log y)2

)
,

where

f2(t) =
a(1 − γ)

2λ2b2

sinh
(

a√
γ
(T − t)

)

sinh
(

a√
γ
(T − t)

)
+

√
γ cosh

(
a√
γ
(T − t)

) ,

f1(t) = (1 − γ)

r−am̃
λ2b2 sinh

(
a√
γ
(T − t)

)
+

√
γ
(

r
λ2b2 − 1

2

)(
cosh

(
a√
γ
(T − t)

)

sinh
(

a√
γ
(T − t)

)
+

√
γ cosh

(
a√
γ
(T − t)

)

f0(t) = k(T − t) +

∫ T

t

{(
am̃ − (1 − γ)r

γ
− λ2b2

2

)
f1(s) + λ2b2f2(s) +

λ2b

2γ
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Implementation
◮ Stage-0 explicit, higher stages involves solving the linear PDE

for G numerically.
◮ Solved by finite differences.
◮ Stage-k volatility η(k) of the commodity price and the stage-k

correlation ρ(k) with the stock price are given by

η(k) =

√
(Q(k))2 + (R(k))2, ρ(k) =

R(k)

√
(Q(k))2 + (R(k))2

.

Stage-0

η(0) = λb and ρ(k) = 0.

Stage-1 Explicit from the explicit solution to the stage-0 problem.

η(1) = λb

(
1 +

ǫXt

Yt

(
Yt∂yθ̂ + θ̂2 − θ̂

)
+O(ǫ2)

)

ρ(1) =
ǫσXtπ̂θ̂√

λ2b2
(

Yt − ǫXtθ̂t

)2
+

(
ǫσXtπ̂θ̂

)2
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Correlation Creation

Since π̂(0) > 0 (long in stock whose µ > r),

sign [ρt] = sign
[
θ̂(0)(t,Y

(1)
t )

]
.

◮ Commodity price “low”, portfolio optimizers long and

correlation positive.

◮ Commodity price “high”, portfolio optimizers short and

correlation negative.

23



Numerical Illustration

λ demand from market users 1.0

a mean-reversion rate 0.3

r risk-free rate 0.02

m mean of commodity log-price 3.0

b volatility of commodity price 0.3

µ drift of stock price 0.08

σ volatility of stock price 0.2

γ coefficient of risk aversion 1.5

A market supply 1.0

ǫ relative size of portfolio optimizers 0.5

T Investment horizon 2.0
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Figure: Stage-0 and 1 optimal portfolio as functions of the current

commodity level y.
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Figure: Volatility of the commodity price.

26



Figure: Correlation between the commodity and stock.
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Figure: Low commodity volatility b = 0.3.
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Figure: High commodity volatility b = 1.
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Concluding Remarks

◮ Feedback iteration is tractable computationally.

◮ The model is simple but can demonstrate even in stage-1 the

feedback effect of mean-reverting portfolio strategies on

commodity-stock correlation.

◮ Would be interesting to infer back from data the extent ǫ of the

recent financialization: calibrate on unperturbed data from the

1990s and get ǫ through the 2000s (and how it has changed).

◮ Exponential utility and arithmetic dynamics: no feeedback

correlation.

◮ Commodity-commodity correlations, portfolios with baskets, ....
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