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Part 1: Motivations

P Keyl, M Bockmayr, D Heim, G Dernbach, G Montavon, KR Müller, F Klauschen
Patient-level proteomic network prediction by explainable artificial intelligence
NPJ Precis Oncol. 6(1):35, 2022
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Example: Discovering Influencial Proteins

Example: MTOR signaling network (from reactome.org)

Question:

I Can we use ML/XAI to infer these networks (or aspects of them) directly from the data?
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Finding Influential Proteins with ML/XAI (Keyl et al. 2022)

Step 1: From Data to ML

I Assemble a dataset.

I Build a ML model (neural network) that predicts proteins from other proteins with best
possible accuracy.
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Finding Influential Proteins with ML/XAI (Keyl et al. 2022)

Step 2: From ML to XAI

I Apply Explainable AI (here the LRP attribution technique) to identify to what extent
proteins contribute to the expression of other proteins.
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Finding Influential Proteins with ML/XAI (Keyl et al. 2022)

Excerpt of top-k protein influences via XAI (LRP attribution):

I Generally consistent with existing knowledge, e.g. highlights
mTOR pathway; correlates with entries in the reactome
knowledgebase (https://reactome.org/).

I Provides cancer-specific (or even instance-specific) view of
protein influences.
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Beyond ‘Classical’ Explainable AI

I Current explainable AI already
provides single-instance nonlinear
explanation capabilities that exceed
by far classical statistical measures
such as correlation.

I There is a potential demand for
even more detailed explanations
(e.g. joint features contributions, or
latent concepts underlying features
contributions).



Part 2: Towards Higher-Order Explainable AI

T Schnake, O Eberle, J Lederer, S Nakajima, K T. Schütt, KR Müller, G Montavon
Higher-Order Explanations of Graph Neural Networks via Relevant Walks
IEEE TPAMI 44(11):7581-7596, 2022



9/30

XAI for Graphs (Schnake et al. 2022)

Observation:

I Input of a GNN is not at layer one, but occurs (multiplicatively) at each layer.
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Limits of ‘Classical’ Attributions
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XAI for Graphs (Schnake et al. 2022)

GNN prediction (simplified):

hj = ρ
(∑

i 1iΛijwj

)
(layer 1)

hk = ρ
(∑

j hjΛjkwk

)
(layer 2)

y =
∑

k hk (layer 3)

Our approach: computing Rijk iteratively:

Rjk = E(y,Λjk) (step 1)

Rijk = E(Rjk,Λij) (step 2)
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i)

i Λij7−−−−→

(h
j
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k
) k 7−−→ y

Property: For ρ linear, the iterative attribution
produces the same result as identifying the sum-
mands in the expanded form:

y =
∑
ijk

ΛijΛjk1iwjwk︸ ︷︷ ︸
Rijk



11/30

XAI for Graphs (Schnake et al. 2022)

GNN prediction (simplified):

hj = ρ
(∑

i 1iΛijwj

)
(layer 1)

hk = ρ
(∑

j hjΛjkwk

)
(layer 2)

y =
∑

k hk (layer 3)

Our approach: computing Rijk iteratively:

Rjk = E(y,Λjk) (step 1)

Rijk = E(Rjk,Λij) (step 2)

(1
i)

i Λij7−−−−→

(h
j
) j Λjk7−−−−→

(h
k
) k 7−−→ y

Property: For ρ linear, the iterative attribution
produces the same result as identifying the sum-
mands in the expanded form:

y =
∑
ijk

ΛijΛjk1iwjwk︸ ︷︷ ︸
Rijk



12/30

XAI for Graphs (Schnake et al. 2022)

1. forward pass 2. relevance propagation
aggregate combine
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XAI for Graphs (Schnake et al. 2022)

GNN-LRP at work:

Note:

I In vanilla form, GNN-LRP requires an LRP pass for each walk in the graph (→ expensive).

I Coarse-graining of the input graph can reduce computations.
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Evaluating Higher-Order Explanations (Schnake et al. 2022)

Observation:

I XAI evaluation techniques such as ‘Pixel-Flipping’ require as
input a sequence of features (e.g. nodes) from most to least
relevant. However, Higher-Order XAI attributes to joint
features.

Idea:

I From the given explanation, generalize relevance scores to subset of features S:

RS =
∑
i∈S

Ri (first-order XAI) RS =
∑

(ijk)⊆S

Rijk (higher-order XAI)

I Ask the explanation to produce an optimal sequence of nodes:

Q = argmax
S1⊂···⊂Sd

{ d∑
i=1

RSi

}
I Finding Q is intractable ⇒ approximate it with greedy feature selection or randomization.
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Evaluating Higher-Order Explanations (Schnake et al. 2022)

Results:

I GNN-LRP achieves better performance than first-order explanations (LRP and GNNExpl).

I GNN-LRP is more robust than its simpler gradient-based counter part GNN-GI.



16/30

Use Case: XAI for Quantum Chemistry

Decomposing molecular
properties (predicted via a
GNN) in terms of atom
interactions of different
order.

Challenges:

I Larger explanations → more difficult to comprehend for a human.

I General comment about XAI: Need to make a distinction between the strategy employed
by the model to predict (dataset-specific) and the underlying physics (general).



Part 3: Towards Disentangled Explanations

P Chormai, J Herrmann, KR Müller, G Montavon
Disentangled Explanations of Neural Network Predictions by Finding Relevant Subspaces
arXiv:2212.14855, 2022
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Limits of ‘Classical’ Explanations

Observation:

I Several concepts (ball, player, etc.) are
entangled in the same explanation.

Question:

I Can we disentangle explanations into
multiple distinct concepts so that they
become more actionable?

prediction
(e.g. rectangle)

explanation disentangled/relevant
subspaces
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Disentangled Explanations (Chormai et al. 2022)

y

step 1
step 2

y

Forward pass:

x 7→ (hk)k (input to subspaces)

(hk)k 7→ y (subspaces to output)

Standard explanation

Ri = E(y, xi)

Disentangled explanation (ours):

Rk = E(y, hk) (step 1)

Rik = E(Rk, xi) (step 2)
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Extracting Relevant Subspaces (Chormai et al. 2022)

Notation:

a Vector of activations

R Vector of activation relevances

c Vector such that R = a� c

(Uk)k
Matrices that project activations
to orthogonal subspaces.)

Key findings:

1. For a variety of methods (e.g. integrated
gradients, LRP), the relevance score for
subspace k can be expressed as:

Rk = (U>k a)>(U>k c)

2. We can find subspaces that directly
maximize some statistic of Rk.

y
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Two Proposed Analyses (Chormai et al. 2022)

Principal Relevant Component Analysis (PRCA)

maximize
U

:

R︷ ︸︸ ︷
Tr(U> E[ac>]︸ ︷︷ ︸

Σac

U)

If setting c← a, PRCA reduces to (uncentered) PCA.

Disentangled Relevant Subspace Analysis (DRSA)

maximize
(Uk)k

: M0.5
k M2

n

{( Rkn︷ ︸︸ ︷
(U>k an)>(U>k cn)

)+}
If setting c← a DRSA reduces to ‘DSA’.

Unlike PCA/ICA/DSA/..., our analyses focus on components
that are relevant for the prediction.
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PRCA/DRSA in Practice (Chormai et al. 2022)
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PRCA vs. Baselines (Chormai et al. 2022)

PRCA extracts much more
strongly contributing subspaces
than baseline methods.
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DRSA vs. Baselines (Chormai et al. 2022)

Question: are the components of the explanation spatially disentangled?

Separability score:
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Use Case: Detecting and Removing Clever Hanses

Current approaches:

I Artifact models built from
preliminarily detected
Clever Hans instances.

Our approach:

1. Observe that Clever Hans
strategies readily occur in
distincts components of
DRSA.

2. Identify these
components, and remove
their contribution from
the overall prediction.
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Use Case: Exploring Visual Relations between Classes

I Certain visual concepts are shared between classes (e.g. dotted pattern of ‘admiral’ and
‘monarch’ butterflies).

I This can be analyzed dataset-wide in a scatter plot (left).
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Summary

I Explanations should not only be faithful/understandable; they should also be informative
& actionable by the user.

I This can be achieved by:

Ensuring the explanation reflects the use of higher-order feature interactions by the
model (e.g. GNN-LRP).
Resolving the latent concepts attached to each feature contribution in order to
produce a disentangled explanation (e.g. using PRCA / DRSA).

I Both approaches (higher-order & disentangled XAI) are not mutually exclusive. They
could be combined in future work.
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Check our review paper on XAI

I W Samek, G Montavon, S Lapuschkin, C Anders, KR Müller
Explaining Deep Neural Networks and Beyond: A Review of Methods and Applications
Proceedings of the IEEE, 109(3):247-278, 2021
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Visit our website

I Code/demos for our XAI methods

I Full list of papers


