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How do we use AI?
Artifical Intelligence: uses (ML) machine learning algorithms to make useful predictions

Input: your data
Output: some recommendation, decision, or classification

Privacy problem: you have to input your data in order to get the valuable prediction!

Typical AI services are hosted in the cloud, run by a “smart agent” (e.g. Cortana, Siri, Alexa)



New mathematical tool
Protect privacy and security of your data through encryption!

Need encryption which you can compute on:

Homomorphic Encryption!



Outsourcing computation



HealthVault/EMR

•All data uploaded to the server encrypted under 
patient’s public  or private key

•Cloud operates on encrypted data and returns 
encrypted predictive results



Cybersecurity scenarios:

* data from sensors, cameras (IoT) 

* if sensor data is encrypted by the sensor before uploading to the cloud, data is 
protected: in transit, in storage and in computation

* Using Homomorphic Encryption, the encrypted data can still be used to computed 
(encrypted) predictive models or make (encrypted) predictions

*data owner can decrypt the results using the secret key



Homomorphic Encryption (HE)
• Computation on encrypted data without decrypting it!
• 2009: First Solution: Considered impractical
• 2011: Surprise breakthrough at Microsoft Research
• Widespread enthusiasm about results
• 2016 breakthrough: neural nets on encrypted data!
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Microsoft SEAL

• Simple Encrypted Arithmetic Library (SEAL) 
• Public release by Microsoft Research in 2015
• Mathematical operations performed in milliseconds
• SEAL (v.2.3) widely adopted by research teams worldwide

• CryptoNets performance break-through
• Evaluates neural net predictions on encrypted data

• Standard released: 2018

http://sealcrypto.org
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Protecting Data via Encryption: 
Homomorphic encryption

1. Put your gold in a locked box. 
2. Keep the key.
3. Let your jeweler work on it through a glove box.
4. Unlock the box when the jeweler is done!



Homomorphic Encryption: addition

E(a) E(b) E(a+b)

compute

compute

encryptencrypt

a, b a+ b

E(a), E(b)



Homomorphic Encryption: multiplication

E(a) E(b) E(ab)

compute

compute

encryptencrypt

a, b a x b

E(a), E(b)



Mathematics of Homomorphic Encryption

New hard problems proposed (2009-2013), related to well-known hard lattice problems
Small Principal Ideal Problem, Approximate GCD, Learning With Errors (LWE), Ring-Learning 
With Errors (RLWE) 

Lattice-based Cryptography:
Compare to other public key systems: RSA (1975), ECC (1985), Pairings (2000)
Proposed by Hoffstein, Pipher, and Silverman in 1996 (NTRU), Aijtai-Dwork

Hard Lattice Problems:
approximate Shortest Vector Problem, Bounded Distance Decoding

SECURITY: 
best attacks take exponential time
secure against quantum attacks (so far…)



Lattice with a Good (short) Basis



Lattice with a Bad Basis



Idea of HE schemes
Lattice vectors  coefficients of polynomials

Polynomials can be added and multiplied

Encryption adds noise to a “secret” inner product:

message is “blinded” by secret inner product + noise

Decryption subtracts the secret and then the noise becomes easy to cancel

Hard problem is to “decode” noisy vectors

If you have a short basis, it is easy to decompose vectors





Practical Homomorphic Encryption [LNV11]
• do not need *fully* homomorphic encryption
• encode integer information as “integers” 
• several orders of magnitude speed-up
• do not need deep circuits to do a single multiplication
• do not need boot-strapping
• for “logical” circuits, use ciphertext packing and tradeoff depth for ciphertext size
• need to set parameters to ensure correctness and security

•PHE=homomorphic for any fixed circuit size, with correctly chosen parameters



Ring-Learning With Errors (R-LWE)
Let 𝑞𝑞 ≡ 1 mod 2𝑛𝑛 be a prime, ℤ𝑞𝑞 = ℤ/𝑞𝑞𝑞.  n=2k. Consider the polynomial ring 

𝑅𝑅𝑞𝑞 = ℤ𝑞𝑞 𝑥𝑥 /(𝑥𝑥𝑛𝑛 + 1).

Given a secret element 𝑠𝑠 ∈ 𝑅𝑅𝑞𝑞 and a number of pairs 

𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖 = 𝑎𝑎𝑖𝑖𝑠𝑠 + 𝑒𝑒𝑖𝑖 ,

where 𝑎𝑎𝑖𝑖 ← 𝑅𝑅𝑞𝑞 are chosen uniformly at random, and 𝑒𝑒𝑖𝑖 ← 𝐷𝐷𝜎𝜎(𝑅𝑅𝑞𝑞) are chosen coefficientwise 
according to the discrete Gaussian error distribution 𝐷𝐷𝜎𝜎(ℤ𝑞𝑞).

R-LWE problem: Find the secret 𝑠𝑠 (search), or distinguish whether a list of pairs (𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖) was 
chosen as described above or whether both 𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖 ← 𝑅𝑅𝑞𝑞were chosen uniformly at random 
(decision).



New questions in number theory
Are these problems hard for other number rings??

In general, NO: 
Eisentraeger-Hallgren-L (2014), Elias-L-Ozman-Stange (2015), Chen-L-Stange (2015)

Number Theory Questions: 
distributions of elements of small order in finite fields, 
relationship with Mahler measure, 
construction of number rings with certain properties.



Security of Ring-LWE
Specify: 

𝑅𝑅, dimension 𝑛𝑛, ciphertext modulus 𝑞𝑞, error distribution, secret distribution 

Ring R. In practice, 𝑅𝑅 a 2-power cyclotomic ring 𝑅𝑅 = 𝑍𝑍[𝑥𝑥]/(𝑥𝑥𝑛𝑛 + 1),  n is a power of 2. 

Error distribution. Discrete Gaussian distribution with width 

𝜎𝜎 = 8/ 2𝜋𝜋. 

(n,q) chosen to achieve 128-bit security against known attacks

Plaintext modulus t restricted according to (n,q)



Parameter sizes
Secret picked from Uniform distribution 
n security level log(q) uSVP dec dual
1024 128 31 130.6 133.8 147.5

192 22 203.6 211.2 231.8

256 18 269.9 280.5 303.6

2048 128 59 129.5 129.7 139.2

192 42 194.0 197.6 212.4

256 33 263.8 270.7 289.9

4096 128 113 131.9 129.4 136.8

192 80 192.7 193.2 203.2

256 63 260.7 263.6 277.6

8192 128 222 132.9 128.9 134.9

192 157 195.4 192.8 200.6

256 124 257.0 256.8 266.7

16384 128 440 133.9 129.0 133.0

192 310 196.4 192.4 198.7

256 243 259.5 256.6 264.1

32768 128 880 134.3 129.1 131.6

192 612 198.8 193.9 198.2

256 480 261.6 257.6 263.6



Algorithm to select parameters ([BLN13])
Given a task: 

determine the depth of the circuit required
determine bound on the potential plaintext growth
select plaintext modulus t to exceed this bound
now (n,q) selected to satisfy 2 conditions:

1. q/t determines the error growth bound.  Choose q large enough to allow for correct 
decryption after the circuit is evaluated (either with or without bootstrapping)

2. n must be chosen large enough to achieve 128-bit security with such a q

Size of  (n,q) and the size of the circuit determine the performance.



Practical Applications
Health and Genomic Privacy 



Will you have a heart attack?
Online service running in Windows Azure

1. Patient enters personal info on local machine: 
weight, age, height, blood pressure, body mass index

2. Data is encrypted on local machine
3. Encrypted data is sent to the cloud
4. Prediction is computed on encrypted data
5. Encrypted result is sent back to the patient
6. Patient enters decryption key to decrypt answer.

Evaluation took 0.2 seconds in the cloud! (2014) 





What What type of genomic computation?of
computation?

• Data quality testing
• Basic statistical functions
• Statistical computations on genomic data
• Building predictive models
• Predictive analysis

• Classification tasks
• Disease prediction
• Sequence matching



Statistics on Genomic Data [LLN14]

 Pearson Goodness-Of-Fit Test
 Checks data for bias (Hardy-Weinberg equilibrium)

 Cochran-Armitage Test for Trend
 Determine correlation between genome and traits

 Linkage Disequilibrium Statistic
Estimates correlations between genes

Estimation Maximization (EM) algorithm for haplotyping





Performance Summary
Data quality (Pearson Goodness-of-Fit)
~ 0.3 seconds, 1,000 patients
Predicting Heart Attack (Logistic Regression)
~ 0.2 seconds 
Building models (Linear Means Classifier)
~0.9 secs train, classify: 30 features, 100 training samples
Sequence matching (Edit distance)
~27 seconds amortized, length 8

Core i7 3.4GHz 
80-bit security

2014



Model for making progress in Science

iDASH contests sponsored by NIST



5 years of iDASH benchmarks
Secure Genome Analysis competitions

Critical Assessment of Data Privacy and Protection (CADPP) competitions 

2014: Differential Privacy (DP)
2015: Homomorphic Encryption (HE) and Secure Multi-Party Computation (MPC/SMP)
2016: Homomorphic Encryption (HE), Secure Multi-Party Computation (MPC/SMP), and Differential Privacy (DP) 
2017: Homomorphic Encryption (HE), Secure Multi-Party Computation (MPC/SMP), and SGX
2018: Homomorphic Encryption (HE), Secure Multi-Party Computation (MPC/SMP), and Blockchain



iDASH tasks
2015: chi^2 statistics, edit distance

2016: check for presence of string in a set of records (VCF format)

2017: train logistic regression model

2018: Genome Wide Association Study

Protecting genomic data analytics in the cloud: state of the art and opportunities
Haixu Tang Xiaoqian Jiang, Xiaofeng Wang, Shuang Wang, Heidi Sofia, Dov Fox, Kristin Lauter, Bradley Malin, Amalio Telenti, Li Xiong and 
Lucila Ohno-Machado. BMC Medical Genomics BMC series 20169:63 https://doi.org/10.1186/s12920-016-0224-3

https://doi.org/10.1186/s12920-016-0224-3


2015 iDASH Competition—UCSD 



Benchmarks: iDASH 2015 (HE Track)

Task 1.2 

5 k 10 k 100 k

Accuracy Time Memory Accuracy Time Memory Accuracy Time Memory

Plaintext 
data 3099 0.076 s 1.64 MB 3306 0.118 s 2.43 MB 134252 134252 13.52 MB

IBM 3099 79.4 s 1.416 GB 3306 86.8 s 1.419 GB 134260 134260 2.168 G

Microsoft 3099 44.664 s 513.7 MB 3306 80.031 s 720.5 MB

Stanford/
MIT 3082 20m37s 2.77 GB 3275 36m27s 4.03 GB 132703 132703 7.50 GB

Task 1.2 

5 k 10 k 100 k

Accuracy Time Memory Accuracy Time Memory Accuracy Time Memory

Plaintext 
data 9089 0.106 s 2.45 MB 16667 0.144 s 2.53 MB 191986 1.528 s 25.8 MB

IBMb 5328 91.7 s 1.42 GB 8318 106.3 s 1.45 GB 153266 555.2 s 2.29 GB

Microsoft 9089 91.09 s 701 MB 16665 181.92 s 1.29 GB



Track 1: harden Beacons from detection of an individual’s presence in a data set

Track 2: privacy-preserving searches of patient genomic data across organizations 

Track 3: securing data resulting from genetic testing in a public cloud

17 solutions from 16 teams in 7 countries.

2016 iDASH Competition—Chicago 



Benchmarks: iDASH 2016 (HE Track)

Team Data encryption 
time (s)

Encrypted data 
size (MB)

Secure 
computing time 

(s)

Result 
decryption time 

(s)

Total time (s) for computing, result 
decryption and transfer

Microsoft 47 1.86 24.00 3.09 0.02 3.63

RWTH Aachen University 48 34.90 255.00 15.28 0.68 16.32

EPFL 49 137.60 147.00 6.79 9.28 19.26

Seoul National University 50 51.02 10.00 21.10 0.005 25.11

IBM team 2 478.10 1660.00 959.10 200.70 1178.2

Waseda University 109.72 5447.82 8937.51 0.058 8938.81

Table: A summary of the results for Track 3 (secure outsourcing)

https://paperpile.com/c/0AfCxB/ACPQ
https://paperpile.com/c/0AfCxB/PP98
https://paperpile.com/c/0AfCxB/v3Un
https://paperpile.com/c/0AfCxB/Uymn


Where are we in terms of deployment?





Fortune magazine, May 2018:



News

IBM: lists Lattice Cryptography as #2 out of 5 research areas 
for next 5 years 

Google: released a BigQuery Client library that uses Partial HE 
for data query 

Existing startups – Enveil.com, Duality.cloud

New Startups - Ziroh.com, CryptoLab.us 





Demos
SEAL Team: Kristin Lauter, Kim Laine, Hao Chen, Ran Gilad-Bachrach, 

Shabnam Erfani , Sreekanth Kannepalli, James French, Jeremy Tieman, 
Steven Chith, Hamed Khanpour, Tarun Singh 

Sealcrypto.org 



Publicly available HE Libraries
HELib (2012): first library, IBM, widely used by researchers, BGV scheme 

SEAL (2015): well-engineered library, Microsoft, FV scheme, sealcrypto.org

NFLlib (2016): European HEAT project 

PALISADE (2017): general lattice encryption library, multiple HE schemes

cuHE (2017): uses GPUs to accelerate HE

HeaAn (2017): Seoul Nat U, supports approximate arithmetic

FHEW (2015) / TFHE (2017): bootstrapping after every gate

https://github.com/shaih/HElib
http://sealcrypto.org/
https://github.com/quarkslab/NFLlib
https://git.njit.edu/palisade/PALISADE
https://github.com/vernamlab/cuHE
https://github.com/kimandrik/HEAAN


Paths to Standardization in Cryptography

Industry consortiums (e.g. PKCS for RSA)

Government standards NIST (e.g. 800-90 Random Number Generators)

IEEE (P1363 for Elliptic Curve Cryptography), ietf, ISO standards, …

X.509 certificates (International Telecommunications Union's Standardization sector

ANSI Financial Standards (X9.62 and X9.63 for ECDH and ECDSA)

FIPS 140 certification process



Community effort to benchmark and standardize

*NIH sponsored iDASH competitions (2014-2017)
Secure Genome Analysis Competitions

*Homomorphic Encryption Standardization effort
• Hosted by Microsoft Research, July 2017

• Whitepapers on Security,  Applications, and APIs

• Working group formed to draft standard

• 2nd Workshop at MIT in March 2018, Approved HES 1.0

• http://homomorphicencryption.org/

Add yourself to the community by joining the mailing list!  standards@HomomorphicEncryption.org

http://homomorphicencryption.org/
mailto:standards@HomomorphicEncryption.org


Homomorphic Encryption Standardization Workshop
Microsoft Research

July 13-14, 2017



Standardization
Standardization effort started by MS

 Industry, academia, government

 Workshops at MS, MIT

 Wrote Security standard

 Approved Security standard

 U Toronto, October 20, 2018

 Security, API, compilers





Joint work with:
…and thanks to iDASH and co-authors for selected slides…

SEAL Team: Kim Laine, John Wernsing, Michael Naehrig, Ran Gilad-Bachrach, Nathan Dowlin, Kristin 
Lauter, Hao Chen 
Can Homomorphic Encryption be Practical?

Kristin Lauter, Michael Naehrig, Vinod Vaikuntanathan, CCSW 2011
ML Confidential: Machine Learning on Encrypted Data

Thore Graepel, Kristin Lauter, Michael Naehrig, ICISC 2012
Predictive Analysis on Encrypted Medical Data

Joppe W. Bos, Kristin Lauter, and Michael Naehrig, Journal of Biomedical Informatics, 2014.

Private Computation on Encrypted Genomic Data
Kristin Lauter, Adriana Lopez-Alt, Michael Naehrig, GenoPri2014, LatinCrypt2014.

Homomorphic Computation of Edit Distance
Jung Hee Cheon, Miran Kim, Kristin Lauter, WAHC, FC 2015

RLWE Attacks:
Kirsten Eisentraeger, Sean Hallgren, Kate Stange, Ekin Ozman, Yara Elias, Hao Chen, SAC ‘14, Crypto ‘15

http://eprint.iacr.org/2012/323
http://research.microsoft.com/apps/pubs/default.aspx?id=200652
http://research.microsoft.com/apps/pubs/default.aspx?id=200652


Scenario Hosted Database for Genomic Data data

Trusted party
hosts data and 

regulates access

Untrusted cloud service 
Stores, computes on encrypted data

Researcher: 
requests encrypted 
results of specific 

computationsRequests for decryption of results 
(requires a policy)

Presenter
Presentation Notes
Pairings in BGN.
Note on bit encryption!
For doing 1 block only, fastest implementation could handle 54 blocks in parallel, about 40 minutes per block.
Can do an implementation with 720 blocks in parallel, about 5 minutes per block. 
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