What’s Opaque to Whom - and Why?

Anders Søgaard
‘people working at the cutting edge of AI [...] consider us, at best, lunchtime entertainment’

Cappelen & Dever (2022)
DNNs and Opacity
Standard view
DNNs are black boxes in need of explanations.

Alternative view
DNNs are *white* boxes *and* explanations.
DNNs = White-Box Explanations?

DNNs are white boxes

There is nothing secret about the inner workings of DNNs. You can print everything out. They are, as such, white boxes. Just very big ones.

DNNs are explanations

“who can explain a phenomenon understands it, in the sense that [they] can predict it” [...] “the very essence of explanation is generalization”

Kenneth Craik

DNNs provide us with prediction and generalization. A DNN explains Y in terms of X. Its explanation may be false, i.e., fail to generalize properly, or overwhelming, rendering it completely useless for some purposes, including teaching.
Black box

Terminology

Opacity

What I’d say

Overwhelming
Hard-to-summarize-in-a-few-words

opacity (n.)

1550s, “darkness of meaning, obscurity,” from French *opacité*, from Latin *opacitatem* (nominative *opacitas*) “shade, shadiness,” from *opus* “shaded, dark, opaque,” a word of unknown origin. The literal sense “condition of being impervious to light; quality of a body which renders it impervious to rays of light” in English is recorded from 1630s.
Two Kinds of Opacity

1. Why do neural networks predict what they do, given the input data?
2. How do neural networks settle on the functions they settle on, given the training data?
<table>
<thead>
<tr>
<th>Contenders</th>
<th>Citations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of parameters</td>
<td>"it is generally difficult to interpret or explain how or why a DL algorithm arrives at a particular decision, given that they are built on numerous hidden layers and millions of neurons, which makes them opaque."</td>
</tr>
<tr>
<td>Nonlinearities</td>
<td>DNNs exhibit "non-linear structure which makes them opaque."</td>
</tr>
<tr>
<td>Continuity</td>
<td>"discrete representations have the advantage of being readily interpretable"</td>
</tr>
<tr>
<td>Lack of grounding</td>
<td>DNNs do not “work in accordance with the ways humans themselves assign meaning to the reality that surrounds them.”</td>
</tr>
<tr>
<td>Lost training history</td>
<td>"learning algorithms are even more opaque because they do not rely on pre-specified instructions, but on evolving weights and networks of connections that get refined with each additional data point"</td>
</tr>
</tbody>
</table>
Summary

DNNs are white-box explanations, but very large. This makes XAI a summarization problem, i.e., an abstractiveness-faithfulness trade-off. Or, equivalently, a bias-variance trade-off.

\[\arg \min_{\theta^a} \sum_{i \leq n} \ell(y_i^a, \hat{y}_i^a) + \lambda \|\theta^a\|_0 \]

... which, in my view, suggests a continuous, instrumentalist XAI, providing explanations at different granularities.
Why XAI for Science?

XAI gives us unique opportunities!

XAI doesn’t buy us anything.
Updating our language

From recent article:

‘Models developed using machine learning are increasingly prevalent in scientific research. At the same time, these models are notoriously opaque. Explainable AI aims to mitigate the impact of opacity by rendering opaque models transparent. More than being just the solution to a problem, however, Explainable AI can also play an invaluable role in scientific exploration.’

Our version:

‘Models developed using machine learning provide potential explanations in scientific research. At the same time, these models are notoriously opaque. Explainable AI aims to summarize these often overwhelmingly complex explanations. More than being just the solution to a problem, however, Explainable AI can also play an invaluable role in scientific exploration.’
Two motivations

XAI in Science

a) Extracting hypotheses
b) Verifying our models are right for the right reasons
Extracting Hypotheses

Saliency Maps (inference-opacity)

Explanations are distributions over input features, e.g., reflecting a local, linear approximation.

⚠️ Low recall.

Influence Functions (training-opacity)

Influence estimates are distributions over training data.

⚠️ Low precision. Sensitive to initialization.

Inherent Limitations

We still have low recall, because:

1. Post-hoc XAIs cannot explain in terms of configurations of features.
2. Post-hoc XAIs cannot explain in terms of accumulated statistics.
3. Post-hoc XAIs cannot explain in terms of absence of input features.

Scenarios:
- a) Corners.
- b) Average pixel value.
- c) No star-shaped objects.
- d) Combination of a)-c).
Right for the Right Reasons

We need to verify that our DNNs or DNN+XAI did not learn from spurious correlations.

If we verify that our XAI methods work, and show our models (robustly) rely on robust rationales, our models are (in some sense) trustworthy.

This is Klaus’ Clever Hans.

⚠️ But there’s a data bottleneck challenge here!

Right for the Right Reasons

The verification is typically against human rationale annotations. We recently collected multilingual eye-tracking data across demographics from webcams (WebQamGaze) to see if this provides cheap rationale annotations. So far, gaze data seems to induce similar method and model rankings as rationale annotations.
Debates in Philosophy of Science

Carlos Zednik: DNN+XAI “possess unique epistemic qualities.”

Cynthia Rudin: “Explanations must be wrong. They cannot have perfect fidelity with respect to the original model.”

Solution: Both DNNs and DNN+XAI can be (more or less wrong) explanations.

1. XAI can help us identify relevant hypotheses; but so could feature selection.
2. XAI can estimate robustness if ground truth rationales are available; but so could more data.
3. So, DNN+XAI does not have unique epistemic qualities, but still useful.

Preview: Ground truth in XAI evaluation will be as problematic as for DNN evaluation.
Debates in Philosophy of Science

Internalism: XAI through analysis of internal representations. Examples: Vanilla gradients, LRP, similarity.

Externalism: XAI through external, causal chains. Two kinds: conservative (only explain in terms of past interactions) and progressive (also explain in terms of future interactions). Examples: influence functions (conservative), uptraining (progressive), LIME (progressive).

Solution:

a) Conservative externalism is not gonna cut it, because models are not determined by their training data.

b) Internalism and progressive externalism often form a continuum, because you can probe the relevant representational differences.
Ways of Evaluating XAI}s
Evaluation Strategies

1. Heuristic Evaluation (input reduction, hot flip, etc.)
2. Human Annotation (e.g., ERASER)
3. Human-in-the-Loop (forward prediction, Reverse Turing Test)
4. Real-Life Experiments (QuizBowl, EkstraBladet)
5. Inherent Limitations

Evaluation Strategies

1. Heuristic Evaluation (input reduction, hot flip, etc.)
2. Human Annotation (e.g., ERASER)
3. Human-in-the-Loop (forward prediction, Reverse Turing Test)
4. Real-Life Experiments (QuizBowl, EkstraBladet)
5. Inherent Limitations

Do you think this comes from a reliable or an unreliable source?

The model has predicted **unreliable** with 99.96% confidence

Legend of model decisions:
- Unreliable
- Neutral
- Reliable

Claim: Travis Scott is Starting to Doubt If He’s Stormi’s Dad Amid Tim Chung Rumors

Article: Earlier this month, rumors started swirling that Kylie Jenner’s daughter Stormi Webster might not be her boyfriend Travis Scott’s child—because of the shocking resemblance that Stormi has to Kylie’s hot AF bodyguard Tim Chung. Now that baby Stormi is four months old, she’s starting to show more defined features in her face and sources exclusively revealed to In Touch that there is a part of Travis that is starting to doubt Stormi’s paternity and whether or not he is the little girl’s father. “Travis is starting to get a little worried and questioning Kylie about this whole bodyguard situation. Not to diss or say Kylie is a liar but he doesn’t watch her every move. He isn’t with her 24/7 and there were times they were apart from each other nine months ago. He loves Stormi and truly believes that she’s his daughter but can’t help but notice that she doesn’t look like him. In the back of his mind he wonders if Kylie strayed. If that happened and Stormi is not his, that would be the most devastating news of his life. He flat out wants to talk to Kylie and Tim together, to once and for all get to the bottom of this.” Ever since Kylie started sharing more and more photos of baby Stormi, fans started to realize that Kylie’s daughter kind of looks like she has some of Tim’s features and they started to point it out in the comments. And given the whirlwind nature of Kylie’s relationship with Travis — they started dating just one month after her split from her ex-boyfriend Tyga — and the fact that Travis was busy touring during the beginning of their relationship, it seems like there could have been very well been a few instances where Kylie could have been alone with her security guard. According to sources, Tim even bragged about how much alone time he has been able to spend with Kylie. “He’s telling his friends that he’s been alone with Kylie tons of times in her house but when they ask if they’ve been intimate, he simply smiles.” and an insider revealed to In Touch.

[reliable] [unreliable]
Human Evaluation for Influence?

Human evaluation of feature attribution is common, through annotation or forward prediction, but what about human evaluation of training data influence? Seems infeasible, but consider simple cases:

\[f(3) = 3, f(4) = 5, f(5) = 6, f(6) = ? \]

Protocol: Ask participants to predict \(f(6) \) given the above sequence. Subsequently, ask them what training data influenced their decision.
Whose Explanations?
People and Explanations

a) Different stakeholders to XAI.

b) E.g.: Influence functions are useful for developers and regulators, but probably not for other stakeholders.

c) Scientists may be willing to consider more uncertain associations than affected parties.

d) But when evaluating whether models are right for the right reasons, is that subjective or objective?
Whose Explanations?

We collected rationale annotations across six demographics - the cross-product of (young, old) and (Black, Latin, White). We see statistically significant differences across two sentiment analysis tasks and a question answering task.
Whose Explanations?

This view is under-explored. E.g., in ACL 2021, none of 18 XAI papers looked at fairness or bias. Related findings:

a) Multilingual models are not equally right for the right reasons across languages (BlackBoxNLP 2022).

b) Interpretability and fairness are often at odds; interpretability and privacy too (submitted to AISTATS 2023).

<table>
<thead>
<tr>
<th>Area</th>
<th># papers</th>
<th>English</th>
<th>Accuracy / F1</th>
<th>Multilinguality</th>
<th>Fairness and bias</th>
<th>Efficiency</th>
<th>Interpretability</th>
<th>>1 dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACL 2021 oral papers</td>
<td>461</td>
<td>69.4%</td>
<td>38.8%</td>
<td>13.9%</td>
<td>6.3%</td>
<td>17.8%</td>
<td>11.7%</td>
<td>6.1%</td>
</tr>
<tr>
<td>MT and Multilinguality</td>
<td>58</td>
<td>0.0%</td>
<td>15.5%</td>
<td>56.9%</td>
<td>5.2%</td>
<td>19.0%</td>
<td>6.9%</td>
<td>13.8%</td>
</tr>
<tr>
<td>Interpretability and Analysis</td>
<td>18</td>
<td>88.9%</td>
<td>27.8%</td>
<td>5.6%</td>
<td>0.0%</td>
<td>5.6%</td>
<td>66.7%</td>
<td>5.6%</td>
</tr>
<tr>
<td>Ethics in NLP</td>
<td>6</td>
<td>83.3%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>100.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Dialog and Interactive Systems</td>
<td>42</td>
<td>90.5%</td>
<td>21.4%</td>
<td>0.0%</td>
<td>9.5%</td>
<td>23.8%</td>
<td>2.4%</td>
<td>2.4%</td>
</tr>
<tr>
<td>Machine Learning for NLP</td>
<td>42</td>
<td>66.7%</td>
<td>40.5%</td>
<td>19.0%</td>
<td>4.8%</td>
<td>50.0%</td>
<td>4.8%</td>
<td>9.5%</td>
</tr>
<tr>
<td>Information Extraction</td>
<td>36</td>
<td>80.6%</td>
<td>91.7%</td>
<td>8.3%</td>
<td>0.0%</td>
<td>25.0%</td>
<td>5.6%</td>
<td>8.3%</td>
</tr>
<tr>
<td>Resources and Evaluation</td>
<td>35</td>
<td>77.1%</td>
<td>42.9%</td>
<td>5.7%</td>
<td>8.6%</td>
<td>5.7%</td>
<td>14.3%</td>
<td>5.7%</td>
</tr>
<tr>
<td>NLP Applications</td>
<td>30</td>
<td>73.3%</td>
<td>43.3%</td>
<td>0.0%</td>
<td>10.0%</td>
<td>20.0%</td>
<td>10.0%</td>
<td>0.0%</td>
</tr>
</tbody>
</table>

Thought Experiments

Imagine you go to your personal doctor. Your doctor says they have been screening your personal health records, feeding them to an advanced predictive model, which predicts you to have Snepsosis - a disease for which a treatment with only moderate side-effects exists. How likely would you be to accept the treatment, based on this prediction?

Imagine you go to an interview for a job in a large, international company. The CEO tells you that they have been screening your application with an advanced predictive model. She tells you that while you were found to be the most qualified candidate for the job in question, the model found you to be even more qualified for another job. The job has the same status as the one you applied for, but the domain is a bit different. How likely would you be to accept the proposed job, based on this prediction?
