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Motivation: Understanding complex systems requires joint analysis of 
static and time-evolving data sets

A better understanding of how complex systems evolve over time can enable us to
address important problems by capturing differences in brain dynamics or metabolic
responses, potentially revealing early signs of diseases.

To gain such a level of understanding, we need to extract meaningful information from
personal data clouds, where some data sets are time-evolving while others are static.

Other data sets: Gut microbiome, hormones…

Genetics

genes

Analysis of such data and capturing group differences is important for precision nutrition 
and medicine [Price et al., Nature Biotechnology, 2017; Berry et al., Nature Medicine, 2020]
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From multimodal heterogeneous data sets to interpretable patterns
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Interpretable Patterns and 
Their Evolution in Time

Multimodal Heterogeneous 
Data Sets
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Other data sets: Gut microbiome, hormones…

Genetics

genes

Our goal: Joint analysis of time-evolving and static data sets to capture underlying patterns

as well as their evolution in time



Tekst starter uden 

dato og ”Enhedens 

Matrix factorizations in data mining
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Data sets are often multi-way: Tensor factorizations
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Data sets often come from multiple sources: Coupled matrix/tensor 
factorizations
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Matrix Factorizations

Matrix Factorizations, e.g., Singular Value Decomposition (SVD), Non-negative Matrix

Factorization (NMF), Independent Component Analysis (ICA), are commonly used in 

data mining to capture the underlying structures in data sets.

=
A

BT

I

R

R

J

I

J

s
a
m

p
le

s

variables

…

≈

+ + +

u
s
e
r
s

terms

topics

For instance, we may compute truncated SVD of a users by terms matrix and identify

the topics and user groups talking about those topics.
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Uniqueness is an issue

True factors

Constraints are used to deal with the uniqueness problem, e.g., SVD. However, factorizations with 

constraints may not be meaningful in terms of the application. 
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Data matrix

Given  X, can we recover  
the true factors?

SVD captures…
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What if we have multiple matrices with the same underlying factors 
but in different proportions…

We can recover the true factors uniquely up to trivial

indeterminacies, i.e., scaling and permutation.

True factors
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Tensor Factorizations: CANDECOMP/PARAFAC (CP)

K

…+ + +

N-mode vector outer product

[Hitchcock, 1927; Harshman, 1970; Carroll & Chang, 1970] 

≈

As an extension of matrix factorizations to higher-order tensors (multi-way arrays), tensor 

factorizations are used to extract the underlying factors in higher-order data sets. In particular, 

we are interested in the CP model, which represents a tensor as a sum of rank-one tensors:

10 20 30 40 50 60

20

40

60

80

100

120

140

160

180

200

10 20 30 40 50 60

20

40

60

80

100

120

140

160

180

200

10 20 30 40 50 60

20

40

60

80

100

120

140

160

180

200

I

J

0

0



Subjects

Metabolites

Time

Omics: CP reveals differences among groups of subjects in terms of their 
response to the meal challenge test
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t=0 min

t=4 hours

Fasting state

t=2 hours
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subject
coeff.

metabolite 
coeff.

temporal
profile

Not visible in the 
fasting state!

HDL (high density), IDL 
(intermediate density), 
LDL (low density), VLDL 
(very low density):

Lipoproteins carrying fat, 
e.g., cholesterol, to cells 
through blood

Extremely large, 
very large and 
large VLDLs

Medium, small 
VLDLs

BMI     
XXL/XL/L-VLDL   

BMI     
M/S-VLDL   

Nuclear Magnetic

Resonance Spectroscopy

measurements of plasma 

samples collected from 

the COPSAC2000 cohort

[Li et al., bioRxiv, 2022] 

Ongoing work with COPSAC (Copenhagen Prospective 

Studies on Asthma in Childhood)

Subject Coeff. 

Lower 
BMI

Higher
BMI
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[Acar et al., Bioinformatics, 2007; De Vos et al., Neuroimage, 2007]

Neuroscience: CP components have been shown to localize epileptic seizures
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Recommender Systems: CP can capture temporal patterns useful for link 
prediction 
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Temporal Link Prediction

Which customers will buy which products?
Which webpages will users visit?

[Dunlavy et al., ACM TKDD, 2011]
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features (e.g., microbes)

Gut microbiome
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Microbiome: CP reveals gut microbial community dynamics
[Martino et al., Nature Biotechnology, 2021]

CP analysis of the gut microbiome data from infants (followed for the first few years of their life)

reveals group differences (according to the birth mode, vaginal vs. cesarean) in terms of microbial 

community compositions. 

Robust centered
log-ratio transform
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From multimodal heterogeneous data sets to interpretable patterns
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Other data sets: Gut microbiome, hormones…

Genetics

genes

Our goal: Joint analysis of time-evolving and static data sets to capture underlying patterns

as well as their evolution in time
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Many Challenges: Algorithmic and modelling

Data Fusion – how to jointly analyze heterogeneous data sets?

Evolving Patterns – how to extract evolving patterns from temporal data? 

• Data in the form of matrices and higher-order tensors
• Different data distributions
• Shared patterns, and patterns visible only in one 

modality
• Need for interpretable and unique patterns
…
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• Patterns evolving in time
• Need for interpretable and unique 

patterns
…

Part I:  
A flexible algorithmic approach for regularized 
matrix-tensor factorizations with linear couplings

Part II:
Tracing evolving networks using PARAFAC2 

Algorithmic framework for PARAFAC2 with 
constraints in all modes

Part III:
Putting the two building blocks together to jointly analyze dynamic and static data sets



Part I. A Flexible Algorithmic Approach for

Regularized Matrix-Tensor Factorizations

with Linear Couplings

joint work with

Carla Schenker
Simula & OsloMet

Jeremy Cohen
CNRS

C. Schenker, J. E. Cohen, E. Acar.  A Flexible Optimization Framework for Regularized Matrix-Tensor Factorizations 

with Linear Couplings, IEEE Journal of Selected Topics in Signal Processing, 15(3): 506-521, 2021
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Tensor Factorization: CPMatrix Factorization

Joint analysis of data sets in the form of matrices and higher-order tensors from multiple 
sources can be formulated as a coupled matrix and tensor factorization problem.

Coupled Matrix and Tensor Factorizations (CMTF)

The problem can be formulated as:

Many successful applications in recommender 
systems [Zheng et al., 2010; Ermis et al., 2015; Araujo et al., 2017]

[Banerjee et al., SDM, 2007; Acar et al., KDD Workshop MLG, 2011]

activities
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locations features



There is a need for a flexible framework for data fusion

State-of–the art in terms of CMTF algorithms

Alternating least squares (ALS)-based approaches [Wilderjans et al., 2009; Bahargam and Papalexakis, 

2019]

--- with linear coupling [Farias et al., 2016; Kanatsoulis et al., 2018]

All-at-once optimization 

• Unconstrained using gradient-based approaches [Acar et al., 2011]

• Nonlinear least squares [Sorber et al., 2015; Vervliet et al., 2016]

--- with linear coupling and various constraints 

• Constrained optimization using a general–purpose optimization solver [Acar et al., 2014]

MetabolomicsGenetics

Various constraints on the factors

Various types of couplings between data sets

Data with different distributions (e.g., count data, binary 
data, real entries) different loss functions

Limited to Frobenius norm

Limited in terms of 
constraints

Limited to Frobenius norm

There is a need for a flexible algorithmic framework that can handle various loss 
functions, incorporate different types of constraints and couplings



Alternating Optimization (AO) – Alternating Direction Method of  
Multipliers (ADMM) for Regularized CMTF with Linear Couplings

[Schenker et al., EUSIPCO, 2020 & IEEE JSTSP, 2021] 

Previously, AO-ADMM has shown promising flexibility for constrained 
tensor factorizations [Huang et al., 2016]. We extend this framework to 
coupled matrix/tensor factorizations to incorporate various constraints, 
loss functions and linear couplings.

Fix all other modes, and solve for one mode using an alternating scheme (AO). 

m
o
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e
 2

while convergence criterion is not met do

Example: Coupling only in the first mode

m
o

d
e
 1

end while

ADMM 

Alternating Direction Method of Multipliers 



ADMM subproblem for regularized CMTF with linear couplings (mode 1)

Optimization Problem

Introduce variable Zi,1 to separate the regularization from the factorization

Introduce dual variables and formulate the augmented Lagrangian

Using alternating optimization, solve for followed by dual 
updates.

In case of Frobenius norm-based loss:
Solution of a linear least squares problem or Sylvester eqn.

Other differentiable losses:  
Numerical optimization using LBFGS-B

Proximal operators



Efficient updates derived for the following types of linear coupling:

Case 1: Hard/exact coupling Case 2: Transformations in mode dimension 

common grid

Case 3: Transformations in component dimension

dictionary



Exact coupling: AO-ADMM framework is accurate and efficient!

Generate factor 

matrices

Construct coupled 

data sets

Solve using AO-ADMM

Comparable performance in terms of accuracy 
and computational efficiency!

50 random datasets, 
best run out of multiple 
random initializations reported

Factor match score:



Generate factor 

matrices

Construct coupled 

data sets

Solve CMTF with linear couplings

using AO-ADMM

Linear coupling: AO-ADMM framework is accurate and efficient!

AO-ADMM is computationally competitive!



Kullback-Leibler (KL) loss: AO-ADMM framework is flexible!

Generate factor 

matrices

Construct coupled 

data sets

Solve using AO-ADMM

AO-ADMM is accurate with different loss functions as well!
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Chemometrics: Underlying design and patterns captured accurately!

Mixtures prepared using 
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• Val-Try-Val

• Trp - Gly

• Phe

• Maltoheptaose

• Propanolpeaks
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Chemometrics: Underlying design and patterns captured accurately!
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Many Challenges: Algorithmic and modelling

Data Fusion – how to jointly analyze such heterogeneous data?

Evolving Patterns – how to extract evolving patterns from temporal data? 

• Data in the form of matrices and higher-order tensors
• Different data distributions
• Shared patterns, and patterns visible only in one 

modality
• Need for interpretable and unique patterns
…
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Part I:  
A flexible algorithmic approach for regularized 
matrix-tensor factorizations with linear couplings

Part II:
Tracing evolving networks using PARAFAC2 

Algorithmic framework for PARAFAC2 with 
constraints in all modes

Part III:
Putting the two building blocks together to jointly analyze dynamic and static data sets



Part II. Tracing Evolving Networks 

using PARAFAC2

joint work with

Carla Schenker
Simula & OsloMet

Marie Roald
Simula & OsloMet

Jeremy Cohen
CNRS

Tulay Adali
University of

Maryland

Rasmus Bro
University of
Copenhagen

From Marie Roald’s ICASSP 2020 talk 

M. Roald, C. Schenker, V. Calhoun, T. Adali, R. Bro, J. Cohen, E. Acar. An AO-ADMM approach to constraining 

PARAFAC2 on all modes, SIAM Journal on Mathematics of Data Science, 4(3): 1191-1222, 2022

M. Roald, S. Bhinge, C. Jia, V. Calhoun, T. Adali, E. Acar. Tracing Network Evolution using the PARAFAC2 Model, 

ICASSP, pp. 1100-1104, 2020

Vince Calhoun
Georgia State

University



How can we extract evolving patterns from time-evolving data?

Higher-order tensors are natural data representations for temporal data in general. For instance, 
when studying spatial dynamics in the brain, we are interested in analyzing time-evolving 
fMRI data, which can be represented as a subjects by voxels by time windows tensor.  
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fMRI

spatial network

0

0

temporal 
signature

…+ +≈

CP

Static spatial component/network

≈ …+ +

0

0

Time-evolving spatial network

PARAFAC2
[Harshman, 1972]

Can PARAFAC2 reveal 
evolving patterns?



PARAFAC2 can reveal evolving spatial regions (spatial dynamics)  

The traditional approach in fMRI data analysis is to assume that underlying spatial regions of 
interest are static. We arrange time-evolving fMRI data as a subjects by voxels by time 
tensor and analyze using a PARAFAC2 model to reveal spatial dynamics.
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fMRI ≈ +

Time-evolving 
spatial network

temporal 
signature

[Roald et al., ICASSP, 2020; Acar et al., Frontiers in Neuroscience, 2022]

147 healthy controls
106 patients with schizophrenia 
[Gollub et al., 2013]

The first component identified as a 
statistically significant component 
using a two-sample t-test on the 
columns of A
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patients

time windows
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Challenging to impose constraints on evolving patterns using the 
traditional ALS - based algorithm for PARAFAC2   

Optimization Problem

≈ …+ +

Solve the following using regular CP-ALS updates

while convergence criterion is not met do

end while

Solve for

PARAFAC2-ALS

[Kiers et al., J. Chemom., 1999]

Challenging to impose 
constraints on Bk
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PARAFAC2 AO-ADMM enables having constraints in all modes
[Roald et al., EUSIPCO, 2021 & SIMODS, 2022]

Optimization Problem (with regularization terms possibly in all modes):

while convergence criterion is not met do

end while

PARAFAC2 AO-ADMM
ADMM Updates for Bk

Solve for using a least squares update

Update         using a proximal operator

for k=1, …, K 

end for 

Update the dual variables

while convergence criterion is not met do

end while

Update              



PARAFAC2 AO-ADMM is accurate and computationally efficient!

Fit a PARAFAC2 model

with non-negativity constraints

≈ …+ +

AO-ADMM is as accurate as the 
flexible coupling approach using 
hierarchical ALS (HALS), and 
computationally more efficient!

Generate factor 
matrices

Non-negative factor matrices

Construct a tensor

following a PARAFAC2 structure

PARAFAC2 with flexible coupling 
[Cohen and Bro, 2018]

50 random datasets, 
best run out of multiple 
random initializations 
reported



PARAFAC2 AO-ADMM is flexible!

Fit a PARAFAC2 model

with non-negativity and/or

unimodality constraints

≈ …+ +

Generate factor 
matrices

Non-negative A & C
Non-negative and unimodal Bk

Construct a tensor

(almost) following a PARAFAC2 
structure

FMS

AO-ADMM with non-
negativity and unimodality

constraints is more accurate!



Chemometrics: PARAFAC2 with non-negativity constraints in all modes 
reveals more accurate patterns 

PARAFAC2 is a useful tool for analyzing gas chromatography - mass spectrometry (GC-MS)
measurements of mixtures [Bro et al., 1999; Amigo et al., 2008].

Wine samples arranged as a 286 (mass spectra) by
95 (elution time) by 19 (samples) tensor, and
analyzed using a 6-component PARAFAC2 model.
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ALS with non-negativity
constraints in A and C

AO-ADMM with non-
negativity constraints
in all modes

More interpretable components 
are captured using AO-ADMM
with non-negativity constraints in 
all modes!



Neuroscience: PARAFAC2 with smoothness constraints reveals 
components with more defined regions of activation and less noise

s
u

b
je

c
ts

voxels

fMRI ≈ +

Time-evolving 
spatial network

temporal 
signature

healthy controls & patients with 
schizophrenia [Gollub et al., 2013]

PARAFAC2 is fitted to the task fMRI data using a graph Laplacian-based regularizer penalizing
pairwise differences between neighboring voxels.



Part III. Joint Analysis of Dynamic and Static Data

joint work with

Carla Schenker
OsloMet &
SimulaMet 

Xiulin Wang
Affiliated Zhongshan

Hospital of Dalian 
University

C. Schenker, X. Wang, E. Acar.  PARAFAC2-based Coupled Matrix and Tensor Factorizations, arXiv:2210.13054v1, 2022



We extend our flexible regularized coupled matrix/tensor factorizations with 
linear coupling framework by incorporating the PARAFAC2 model 

B1

Solved using AO-ADMM

PARAFAC2 has also been incorporated in other data fusion methods: 

(i) PARAFAC2 coupled with a matrix factorization for EHR-based phenotyping [Afshar et al., 2020]

(ii) PARAFAC2 coupled with CP for joint analysis of EEG and fMRI data [Chatzichristos et al., 2018]

Fusion methods using a PARAFAC2 model:

Limited in terms of constraints and/or coupling structure

PARAFAC2-based CMTF



PARAFAC2-based CMTF model captures evolving patterns accurately while 
improving the clustering performance through fusion!

Dynamic data: 
noisy clusters

Static data: 
clean clusters

Construct coupled data setsGenerate factor matrices

B1
B1

≈

Jointly analyze using 

PARAFAC2-based CMTF
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Construct coupled data setsGenerate factor matrices

B1
B1

≈

Jointly analyze using 

PARAFAC2-based CMTF

PARAFAC2-based CMTF model captures evolving patterns accurately while 
improving the clustering performance through fusion!

Noise level = 1.0

TRUE ESTIMATED
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Summary

Ongoing work

• Analysis of metabolomics measurements 
collected during the challenge test - together 
with other omics measurements

• Time-aware tensor factorizations
Dynamic

Static

Goal: Extracting insights from complex data 
sets - often complementary data sets collected 
from multiple sources, some are time-evolving 
while some are static

Our approach: Unsupervised interpretable 
pattern discovery

• Tensor factorizations revealing unique 
patterns

• Flexible data fusion framework based on 
coupled matrix and tensor factorizations 
incorporating various constraints, linear 
coupling, loss functions and evolving patterns

• Applications of interest: Neuroscience and 
omics
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Thank you!

Flexible data fusion framework 

C. Schenker, J. E. Cohen, E. Acar. A Flexible Optimization Framework for Regularized Matrix-Tensor Factorizations

with Linear Couplings. IEEE Journal of Selected Topics in Signal Processing, 15(3): 506-521, 2021

PARAFAC2-based Coupled Matrix and Tensor Factorizations
C. Schenker, X. Wang, E. Acar.  PARAFAC2-based Coupled Matrix and Tensor Factorizations, arXiv:2210.13054v1,
2022

PARAFAC2 AO-ADMM algorithm

M. Roald, C. Schenker, V. Calhoun, T. Adali, R. Bro, J. E. Cohen, E. Acar. An AO-ADMM approach to constraining

PARAFAC2 on all modes, SIAM Journal on Mathematics of Data Science, 4(3): 1191-1222, 2022  

Evolving patterns

M. Roald, S. Bhinge, C. Jia, V. Calhoun, T. Adali, E. Acar. Tracing Network Evolution using the PARAFAC2 model.

ICASSP, pp. 1100-1104, 2020

E. Acar, M. Roald, K. Hossain, V. Calhoun, T. Adali. Tracing Evolving Networks Using Tensor Factorizations vs.

ICA-Based Approaches. Frontiers in Neuroscience, 16: 861402, 2022

Software

AO-ADMM for CMTF & PARAFAC2 https://github.com/AOADMM-DataFusionFramework/

AO-ADMM for PARAFAC2 https://github.com/MarieRoald/PARAFAC2-AOADMM-SIMODS

https://tracer.simulamet.no

https://github.com/AOADMM-DataFusionFramework/
https://github.com/MarieRoald/PARAFAC2-AOADMM-SIMODS
https://tracer.simulamet.no/

