Arithmetic subgroups whose representations all map into $\text{GL}_n(\mathbb{Z})$

Dave Witte Morris
University of Lethbridge, Alberta, Canada
http://people.uleth.ca/~dave.morris
Dave.Morris@uleth.ca

Suppose Γ is an arithmetic subgroup of a semisimple Lie group G. For any finite-dimensional representation $\rho: G \to \text{GL}_n(\mathbb{R})$, a classical paper of J. Tits determines whether $\rho(\Gamma)$ is conjugate to a subgroup of $\text{GL}_n(\mathbb{Z})$. Combining this with a well-known surjectivity result in Galois cohomology provides a short proof of the known fact that every G has an arithmetic subgroup Γ, such that the containment is true for every representation ρ. We will not assume the audience is acquainted with Galois cohomology or the theorem of Tits.

Definition

Γ universally arithmetic $\iff \forall \rho: \tilde{G} \to \text{GL}_n(\mathbb{R}), \exists M \in \text{GL}_n(\mathbb{R}), M \rho(\Gamma) M^{-1} \subseteq \text{GL}_n(\mathbb{Z})$.

Eg. Γ irreducible in $G_1 \times G_2$

$\Rightarrow \pi_1(\Gamma)$ is dense in G_1, so $\not\subseteq (G_1)_\mathbb{Z}$

$\Rightarrow \Gamma$ not universally arithmetic.

Γ universally arithmetic in $G_1 \times G_2$

$\Rightarrow \Gamma \simeq \Gamma_1 \times \Gamma_2$ and Γ_i univ arith in G_i.

Warning. Converse is not true.

Prop. List (up to commens) all univ arith subgrps of simple G. (could also do semisimple)

Proposition (Morris [2004])

Every G has a universally arithmetic subgroup Γ.

Reps of $G \leftrightarrow$ Reps of g (characteristic 0)

So can restate (stronger) in terms of Lie algebras.

Definition

Semisimple Lie algebra $g_\mathbb{Q}$ over \mathbb{Q} is \mathbb{R}-universal:

\forall homo $\rho: g_\mathbb{Q} \to \text{gl}_n(\mathbb{R})$ (Q-linear),

$\exists M \in \text{GL}_n(\mathbb{R}), M \rho(g) M^{-1} \subseteq \text{gl}_n(\mathbb{Q})$.

Proposition (Raghunathan [1982], Morris [2004])

Every semisimple $g_\mathbb{R}$ has an \mathbb{R}-universal \mathbb{Q}-form:

$\forall g_\mathbb{R}$, \exists \mathbb{R}-universal $g_\mathbb{Q}$, $g_\mathbb{R} \cong g_\mathbb{Q} \otimes \mathbb{R}$.

Eg. $g_\mathbb{Q}$ split \Rightarrow irred rep is highest-weight module $V\lambda$

$\Rightarrow V\lambda \otimes \mathbb{C}$ irred $\Rightarrow g_\mathbb{Q}$ weakly \mathbb{R}-universal.

Proposition (Raghunathan [1982], Morris [2004])

Every semisimple $g_\mathbb{R}$ has an \mathbb{R}-universal \mathbb{Q}-form.

- My original proof was tedious (and explicit).
- Better pf (conceptual) by Prasad-Rapinchuk [2006].
- Today: another proof (direct, natural).

Exercise

$g_\mathbb{Q}$ \mathbb{R}-univ \Rightarrow irred reps over \mathbb{Q} remain irred over \mathbb{R}

\Leftrightarrow “weakly \mathbb{R}-universal”

Converse often holds (split over quad ext, same \ast-action)

Eg. $g_\mathbb{Q}$ split \Rightarrow irred rep is highest-weight module $V\lambda$

$\Rightarrow V\lambda \otimes \mathbb{C}$ irred $\Rightarrow g_\mathbb{Q}$ weakly \mathbb{R}-universal.

Proposition (Morris [2004])

$\forall \rho: G \to \text{GL}_n(\mathbb{R}), \exists M \in \text{GL}_n(\mathbb{R}), M \rho(\Gamma) M^{-1} \subseteq \text{GL}_n(\mathbb{Z})$.

$G = \text{linear semisimple Lie group}$ (no compact factors)

$\pm G(\mathbb{R})$ semisimple over \mathbb{R} (no anisotropic factors)

$\Gamma = \text{arithmetic subgroup}$

Definition

$\forall \rho: \tilde{G} \to \text{GL}_n(\mathbb{R}), M \rho(\Gamma) M^{-1} \subseteq \text{GL}_n(\mathbb{Z})$.

Eg. $\text{SL}_n(\mathbb{Z})$ is universally arithmetic in $\text{SL}_n(\mathbb{R})$.

Proposition (Morris [2004])

Every G has a universally arithmetic subgroup Γ.

Reps of G \leftrightarrow Reps of g (characteristic 0)

So can restate (stronger) in terms of Lie algebras.

Definition

Semisimple Lie algebra $g_\mathbb{Q}$ over \mathbb{Q} is \mathbb{R}-universal:

\forall homo $\rho: g_\mathbb{Q} \to \text{gl}_n(\mathbb{R})$ (Q-linear),

$\exists M \in \text{GL}_n(\mathbb{R}), M \rho(g) M^{-1} \subseteq \text{gl}_n(\mathbb{Q})$.

Proposition (Raghunathan [1982], Morris [2004])

Every semisimple $g_\mathbb{R}$ has an \mathbb{R}-universal \mathbb{Q}-form:

$\forall g_\mathbb{R}$, \exists \mathbb{R}-universal $g_\mathbb{Q}$, $g_\mathbb{R} \cong g_\mathbb{Q} \otimes \mathbb{R}$.

Eg. $g_\mathbb{Q}$ split \Rightarrow irred rep is highest-weight module $V\lambda$

$\Rightarrow V\lambda \otimes \mathbb{C}$ irred $\Rightarrow g_\mathbb{Q}$ weakly \mathbb{R}-universal.

In general, $\rho \otimes \mathbb{C} = \sum_i V\lambda_i, \{\lambda_i\} = \text{Gal}(\overline{F}/F)$-orbit.

Today, assume $\text{Aut } g = G$ (or g is “inner form”).

So all λ_i’s equal: $\rho \otimes \mathbb{C} = mV\lambda$. Notation: $\rho = \rho_\lambda$.

Schur’s Lemma

$\rho: g_F \to \text{gl}_n(F)$

$C_L(\rho) = C_{\text{Mat}_{\text{deg}(L)}(\rho(g_F))}$

ρ irreducible over L \iff $C_L(\rho)$ is division algebra.

Cor. $g_\mathbb{Q}$ weakly \mathbb{R}-universal \iff

\forall Q-irred $\rho, C_Q(\rho) \otimes \mathbb{R} = C_{\mathbb{R}}(\rho)$ is div alg.

Tits: use Galois cohomology to calculate $C_F(\rho_\lambda)$.
How to use Galois cohomology

\[g_C = sl_2(C) = \text{complex semisimple Lie algebra} \]
\[g = sl_2(R) = \text{split} \ R \text{-form} \]
\[\sigma: sl_2(C) \rightarrow sl_2(C) \text{ complex conjugation} \]

\[g_R = \text{any} \ R \text{-form} = \text{R-span of} \ C \text{-basis, consts in} \ R. \]
So \[g_C = g + Ig_R. \] Cplx conj w.r.t. \[g_R \] is \(\sigma_R \): \[g_C \rightarrow g_C. \]

\[\sigma \text{ and } \sigma_R \text{ are conjugate-linear Lie alg auts of} \ g_C, \]
so \[t_R := \sigma_R \sigma^{-1} \in \text{Aut}(g_C) = G_C. \] **Note:** \(t_R \sigma t_R = 1. \)

\[\{ \text{forms of} \ g \} \rightarrow G_C \quad t_R \in H^1(\text{Gal}(C/R); G_C) \]

\[\exists \alpha_R: g_R \cong g_R' \iff \exists \alpha \in \text{Aut}(g_C), \sigma_R' = \alpha \sigma_R \alpha^{-1} \]
\[\iff \exists x \in G_C, t_R' = \sigma_R' \sigma^{-1} = x t_R \sigma x^{-1} \sigma^{-1} = x t_R x^{-1} \]
\(t_R' \) is “cohomologous” to \(t_R \)

Cor. \(g_Q \text{-univ} \iff \forall \lambda, \lambda(z_R) = 1 \Rightarrow \lambda(z_Q) = 1. \)

Proposition (Raghunathan [1982], Morris [2004])

Every semisimple \(g_R \) has an \(R \)-universal \(Q \)-form.

Outline of proof (for inner forms).

\[t_R \in G_C = \text{adjoint grp}, \quad z_R := t_R \bar{t}_R \in Z(\tilde{G}_C) =: Z_C. \]
\[\bar{Z}_R = Z_R = z \in Z_R = Z_Q. \] (inner form)

So \(\tilde{G}_C := \tilde{G}_C/z \) is a \(Q \)-group.

\[t_R \bar{t}_R = z = 1 \text{ in } \tilde{G}_C \quad \Rightarrow \quad t_R \text{ is coho to } t_Q \in \hat{G}_Q[1]. \]
\[H^1(Q[i]/Q; \hat{G}_Q[1]) \rightarrow H^1(C/R; \hat{G}_C) \quad \sim \text{Kneser} \]

Let \(g_Q \) be \(Q \)-form corresponding to \(t_Q \)
\[= \text{fixed points of } t_Q \sigma \text{ in } g_Q[1]; \]
\(\lambda(z_R) = 1 \Rightarrow \lambda(z_R) = 1 \Rightarrow \lambda(z_Q) = 1. \] □

Tits calculated \(C_R(\rho) \) from \(\lambda \) [1971]

\[z_R := t_R \bar{t}_R \in Z := Z(\tilde{G}_C) \text{ in } \tilde{G}_C. \]
In fact, \(z_R = z_R \), so \(z_R \in Z_R. \)
So \(\lambda(z_R) \in \{ \pm 1 \}. \)
\[C_R(\rho) \equiv \frac{-1, \lambda(z_R)}{R} \equiv \begin{cases} \mathbb{R} & \text{if } \lambda(z_R) = 1; \\ \mathbb{H} & \text{if } \lambda(z_R) = -1. \end{cases} \]

\(Q \)-form \(g_Q \sim t_Q \in G_L \) if \(g_Q \) splits over \(L = Q[i]. \)
\[C_Q(\rho) \equiv \frac{-1, \lambda(z_Q)}{Q} \equiv \begin{cases} \mathbb{Q} & \text{if } \lambda(z_Q) = 1; \\ \mathbb{H}_Q & \text{if } \lambda(z_Q) = -1. \end{cases} \]

Cor. \(g_Q \) weakly \(R \)-universal \quad \text{(split over quadratic extension)}
\[\iff \forall \ Q \text{-irred } \rho, \quad C_Q(\rho) \otimes R = C_R(\rho) \text{ is div alg} \]
\[\iff \forall \lambda, \quad \lambda(z_Q) \neq 1 \Rightarrow \lambda(z_R) \neq 1. \]

A list of references is in the bibliography of:

Dave Witte Morris:
A cohomological proof that real representations of semisimple Lie algebras have \(Q \)-forms (preprint).
arxiv:1410.2339