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Motivation: Understanding complex systems requires joint analysis of
static and time-evolving data sets

A better understanding of how complex systems evolve over time can enable us to
address important problems by capturing differences in brain dynamics or metabolic
responses, potentially revealing early signs of diseases.

To gain such a level of understanding, we need to extract meaningful information from
personal data clouds, where some data sets are time-evolving while others are static.

Other data sets: Gut microbiome, hormones...
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Analysis of such data and capturing group differences is important for precision nutrition
and medicine
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From multimodal heterogeneous data sets to interpretable patterns

Our goal: Joint analysis of time-evolving and static data sets to capture underlying patterns
as well as their evolution in time

Multimodal Heterogeneous Interpretable Patterns and
Data Sets Their Evolution in Time
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Matrix factorizations in data mining
topic 1 topic 2 topic R
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Data sets are often multi-way: Tensor factorizations
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Data sets often come from multiple sources: Coupled matrix/tensor
factorizations

fMRI (Functional Magnetic

EEG (Electroencephalography) :
Resonance Imaging)

raeer

y
y metabolites genes

J -

i

SMRI
(Structural MRI)

E

(] ¢ T v
ob voxels - s

11113

voxels \0"6

&

Metabolomics

participants

participants

time



Matrix Factorizations

Matrix Factorizations, e.g., Singular Value Decomposition (SVD), Non-negative Matrix
Factorization (NMF), Independent Component Analysis (ICA), are commonly used in
data mining to capture the underlying structures in data sets.

variables 7 R J

R
s _ - x= 3 ab]
2 X A =1
E r T AERIXR:[al
? — AB
I

B e R7*E = [bl

For instance, we may compute truncated SVD of a users by terms matrix and identify
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Uniqueness is an issue X =AB' = AMM BT = ABT

Constraints are used to deal with the uniqueness problem, e.g., SVD. However, factorizations with
constraints may not be meaningful in terms of the application.

True factors SVD captures...
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What if we have multiple matrices with the same underlying factors
but in different proportions...

True factors
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We can recover the true factors uniquely up to trivial
indeterminacies, i.e., scaling and permutation.




Tensor Factorizations: CANDECOMP/PARAFAC (CP)

As an extension of matrix factorizations to higher-order tensors (multi-way arrays), tensor
factorizations are used to extract the underlying factors in higher-order data sets. In particular,
we are interested in the CP model, which represents a tensor as a sum of rank-one tensors:
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Omics: CP reveals differences among groups of subjects in terms of their
response to the meal challenge test
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Neuroscience: CP components have been shown to localize epileptic seizures

[Acar et al., Bioinformatics, 2007; De Vos et al., Neuroimage, 2007]
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Recommender Systems: CP can capture temporal patterns useful for link
Which customers will buy which products?
Which webpages will users visit?
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Microbiome: CP reveals gut microbial community dynamics
[Martino et al., Nature Biotechnology, 2021]
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CP analysis of the gut microbiome data from infants (followed for the first few years of their life)
reveals group differences (according to the birth mode, vaginal vs. cesarean) in terms of microbial
community compositions.
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From multimodal heterogeneous data sets to interpretable patterns

Our goal: Joint analysis of time-evolving and static data sets to capture underlying patterns
as well as their evolution in time

Multimodal Heterogeneous Interpretable Patterns and
Data Sets Their Evolution in Time

Other data sets: Gut microbiome, hormones... metabolites
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Many Challenges: Algorithmic and modelling

Data Fusion - how to jointly analyze heterogeneous data sets?

« Data in the form of matrices and higher-order tensors
« Different data distributions

« Shared patterns, and patterns visible only in one
modality

Need for interpretable and unique patterns

Metabolomics

Part I1:
A flexible algorithmic approach for regularized
matrix-tensor factorizations with linear couplings

Evolving Patterns — how to extract evolving patterns from temporal data?

features

& i otures & - Patterns evolving in time
< * Need for interpretable and unique

patterns

subjects
subjects

K\
“¢  PartII:
Tracing evolving networks using PARAFAC2

Algorithmic framework for PARAFAC2 with
constraints in all modes

Part I11:
Putting the two building blocks together to jointly analyze dynamic and static data sets



Part I. A Flexible Algorithmic Approach for
Regularized Matrix-Tensor Factorizations

with Linear Couplings

joint work with

Carla Schenker Jeremy Cohen
Simula & OsloMet CNRS

C. Schenker, J. E. Cohen, E. Acar. A Flexible Optimization Framework for Regularized Matrix-Tensor Factorizations
with Linear Couplings, IEEE Journal of Selected Topics in Signal Processing, 15(3): 506-521, 2021




Coupled Matrix and Tensor Factorizations (CMTF)

Joint analysis of data sets in the form of matrices and higher-order tensors from multiple
sources can be formulated as a coupled matrix and tensor factorization problem.

Matrix Factorization Tensor Factorization: CP
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There is a need for a flexible framework for data fusion

Various constraints on the factors

Various types of couplings between data sets

Genetics Metabolomics
X Data with different distributions (e.g., count data, binary
data, real entries)=> different loss functions

Y ~AD" X = [A,B,C]

: min __ L.(X,[A1,B,C Ly(Y,AsDT B
min X~ [A,B,C]|% +|Y ~ ADT |2 = 5, {Jf o p (0 1ALB D+ LY, AD T 4 9(B)
- s.t. HA; = Ay

State-of-the art in terms of CMTF algorithms Limited to Frobenius norm
Alternating least squares (ALS)-based approaches

--- with linear coupling
All-at-once optimization

* Unconstrained using gradient-based approaches 11] )
« Nonlinear least squares Limited to Frobenius norm

Limited in terms of
constraints

--- with linear coupling and various constraints
» Constrained optimization using a general-purpose optimization solver

There is a need for a flexible algorithmic framework that can handle various loss
functions, incorporate different types of constraints and couplings



mode 2 mode 1

Alternating Optimization (AO) - Alternating Direction Method of
Multipliers (ADMM) for Regularized CMTF with Linear Couplings

Previously, AO-ADMM has shown promising flexibility for constrained
tensor factorizations . We extend this framework to T2 fTl
coupled matrix/tensor factorizations to incorporate various constraints,
loss functions and linear couplings.
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s.t. Hi’dci’d = Ad

Fix all other modes, and solve for one mode using an alternating scheme (AO).

ADMM

Alternating Direction Method of Multipliers

Example: Coupling only in the first mode
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ADMM subproblem for regularized CMTF with linear couplings (mode 1)

Optimization Problem
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Introduce variable Z; ; to separate the regularization from the factorization
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Introduce dual variables and formulate the augmented Lagrangian
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Using alternating optimization, solve for {C;1}i<n,{Zi1}i<n,A1 followed by dual
updates.

In case of Frobenius norm-based loss: / l

Solution of a linear least squares problem or Sylvester eqn. Proximal operators
Other differentiable losses:

. 1 2
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Numerical optimization using LBFGS-B P ’\’g( ) J u g(u) + 2 | I2



Efficient updates derived for the following types of linear coupling:

Case 1: Hard/exact coupling
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Exact coupling: AO-ADMM framework is accurate and efficient!

Generate factor Construct coupled Solve using AO-ADMM
matrices data sets
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Linear coupling: AO-ADMM framework is accurate and efficient!

Generate factor Construct coupled Solve CMTF with linear couplings
matrices data sets using AO-ADMM
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AO-ADMM is computationally competitive!
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Kullback-Leibler (KL) loss: AO-ADMM framework is flexible!
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AO-ADMM is accurate with different loss functions as well!



Chemometrics: Underlying design and patterns captured accurately!

Mixtures prepared using
five chemicals:
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Chemometrics: Underlying design and patterns captured accurately!
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Many Challenges: Algorithmic and modelling

Data Fusion - how to jointly analyze such heterogeneous data?

« Data in the form of matrices and higher-order tensors
« Different data distributions

« Shared patterns, and patterns visible only in one
modality

Need for interpretable and unique patterns

Part I:
A flexible algorithmic approach for regularized
matrix-tensor factorizations with linear couplings

Evolving Patterns - how to extract evolving patterns from temporal data?

features

& i otures & - Patterns evolving in time
< * Need for interpretable and unique

patterns

!

subjects
subjects

Q Part 11:
Tracing evolving networks using PARAFAC2

Algorithmic framework for PARAFAC2 with
constraints in all modes

Part III:
Putting the two building blocks together to jointly analyze dynamic and static data sets
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Part II. Tracing Evolving Networks
using PARAFAC2

joint work with

Marie Roald Carla Schenker Vince Calhoun Tulay Adali Rasmus Bro Jeremy Cohen

Simula & OsloMet Simula & OsloMet  Georgia State  University of University of CNRS
University Maryland Copenhagen

. Roald, C. Schenker, V. Calhoun, T. Adali, R. Bro, J. Cohen, E. Acar. An AO-ADMM approach to constraining
PARAFAC2 on all modes, SIAM Journal on Mathematics of Data Science, 4(3): 1191-1222, 2022

M. Roald, S. Bhinge, C. Jia, V. Calhoun, T. Adali, E. Acar. Tracing Network Evolution using the PARAFAC2 Model,
" ICASSP, pp. 1100-1104, 2020




How can we extract evolving patterns from time-evolving data?

Higher-order tensors are natural data representations for temporal data in general. For instance,
when studying spatial dynamics in the brain, we are interested in analyzing time-evolving
fMRI data, which can be represented as a subjects by voxels by time windows tensor.

Static spatial component/network
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Can PARAFAC2 reveal
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PARAFAC2 can reveal evolving spatial regions (spatial dynamics)

The traditional approach in fMRI data analysis is to assume that underlying spatial regions of
interest are static. We arrange time-evolving fMRI data as a subjects by voxels by time

tensor and analyze using a PARAFAC2 model to reveal spatial dynamics.
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Challenging to impose constraints on evolving patterns using the
traditional ALS - based algorithm for PARAFAC2

D; = dia k,:
Optimization Problem /"’ g(c(k,:))

[Kiers et al., J. Chemom., 1999]

. K T 2
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AR {gli}n o > H X — ADkBTP; HF constraints on B,
L ETE<KSY =1

s.t. P/P,=Lfork=1,...K

PARAFAC2-ALS

while convergence criterion is not met do

Solve for Py, for k=1,..,.K
[Ug, B, Vi] = svd(X]AD,BT)

P, =U,V]
Solve the following using regular CP-ALS updates
K
. T12
An:'BI»?C kgl H XiPr — ADB HF

end while



PARAFAC2 AO-ADMM enables having constraints in all modes

[Roald et al., EUSIPCO, 2021 & SIMODS, 2022]
Optimization Problem (with regularization terms possibly in all modes):
K Tio K
min > | X — ADB] |7+ga (A)+ > {98, Br) + 9, (D)}
A{BpDilr<x 1—1 k=1

s.t. {Bk}kSK eP \ . .
P = {{Br}{: | By, Br, = BBy, Vi, ky < K}

PARAFAC2 AO-ADMM ADMM Updates for B,

while convergence criterion is not met do

K
2
K min [ Xk—ADkBT + 9B, |ZB ]+L:p( Yp )
v 8 [ ADBI[ o | 0 X A0t 2] ()
{Bitr<k p—=1 s.t. By =1Zp, Vk < K,
s.t. {Brlp<rx €7 B, =Yp, Vk < K
K T2 while convergence criterion is not met do
min k§1|xk_ADkBk HF+9A (A) for k=1, ..., K

Solve for By using a least squares update
Update Zg, using a proximal operator

. K 2
w3 [ X~ ADBE [+ gp, (D) end for

K
i PB g _p. )
ﬁE:Eg]:im_Ln ; 2 H B PrAp + Hag, ||

Y
Update{ Bk}kSK subject to PLPp =1 vk < K.

end while

Update the dual variables
end while



PARAFAC2 AO-ADMM is accurate and computationally efficient!

Generate factor
matrices

Construct a tensor
following a PARAFAC2 structure

Fit a PARAFAC2 model
with non-negativity constraints
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/PARAFACZ with flexible coupling
[Cohen and Bro, 2018] K

min
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A >0,
By, D 20

\

vk < K,

VE< K

2
S|/ Xk - ADB || + || B — Prae |}
k=1

flexible coupling approach using
hierarchical ALS (HALS), and
computationally more efficient!

] AO-ADMM is as accurate as the




PARAFAC2 AO-ADMM is flexible!

Generate factor

matrices Construct a tensor Fit a PARAFAC2 model
(almost) following a PARAFAC2 with non-negativity and/or
C structure unimodality constraints
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Chemometrics: PARAFAC2 with non-negativity constraints in all modes
reveals more accurate patterns

PARAFAC2 is a useful tool for analyzing gas chromatography - mass spectrometry (GC-MS)
measurements of mixtures [Bro et al., 1999; Amigo et al., 2008].

elution time .
Wine samples arranged as a 286 (mass spectra) by

95 (elution time) by 19 (samples) tensor, and
analyzed using a 6-component PARAFAC2 model.
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Neuroscience: PARAFAC2 with smoothness constraints reveals
components with more defined regions of activation and less noise

Time-evolving

spatial network
temporal
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Part III. Joint Analysis of Dynamic and Static Data

joint work with

Carla Schenker Xiulin Wang
OsloMet & Affiliated Zhongshan
SimulaMet Hospital of Dalian

University

C. Schenker, X. Wang, E. Acar. PARAFAC2-based Coupled Matrix and Tensor Factorizations, arXiv:2210.13054v1, 2022




We extend our flexible regularized coupled matrix/tensor factorizations with
linear coupling framework by incorporating the PARAFAC2 model

-q
X

J
PARAFAC2-based CMTF X Y
JRE 1y |y -EFT| + § [\ X;, — ADB % + 9p(Ds) + 98B | + 94(A) + g5(E) + gp(F)
B.EF.A1 {Dp.Bp.Prlick k=1
s.t. B,=P,B, P[P, =1 k=1,.,K,
H.E = A4,
HoA = A, Solved using AO-ADMM

Fusion methods using a PARAFAC2 model:

PARAFAC2 has also been incorporated in other data fusion methods:
(i) PARAFAC2 coupled with a matrix factorization for EHR-based phenotyping [Afshar et al., 2020]
(iil) PARAFAC2 coupled with CP for joint analysis of EEG and fMRI data [Chatzichristos et al., 2018]

Limited in terms of constraints and/or coupling structure



PARAFAC2-based CMTF model captures evolving patterns accurately while
improving the clustering performance through fusion!

Jointly analyze using
PARAFAC2-based CMTF

Generate factor matrices Construct coupled data sets

, 2 K 2
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PARAFAC2-based CMTF model captures evolving patterns accurately while
improving the clustering performance through fusion!

. Jointly analyze using
Generate factor matrices Construct coupled data sets PARAFAC2-based CMTF

Noise level = 1.0

_ TRUE ESTIMATED
: _ Fit (%) FMS
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Summary

Goal: Extracting insights from complex data
sets - often complementary data sets collected
from multiple sources, some are time-evolving
while some are static

Our approach: Unsupervised interpretable
pattern discovery

Tensor factorizations revealing unique
patterns

Flexible data fusion framework based on
coupled matrix and tensor factorizations
incorporating various constraints, linear

coupling, loss functions and evolving patterns

Applications of interest: Neuroscience and
omics

Ongoing work

Analysis of metabolomics measurements
collected during the challenge test - together
with other omics measurements

Time-aware tensor factorizations
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Thank you!

Flexible data fusion framework
C. Schenker, J. E. Cohen, E. Acar. A Flexible Optimization Framework for Regularized Matrix-Tensor Factorizations
with Linear Couplings. IEEE Journal of Selected Topics in Signal Processing, 15(3): 506-521, 2021

PARAFAC2-based Coupled Matrix and Tensor Factorizations
C. Schenker, X. Wang, E. Acar. PARAFAC2-based Coupled Matrix and Tensor Factorizations, arXiv:2210.13054v1,
2022

PARAFAC2 AO-ADMM algorithm
M. Roald, C. Schenker, V. Calhoun, T. Adali, R. Bro, J. E. Cohen, E. Acar. An AO-ADMM approach to constraining
PARAFAC2 on all modes, SIAM Journal on Mathematics of Data Science, 4(3): 1191-1222, 2022

Evolving patterns
M. Roald, S. Bhinge, C. Jia, V. Calhoun, T. Adali, E. Acar. Tracing Network Evolution using the PARAFAC2 model.
ICASSP, pp. 1100-1104, 2020

E. Acar, M. Roald, K. Hossain, V. Calhoun, T. Adali. Tracing Evolving Networks Using Tensor Factorizations vs.
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Software
AO-ADMM for CMTF & PARAFAC2 https://github.com/AOADMM-DataFusionFramework/ “\
AO-ADMM for PARAFAC2 https://github.com/MarieRoald/PARAFAC2-AOADMM-SIMODS pgthon
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