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Strong Approximation

G = connected, simply connected, semisimple algebraic group
defined over Q.

Γ = a finitely generated Zariski-dense subgroup of G(Q).

Theorem (Nori, Matthews-Vaserstein-Weisfeiler)

For all sufficiently large prime numbers p, the reduction Γp of Γ is
equal to Gp(Fp).



Strong Approximation

Theorem (Nori, Matthews-Vaserstein-Weisfeiler)

For all sufficiently large prime numbers p, the reduction Γp of Γ is
equal to Gp(Fp).

Several proofs (Nori, Matthews-Vaserstein-Weisfeiler, Weisfeiler,
Hrushovski-Pilay, Larsen-Pink...)

Nori for q prime, then Larsen-Pink, gave a description of all
subgroups of GLd(Fq), showing that they are essentially algebraic
groups over Fq.



Nori’s theorem

Recall that C. Jordan proved that finite subgroups of GLd(C) have
an abelian subgroup of index Od(1).

Let Gp 6 GLd be a semisimple simply connected d-dimensional
algebraic group defined over Fp.

Nori argues that:

Theorem (Nori)

There is M = M(d) such that for every prime p > M and every
subgroup H 6 Gp(Fp), either H is contained in a proper algebraic
subgroup of Gp of complexity at most M or H = Gp(Fp).

complexity = degree of the underlying algebraic variety
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Theorem (Nori)

There is M = M(d) such that for every prime p > M and every
subgroup H 6 Gp(Fp), either H is contained in a proper algebraic
subgroup of Gp of complexity at most M or H = Gp(Fp).

Proof sketch:

• By Jordan’s theorem H contains a unipotent element, say
h1 = exp(ξ1),
• Acting by the adjoint representation, we obtain
h2 = exp(ξ2), ..., hd = exp(ξd) in H such that ξ1, ..., ξd span
Lie(Gp).



Nori’s theorem

Theorem (Nori)

There is M = M(d) such that for every prime p > M and every
subgroup H 6 Gp(Fp), either H is contained in a proper algebraic
subgroup of Gp of complexity at most M or H = Gp(Fp).

Proof sketch:

• The map Φ : Fd
p → Gp(Fp), (t1, . . . , td) 7→ ht1

1 · . . . · h
td
d is a

bounded degree polynomial map whose image has dimension
d = dimG, so by counting its image must have 6 c(d)pd

elements.
• Hence |H| > c(d)pd , but |Gp(Fp)| < Cpd , so H has
bounded index in Gp(Fp), hence (since Gp is simply
connected) is all of Gp(Fp).



Nori’s theorem

Theorem (Nori)

There is M = M(d) such that for every prime p > M and every
subgroup H 6 Gp(Fp), either H is contained in a proper algebraic
subgroup of Gp of complexity at most M or H = Gp(Fp).

Proof sketch:

• Using this theorem, one deduce the strong approximation
theorem: Since Γ is assumed Zariski-dense, Γp will be
“sufficiently Zariski-dense in Gp”, hence all of Gp(Fp).

• This also gives a “quantitative” version of strong
approximation: if Γ = 〈S〉, S ⊂ G(Q), then the largest bad
prime p is at most H(S)Od (1), where H(S) = height of S .



Super-strong approximation

G = connected, simply connected, semisimple algebraic group
defined over Q.

Γ = a finitely generated Zariski-dense subgroup of G(Q).

S a finite symmetric generating subset of Γ.

Theorem (Super-strong approximation)

Then there is ε = ε(S) > 0 s.t. for all large enough prime numbers
p, the reduction Γp of Γ is equal to Gp(Fp) and the associated
Cayley graph Cay(Gp(Fp),Sp) is an ε-expander.

... long history ... Sarnak-Xue, Gamburd, Bourgain-Gamburd,
Helfgott, B-Green-Tao, Pyber-Szabo, Varjú, Salehi-Golsefidy-Varjú.
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Definition (Expander)

A k-regular graph G is said to be an ε-expander if

λ1(G) > ε.
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Expanders

Definition (Expander)

A k-regular graph G is said to be an ε-expander if

λ1(G) > ε.

Here λ1(G) is the first non-zero eigenvalue of the
combinatorial Laplacian on G, namely the operator on `2(G)
defined by:

∆f (x) = kf (x)−
∑
y∼x

f (y),

where the sum is over the neighboring vertices y of the vertex
x ∈ G.



Expanders

Definition (Expander)

A k-regular graph G is said to be an ε-expander if

λ1(G) > ε.

Expanders are sparse well connected graphs. They satisfy a
linear isoperimetric inequality

|∂A| > cε|A|

for every subset A of at most |G|/2 vertices.
In particular their diameter is very small:

diam(G)� Cε log |G|.



Expanders

Definition (Expander)

A k-regular graph G is said to be an ε-expander if

λ1(G) > ε.

Although a random k-regular graph is an ε-expander,
constructing one is not easy.

Margulis (1972) gave the first construction by observing that
if Γ is a finitely generated group with Kazhdan’s property (T ),
then the Cayley graphs of its finite quotients (w.r.t. a fixed
generating set in Γ) must be ε-expanders for some uniform
ε > 0.



Expanders

Definition (Expander)

A k-regular graph G is said to be an ε-expander if

λ1(G) > ε.

For example if d > 3, the Cayley graphs of SLd(Z/nZ) w.r.t a
fixed generating subset of SLd(Z) are ε-expanders for some ε
independent of n.

This is still true for d = 2, but relies on Selberg’s
3/16-theorem, instead of property (T ).



Super-strong approximation

Let us go back to:

Theorem (Super-strong approximation)

If G is a simply connected semisimple Q-group and Γ 6 G(Q) is
Zariski-dense, then there is ε = ε(S) > 0 s.t. for all large enough
prime numbers p, the reduction Γp of Γ is equal to Gp(Fp) and the
associated Cayley graph Cay(Gp(Fp), Sp) is an ε-expander.

The key point here is that Γ is an arbitrary Zariski-dense subgroup
(possibly of infinite index in G(Z), without property (T )).
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Gamburd’s thesis, Lubotzky’s 1,2,3-problem

Inspired by earlier work of Sarnak-Xue, Gamburd proved in his
1999 thesis that the super-strong approximation theorem
holds for Zariski-dense subgroups of SL2(Z) with sufficiently
large limit set, i.e. s.t. that the limit set in P1(R) has
Hausdorff dimension at least 5/6.



Gamburd’s thesis, Lubotzky’s 1,2,3-problem

A related simple yet inspiring question of Lubotzky, the
Lubotzky 1, 2, 3-problem was the following: Let Γn be the
subgroup of SL2(Z) generated by(

1 0
n 1

)
,

(
1 n
0 1

)
Γ1 and Γ2 have finite index in SL2(Z), so by Selberg’s
theorem Γn mod p is a family of expanders as p grows. But
what about Γ3 ? it has infinite index...

This was solved by Bourgain-Gamburd and their proof paved
the way for the general case.



Lubotzky’s super-alternative

Another incarnation of super-strong approximation is the following:

Theorem (Lubotzky super-alternative)

Let k be a field of characteristic zero, and Γ 6 GLd(k) a finitely
generated linear group. Then there is a subgroup Γ0 of bounded
index in Γ such that

I either the subgroup Γ0 is solvable,

I or for all large enough p, Γ0 maps onto Gp(Fp) (where G is
some connected, simply connected, semisimple algebraic
Q-group),in such a way that its Cayley graph is an
ε-expander, for some ε > 0 independent of p, and a fixed
generating set of Γ0.



Super-strong approximation

Conjecture (folklore)

There is ε > 0 such that all Cayley graphs of G(Z/nZ) are
ε-expanders, uniformly in n and in the generating set.

partial progress:
• uniformity in n for n square-free by Salehi-Golsefidy-Varjú, and
by Bourgain-Varjú for G = SLd .
• uniformity in the generating set for G = SL2 and n in a density
one subset of the primes (B+Gamburd).
• uniformity in n for n prime and “most” generating sets
(B+Green+Guralnick+Tao).



Super-strong approximation

Conjecture (folklore)

There is ε > 0 such that all Cayley graphs of G(Z/nZ) are
ε-expanders, uniformly in n and in the generating set.

partial progress:
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one subset of the primes (B+Gamburd).
• uniformity in n for n prime and “most” generating sets
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Finite simple groups

Conjecture (also folklore)

Given d, there is ε > 0 such that all Cayley graphs of all finite
simple groups of rank at most d are ε-expanders.

We know:

Theorem (B.-Green-Guralnick-Tao)

Given d > 0 there is c, ε > 0 such that every finite simple group G
of rank at most d admits a good generating pair, i.e. one whose
associated Cayley graph is an ε-expander. In fact the proportion of
bad pairs is at most |G |−c .
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Given d, there is ε > 0 such that all Cayley graphs of all finite
simple groups of rank at most d are ε-expanders.

We know:

Theorem (B.-Green-Guralnick-Tao)

Given d > 0 there is c, ε > 0 such that every finite simple group G
of rank at most d admits a good generating pair, i.e. one whose
associated Cayley graph is an ε-expander. In fact the proportion of
bad pairs is at most |G |−c .

• Kassabov showed that there is a symmetric generating set of
bounded size making the alternating group An an ε-expander,
but with “usual” generators An is not an expander.



Finite simple groups

Conjecture (also folklore)

Given d, there is ε > 0 such that all Cayley graphs of all finite
simple groups of rank at most d are ε-expanders.

We know:

Theorem (B.-Green-Guralnick-Tao)

Given d > 0 there is c, ε > 0 such that every finite simple group G
of rank at most d admits a good generating pair, i.e. one whose
associated Cayley graph is an ε-expander. In fact the proportion of
bad pairs is at most |G |−c .

• Kassabov-Lubotzky-Nikolov nevertheless showed that there
are uniform ε, k an a choice of a generating set of size k for
each finite simple group, s.t. the Cayley graph is an
ε-expander.



Finite simple groups

Also here is a general lower bound on λ1.

Theorem (B-Green-Tao)

For every ε > 0,every finite simple group G and every Cayley graph
G of G satisfies:

λ1(G) >
1

|G |ε
,

except for possibly finitely many exceptions.

Remarks:
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Theorem (B-Green-Tao)

For every ε > 0,every finite simple group G and every Cayley graph
G of G satisfies:

λ1(G) >
1

|G |ε
,

except for possibly finitely many exceptions.

Remarks:

• The proof of the above Theorem does not use the
classification of finite simple groups.
• in fact the proof shows that any finite group admitting a
Cayley graph with λ1 < 1/|G |ε must have a large quotient
with a cyclic subgroup of bounded index (hence cannot be
simple).



Finite simple groups

Also here is a general lower bound on λ1.

Theorem (B-Green-Tao)

For every ε > 0,every finite simple group G and every Cayley graph
G of G satisfies:

λ1(G) >
1

|G |ε
,

except for possibly finitely many exceptions.

Remarks:

• A conjecture of Babai asserts that

diam(G)� (log |G |)O(1)

for all finite simple G . The above Theorem thus gives
diam(G)� |G |o(1) unconditionally.



Finite simple groups

Also here is a general lower bound on λ1.

Theorem (B-Green-Tao)

For every ε > 0,every finite simple group G and every Cayley graph
G of G satisfies:

λ1(G) >
1

|G |ε
,

except for possibly finitely many exceptions.

Remarks:

• Babai’s conjecture implies a similar bound for λ1, i.e.
> 1/(log |G |)O(1).



Finite simple groups

Also here is a general lower bound on λ1.

Theorem (B-Green-Tao)

For every ε > 0,every finite simple group G and every Cayley graph
G of G satisfies:

λ1(G) >
1

|G |ε
,

except for possibly finitely many exceptions.

Remarks:

• Babai’s conjecture was verified for SL2(Fp) by Helfgott,
then by B-Green-Tao and Pyber-Szabo for G(Fq) with G of
bounded rank (using approximate groups and additive
combinatorics), and also for the (non simple) groups
G(Z/pnZ) by Dinai and Bradford (using the Solovay-Kitaev
algorithm).



Applications

Why do we care about spectral gaps ?

Knowing that a Cayley graph is an expander tells you that random
walks on it equidistribute as fast as possible, in O(log |G|) steps.

So this gives information about “generic” elements of the original
Zariski-dense subgroup Γ and allows to perform various forms of
counting at the group level (e.g. the affine sieve of
Bourgain-Gamburd-Sarnak... see Alireza’s talk).

This line of thought was pioneered by Rivin, Kowalski, Sarnak,
Lubotzky and others.
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Counting in Zariski-dense subgroups

Let Γ = 〈S〉 6 G be a Zariski-dense subgroup of the semisimple
algebraic group G.

Let µ = µS be the uniform measure on the symmetric generating
set S .

Theorem (Subvarieties are exponentially small)

Suppose V 6 G is a proper algebraic subvariety. Then

µn(V) 6 c0(V) · e−cn,

where c0(V) > 0 is a constant depending only on the complexity
(i.e. degree) of V, and c > 0 depends only on µ.



Generic pairs are free and dense

Recall the Tits alternative: is Γ 6 G is Zariski-dense, it contains a
Zariski-dense free subgroup.

Theorem (Aoun)

If Z is the set of pairs (a, b) in Γ that do not generate a free
Zariski-dense subgroup, then

µn ⊗ µn(Z) 6 e−cn

cf. related work of Fuchs-Rivin.



The group sieve method

The super-strong approximation theorem gives a method to
establish that certain subsets Z of the Zariski-dense subgroup
Γ 6 G(Q) are very small (i.e. with exponential decay of the hitting
probability). For example Lubotzky and Meiri give the following
criterion:

Lemma (Lubotzky-Meiri sieve)

Let Z ⊂ Γ be a subset. Assume that there is α < 1 such that for
all large primes p,

|Z mod p| < α|Gp(Fp)|

Then Z is exponentially small, i.e.

µn(Z) < e−cn.

(µ is the uniform probability measure on a generating set of Γ.)



Further examples

Say that the subset Z 6 Γ is exponentially small if ∃c > 0 s.t.

µn(Z) 6 e−cn

Theorem (Lubotzky-Meiri)

The set Z of proper powers in Γ is exponentially small.

Theorem (Lubotzky-Rosenzweig)

Every element in Γ outside of an exponentially small set, is
semisimple and Galois generic.

This builds on work of Prasad-Rapinchuk showing existence of Galois

generic elements in Zariski-dense subgroups, and related work of

Jouve-Zywina-Kowalski.
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