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Outline

Codes with Local and Sequential Erasure Recovery

Improving Decoding Performance Through Locality

Codes with Hierarchical Locality

A Recent High-Rate Regenerating Code Construction (briefly)
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Inefficiency of Linear Node Repair in an MDS Code

An obvious approach:

i New disk 1
@ Connect to any 2 nodes, Diski g e

[ S—
@ Reconstruct entire data file, pe—
i =) Disk2
@ Reconstruct data stored in the | B |

node

But downloading 2 units of data to revive a node that stores 1 units of
data is wasteful!
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A Second Example: Facebook's Code

Node 1

N

Node 2

Node 3 e [14,10] MDS code

Node 4

@ Has the "any 10 out of
14" property

Node 5

Node 6

@ Used in Facebook data
centers

Node 7
Node 8

Node 9

D. Borthakur, R. Schmit, R. Vadali, S.

Chen, and P. Kling. "HDFS RAID." Tech
Node 11 talk. Yahoo Developer Network, Nov.
2010
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The Facebook Code is Inefficient in Number of Helper

Nodes Needed
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@ Needs to connect to 10
nodes to repair a failed
node

@ This calls for interrupting
operations in 10 nodes
(apart from downloading
the entire data file)

@ 10 is the repair degree

@ Are there better options ?
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Adding a Branch (or two) to Coding Theory

* Regenerating codes reduce repair bandwidth
* Codes with locality reduce repair degree

@ A. G. Dimakis, P. B. Godfrey, Y. Wu, M. Wainwright, and K. Ramchandran, “Network
Coding for Distributed Storage Systems,” IEEE Trans. Inform. Th., Sep. 2010.

@ P. Gopalan, C. Huang, H. Simitci, and S. Yekhanin, “On the Locality of Codeword
Symbols,” IEEE Trans. Inf. Theory, Nov. 2012.

Image: http://www.colorluna.com
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Codes with Locality to Minimize Reduce Repair Degree
(Example of Windows Azure Storage)

| Microsoft Azure Code |

P il il s

\|{ \|
178 (A 8 [ [
| o]
X-code , :\ Y-code ,:

___________________________________________

Comparison: In terms of reliability and number of helper nodes contacted
for node repair, the two codes are comparable. The overheads however are
quite different, 1.29 for the Azure code versus 1.5 for the RS code. This
difference has reportedly saved Microsoft millions of dollars.

Huang, Simitci, Xu, Ogus, Calder, Gopalan, Li, Yekhanin, “Erasure Coding in Windows Azure
Storage,” USENIX, Boston, MA, 2012.
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Codes with Locality For Multiple Erasures

Some approaches:

@ Sequential Approach - Recovery from at most t erasures. There
exists at least one sequence of erased code symbol recovery at every

step.

@ Awvailability - For every code symbol there are multiple mutually
disjoint recovery sets.

o Selectable Recovery - Every erased symbol has a parity check that
does not involve any other erased symbol.

Codes with Sequential Recovery

Codes with Selectable Recovery

7 Stronger /‘ N
Local Codes \ / Availability
) "}‘\/* ~ Codeswith *\\’
\_  co-operative local
= __recovery ___— —

Codes w1th
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Codes with Locality for Sequential Recovery

Definition

An [n, k] code over a field [F, is defined as a code with sequential
recovery from t erasures having locality r if for any set of s < t erased
symbols, {cs,, ..., Cs, }, there exists a codeword h in the dual of the code,
of Hamming weight < r + 1, such that supp(h) N {o1,...,05s} = 1.

We denote the above defined codes as (n, k, r, t)seq codes.

N. Prakash, V. Lalitha, P. Vijay Kumar, “Codes with Locality for Two Erasures,” ISIT 2014.
S. B. Balaji, Ganesh R. Kini and PVK, “A Tight Rate Bound and a Matching Construction for
Locally Recoverable Codes with Sequential Recovery From Any Number of Multiple Erasures,”
arXiv:1611.08561v6 [cs.IT] 9 Feb 2017.
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Comparison of Sequential Recovery and Availability

Rate Bound Comparison with Tamo-Barg Bound
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—+—Tamo-Barg Bound fort =10
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Upper Bound on Rate Under Sequential, Local Recovery

Theorem

Rate Bound: Let C be an (n, k,r, t)seq code over a field Fy. Let r > 3.
Then

N+

r

t i1 .
r2+2%2.r

S

< for t an even integer, (1)

S| x

< r
rs+230 1r’-|—1

S| x

for t an odd integer, (2)

13 /43




Proof By Inferring Form of Parity-Check Matrix

Dy | Ar| 0] 0 0 0 |0
0 | Dy [A| O 0 0 [0
0|0 [D,] As 0 0 |0
0] 0] 0 |Ds 0 0 [0

H = : : : : D
0jo0]0]o0 A, | 0 |0
0]0]0]0 D: 5 A 1|0
0jo0]0]0 0 |D:,
0jo0]0]o0 0 0 |C
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Regular Graph Construction (t = 2, r = 3)

o Edges correspond to symbols

@ Nodes correspond to parity-checks
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Product Code for (t =3, r = 4)

€11[ €| €3 | Cu| Cy5 ) 4

//' '\\
€| €| Cy3| Cyy| Cy5 . N
C31| €35 C33| €3y C35
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A Binary Rate-Optimal Code (t = 4, r = 3)

splitting

merging

<
G replicated
3 times

(Go)1 (Go)2 (Go)3

< 3 — regular graph
GO with ug = 10 nodes
and girth =5
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Locality and Decoding
(BCH Codes)



Desired Null Spectrum of the BCH Code
(zeros of the generator polynomial)
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34 35 36 37 38 39 40 a 2 43 44 45 6
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Desired Null Spectrum + Conjugacy

103
120
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171
188
205
222
239
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Desired Null Spectrum for Locality = Locality Plus

Conjugacy
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@ ltzhak Tamo, Alexander Barg, Sreechakra Goparaju, Robert Calderbank, “Cyclic LRC
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Codes, binary LRC codes, and upper bounds on the distance of cyclic codes,” ISIT 2015.
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Final Null Spectrum
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Belief Propagation (BP+OSD) of a BCH Code

Assumption: Improve beliefs through one round of belief propagation.

Xi

Xiw1  ®
.

Xr+1

log {
p

log {p(xv ol y1)}

(x1=1]y1)

p(xr+1 = 0] yr+1)

(Xr+1 = 1| yre1)

|

Xi

Xr p(Xr+1 =

Iog 0l y1, y2.. yr)}

p(Xrs1 = 1] y1, y2..yr)
Xr+1
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Quick-Look ML Decoder

Locality-Aware OSD

Quick-look
MLD codeword
eEC?

Yes No
| ]

We have arrived at BP (single iteration)
the ML codeword + 08D
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Ordered Statistics Decoding

@ Hard decision decoding based on most reliable bits (Order-0)
» Sort the symbols of the received vector in descending order of reliability.
» Hard decision decode the first k independent bits (Most Reliable
Independent, MRI) bits and obtain the n bit codeword.
@ Order-/ reprocessing
» For 0 < </, change each of the i bits of the kK MRI bits to obtain
m= Z;ZO (’f) message vectors.
» Find the m codewords corresponding to the m information vectors.
» Pick the codeword closest to the received vector.

@ Marc P. C. Fossorier and Shu Lin “Soft-Decision Decoding of Linear Block Codes Based
on Ordered Statistics,” IT-Trans, Sep. 1995.
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Performance of Locality-aware OSD
We consider two codes in binary input AWGN channel:
@ (Cy: [255,206] BCH code — doesn’t have any locality.

@ (Cy: [255,192] BCH-like — constructed by adding locality r = 16 in
C1.

0 1 2 3 4 5 6 7
SNR (in dB)

M. Nikhil Krishnan, Bhagyashree Puranik, PVK, Itzhak Tamo, and Alexander Barg, “A Study

on the Impact of Locality in the Decoding of Binary Cyclic Codes, to be uploaded to arXiv.
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Scheme-1: Locality-aware Ordered Statistics Decoding

@ In the next slide, we consider decoding a type-1 Doubly Transitive
Invariant Code that is majority logic decodable, with parameters
[255, 175], having availability, t = 16 and locality, r = 15.
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Performance of Locality-Aware OSD on an Availability

Code

@ Comparison of OSD, BP+0OSD, and majority logic decoding of a [255,175] type-I DTI

code, locality r = 15, availability t = 16 in binary input AWGN channel.

Prob. of codeword error

10°

107!

1072

10—.‘5 L

107

10°°
-1

=050

——0S-0 + BP

- 0S-1

—-0S-1 + BP

-o-08-2

—-08-2 + BP

- - -Majority Logic Decoding

SNR (in dB)
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Hierarchical Locality



Windows Azure Uses Information Locality,
How About All-Symbol Locality ?

Md | 7N
\\\ /// \\\\\  ,// (global parities)

(local codeword) (local codeword)

(information-symbol locality)

(local codeword)
‘EEEER EEEEE

(local codeword) (local codeword)
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The Tamo-Barg Approach to All-Symbol Locality)

N\ /‘
o) / \‘ /
a Tk\\ \\ /J‘”\ /
N r x
/ (P, /“ \/ | /
| NEASRY
\ W
v,
@ select subset of polynomials : (f(P1),---,f(Py,)), with

deg(f) < (k—1)

@ such that: given point P, there exist other points fitted by a
lower-degree polynomial

@ such as a line, which can be used for correction

@ There is also a Chinese Remainder Theorem interpretation

Itzhak Tamo, Alexander Barg, “A family of optimal locally recoverable codes, " IEEE
Transactions on Information Theory. Aug 2014.
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Chinese Remainder Theorem

Sun Zi Suanjing Master Sun’s Mathematical Manual Problem 26, Volume 3 (estimated to be
published 300-500 AD) reads: “There are certain things whose number is unknown. A number
is repeatedly divided by 3, the remainder is 2; divided by 5, the remainder is 3; and by 7, the
remainder is 2. What will the number be 7" The problem can be expressed as

x =2 (mod 3) =3 (mod5) =2 (mod 7).

Sun Zi solved the problem as we do,

(mod 3) | (mod 5) | (mod7) || x =7
1 0 0 70
0 1 0 21
0 0 1 15
giving

X =

2(70) + 3(21) + 2(15) = 233 = 23 (mod 105).

@ Shen Kangsheng, Historical Development of the Chinese Remainder Theorem.
@ Wikipedia, Chinese Remainder Theorem .
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Chinese Remainder Theorem
One interpretation of the motivation!

N =86 (mod 25)

1Figure from “A Mechanical Proof of the Chinese Remainder Theorem,” David M. Russinoff,
Advanced Micro Devices. . Advanced Micro Devices, Inc.
http://russinoff.com/papers/soldiers. jpeg.
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Codes with Hierarchical Locality

Birenjith Sasidharan, Gaurav Kumar Agarwal, PVK, “Codes With Hierarchical Locality,” ISIT
2015.
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Codes with Locality do not Scale

24 14,7]
(32| (w3a|  |w3al  wzal  (w3al 132

@ If the local code is overwhelmed, then one has to appeal to the

overall code which means contacting all 14 nodes for node repair.

@ So how does one ensure scalability 2 ?

2Question posed during University Melbourne talk.
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Codes with Hierarchical Locality

24, 14, 6]

12,8, 3] 12,8, 3]
I I

[4,3,2] [4,3,2] [4,3,2] [4,3,2] [4,3,2] [4,3,2]

@ Codes with hierarchical locality ensure scalability by providing an
intermediate layer of codes

@ these can help when the when the local code at the bottom, fails.
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Hierarchical Construction Uses Groups and Subgroups to
Partition Coordinates

o Code lengths must satisfy divisibility condition ny | ny | n
@ Here 4| 12| 24.

/ HO\

I T

N

H, BiHy  BoH>  PofiHz  BoBiH-

@ Subgroup chain H, C H; C Hy
@ With sizes given by 4,12,24
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Chinese-Remainder-Theorem-View of Hierarchical Codes

X22 XQI.XZO X18 X17 le‘ X“.X” X112
{ XlO,Xg,);'S,XB,X57, X’I,XZ,XI,)éO ’ }

Xl(J,X97X8, Xl(’,X”,XS,

XG,XS,X4, )(67)(57)(47

X2, X1, X0 X2, X1, X0
{x2, X' x°} {X2, X1, X0} {x2 X1, X0 {X2,Xx1, X%}
{XZ,XI,XU} {XQ,XI,XO}
@ Impact in higher layers of

> restricting polynomials in bottom layer to have degree 2, rather than
the customary 3.
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A Final Refinement for Strengthening Middle and
Top-Level Codes

XIB.X” Xl()' X14 X13 X12.
{ X9, X%, X6, X5, X4, X2, X1, X0 }

/\

XQ,XB,XG,XS,XZL, XQ,XB,XG,XG,X4,
X2,X1,X0 XQ,XI,XO
{XQ,XI,XO} {XQ,XI,XO} {Xz,Xl,XU} {XQ,XI,X()}
{XQ,XI,XO} {XZ,XI,XO}

@ Restricting degree of polynomials in middle and top layers strengthens
the corresponding codes.
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Regenerating Codes



Regenerating Codes - Formal Definition

Parameters: ( (n, k,d), (o, ), B, Fq)

Data
Collector

k+1

)

a capacity a capacity
nodes nodes

@ Data to be recovered by connecting to any k of n nodes

@ Nodes to be repaired by connecting to any d nodes, downloading 5
symbols from each node; (dff << file size B))
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High-Rate MSR Code

3 y % — 5
Z=(0,0,0) = £ 2= (0,0,0) 1= pa i
ey
A _/' @ B: _/' e
- — = 1
. e Z B: 7 \“\ |
_ al _ el ‘\‘\‘\‘
e el
e
~< A ~< A
Z=(111) e Z=(111) e

@ Min Ye, Alexander Barg, “Explicit constructions of optimal-access MDS codes with nearly
optimal sub-packetization,” arXiv:1605.08630v1, 27 May 2016.

@ Birenjith Sasidharan, Myna Vajha, P. Vijay Kumar, “An Explicit, Coupled-Layer
Construction of a High-Rate MSR Code with Low Sub-Packetization Level, Small Field
Size and d < (n—1),” arXiv:1701.07447v1, 25 Jan 2017.
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Thanks!



	Codes with Locality for Sequential Recovery

