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Interference channel

n

X! Yy .
W1—> Encoder 1 (Decoder 1)——>W1
Channel /

{p(ybyth@)J
Wo——| Encoder 2)X/n' \Y;(Decoder 2 )—>W2
2 2

e a discrete memoryless interference channel (DM-IC) (A7 x
Xo, p(y1, Y2|x1, x2), Y1 XV2) consists of 4 finite sets/alphabets
X1, Xo, V1, Vo and a collection of conditional pmfs p(y1, yo2|z1, x2)

e sender 7 = 1,2 sends an independent message W; to receiver j

e lower case x is an instance of random variable X in calligraphic alphabet X



Formal definition

o A (27411 2782 ) code for the IC consists of:

1. Two message sets [1: 2"%1] and [1 : 2782]

2. Two encoders:
wy € [1: 2] = 2% (wy)

wo € [1:2™72] — 2T (ws)

3. Two decoders:
yi — [1: 2" Uerror

y — [1:2"%2] U error

e we assume Wi and Wy are uniformly distributed on [1 : 27#1] and [1 : 2782
respectively

e to communicate wi, ws, send x7 (w1 ) and x (w2 ) over the channel p(y7, y& |x7, x5)
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Formal definition

o A (27F1 2nE2 p) code for the IC consists of:

1. Two message sets-, and [1 : 27F2]

2. Two encoders:

| Implicit knowledge of
codebooks

e we assume W7 and W5 are umformly dlstrlbuted on [1 : 2nia] and 1: 2”R2]
respectively - / T

\ synchronlzat|o
e to communicate w1, wo, send |:1:1 : x2)



Formal definition

e average probability of error:

P = P{(Wy, W) # (W1, W)}



Formal definition

e average probability of error:

P = P{(Wy, W) # (W1, W)}

e Rate pair (R, Ry) is achievable if there exists a sequence of (21, 2742 n) codes
with P™ 5 0 as n — oo
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Formal definition

e average probability of error:

P = P{(Wy, W) # (W1, W)}

re exist

. —=

s a seqljence of (27411 272 n) codes

it (Rll, R2) is achievable if the

e Rate i
with §

e(n)—>Oasn—>oo

small error

e The capacity region ot the DM-IC is the closure of the set of achievable rate
pairs (Rl, RQ)

e Note: capacity region depends on p(y1,¥ys2|x1,z2) only through the marginals
p(y1|z1, z2) and p(yz|z1, x2)



RQ — lOg(#Wg)

Rate regions

Rl — 1Og(#W1)




RQ — lOg(#Wg)

Rate regions

A Ry = log(#W1)
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Rate regions




Rate regions

Ri+ R <C




Rate regions




channel state

small versus zero error |




Codebook knowledge



Point to point codebook knowledge

“F” is the codebook, known to the Tx,Rx

X" Channel y" .
W = Encoder |——» plylz) »| Decoder 1V

I i

F F

\/

F

( W — X" \
1—)X1,X2 ..... Xn
2%X1,X2 ..... Xn

\ W] = X1, Xa,. o X )



|Cs with lack of codebook knowledge

Our motivation:

F F Fy
T
Wi —»| Encoder 1 ——» Channel > Decoder 1 > W,
Y x 7£E
Xz p(y1, y2|z1, T2) vy A
Wy —» Encoder 2 —» — Decoder 2— TV,

| e
IC with one
oblivious Rx
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|Cs with lack of codebook knowledge

Our motivation:

F, F Fy
T
W1 —» Encoder 1 +—» Channel > Decoder 1 > W,

p(yla y2|:c1, m2)

X2 Yy .
Wy —» Encoder 2 —» —»| Decoder 2—» T/,
F2 F2

IC with one
oblivious Rx

“primary user” in a cognitive setup

W2 —>

F Fl%

T ot

1
Encoder 1 —» Channel —| Decoder 1 —» W,

p(yh y2|:1:1, wz)

X3 Yy )
Encoder 2 +—» +—| Decoder 2—» 11,
F2 F2

IC with two
oblivious Rx

heterogeneous networks

One Receiver," IEEE Trans. on Infor. Theory, March 2015.

A. Dytso, N. Devroye, and D. Tuninetti, “On the capacity of interference channels with partial codebook knowledge,” ISIT 2013

A. Dytso, D. Tuninetti and N. Devroye, ~"On the Two-User Interference Channel With Lack of Knowledge of the Interference Codebook at

A. Dytso, D. Tuninetti and N. Devroye. “On Gaussian Interference Channels with Mixed Gaussian and Discrete Inputs,” ISIT 2014

A. Dytso, D. Tuninetti and N. Devroye “Interference as Noise: Friend of Foe?” IEEE Trans. on Info Theory, June 2016.
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Networks with lack of codebook knowledge

*in networks, often assume nodes know all
codebooks of ALL other nodes

*this may be unrealistic sometimes....

|10



The interference channel

F £ %
L X7 Yy l l

Wi —» Encoder 1 H——» Channel —»| Decoder 1 —» W;
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Interfering codebook knowledge in AWGN |C

* Use it to decode interference in very strong and strong
interference regimes

joint decoding, successive interference cancellation



A DM-IC is said to have very strong interference if

Vp(w1)p(x2)

)

Decoder 1)——> Wl

W2—> Encoder 2

Decoder 2 '—>W2

Power 1
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N

S
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A DM-IC is said to have strong interference if
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Interfering codebook knowledge in AWGN |C

* Use it to decode interference in very strong and strong
interference regimes

achievable rate region



Han+Kobayashi inner bound

[T. S. Han and K. Kobayashi, “A new achievable rate region for the interference
channel,” IEEE Trans. Inf. Theory, vol. 27, no. 1, pp. 49-60, 1981.]

Theorem (Han-+Kobayashi inner bound). A rate pair (Rp, Ro) is
achievable for a DM-IC (X} x Xo, p(y1, y2|T1,x2), V1 X Va) if it satisfies

Ry < I(X1:Y1|Us, Q) (1)

Ry < I(X9;Y2|U1,Q) (2)

R+ Ry < I(X4,U;:Y1|Q) + 1(X2; Y2 Uy, Us, Q) (3)
Ry + Ry < I(X1;Y1|U1, Uz, Q) + I(X2,Us; Y2|Q) (4)
Ry + Ry < I(Xy,U2; Y1|U1, Q) + (X2, Uy; Ya|Uz, Q) (5)
QRy + Ry < I(Xy, Us: Y11Q) + I(X1: Y1 |Uy, Uz, Q) + I(Xs, Uy: Ya|Us, Q) (6)
Ry + 2Ry < I(X2,U1; Y2|Q) + I(X2; Ya|Ur, Uz, Q) + I(X1,Us; Y1|U1, Q)  (7)

for some p(q, u1,uz2,z1,72) = p(q)p(u1, v1]q)p(uz, r2|q) where [U;| < |X1] + 4,
Us| < | X5+ 4, and |Q] < 7.



Han+Kobayashi inner bound

Largest single-letter achievable rate region for IC

[T. S. Han and K. Kobayashi, “A new achievable rate region for the interference channel,” IEEE Trans. Inf. Theory, vol. 27, no. 1, pp. 49-60, 1981.]



Han+Kobayashi inner bound

Largest single-letter achievable rate region for IC

[T. S. Han and K. Kobayashi, “A new achievable rate region for the interference channel,” IEEE Trans. Inf. Theory, vol. 27, no. 1, pp. 49-60, 1981.]

Achieves capacity when we know it

[H.-F. Chong, M. Motani, H. K. Garg, and H. El Gamal, “On the Han—Kobayashi region for the interference channel,” IEEE Trans. Inf. Theory, vol. 54, no. 7, pp. 3188-3195, July 2008. ]

A2

(class of deterministic channels, approximately for class of semi-deterministic channels)

- [A.El Gamal and M. H. M. Costa, “The capacity region of a 1. E. Telatar and D. N. C. Tse, “Bounds on the
: class of deterministic interference channels,” IEEE capacity region of a class of interference
Trans. Inf. Theory, 1982.] channels,” ISIT 2007]
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Split message into “public” and “private” parts

Rate R1 = Rlp + Rq. ﬁ\
P X

1
Yn — A
W1 —> 1 —>(Encoder1 1 1 (Decoder 1)——> Cl —> Wl
& 1 Channel / o

C
p(y1,y2|T1, 22)
Py A
W2 — 02 —»| Encoder 2){ \Y-;(Decoder )——» 9\1 —> W2

Rate RQ — Rzp -+ RQC

|dea: carefully split so can decode part of the interference

|18
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The AWGN-IC

Z1 ~N(0,1)
Power 1
S
W1—>( Encoder 1 ) \/71 é YE(Decoder 1}—> Wl

Power 1

VVQ—> Encoder 2} \/572 GTD Y2>(Decoder 2 )——>W2
N

of practical relevance in wireless systems:
cellular, wireless local area networks (WViFi),
ad hoc networks (wireless sensors or nodes)

Excellent survey of results on Gaussian IC in Introduction of [R. Bustin, H.V. Poor, and S. Shamai “The Effect of Maximal Rate Codes on the Interfering
Message Rate,” http://arxiv.org/abs/1404.6690]



http://arxiv.org/abs/1404.6690

Interfering codebook knowledge in AWGN |C

* Use it to decode interference in very strong and strong
interference regimes

* Use it to decode public messages in Han + Kobayashi
achievable rate region

* Use it to achieve capacity to within |/2 bit for Gaussian
noise channels



AWGN: H+K achieves capacity to within |/2 bit

Theorem (gap for Gaussian IC) If (R, R5) is in the outer bound R‘(A)‘WGN
then (Ry — 1/2, Ry — 1/2) is achievable.

21



AWGN: H+K achieves capacity to within |/2 bit

Theorem (gap for Gaussian IC) If (R, R5) is in the outer bound R‘é‘WGN
then (Ry — 1/2, Ry — 1/2) is achievable.

Etkin, Tse,Wang show how to pick
Gaussian inputs in H+K scheme

[R. Etkin, D. Tse, and H. Wang, “Gaussian interference channel capacity to within one bit,” IEEE Trans. Inf. Theory, vol. 54, no. 12, pp. 5534-5562, Dec. 2008. ]

21



AWGN: H+K achieves capacity to within |/2 bit

Theorem (gap for Gaussian IC) If (R, R5) is in the outer bound R‘(A)‘WGN
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Gaussian inputs in H+K scheme
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depends on the regime of operation

21



AWGN: the “W” curve for the GDoF

highlights effect of interference rather than noise

( )

R.
- i€ [1:2], (Ry,Ry) is achievable % .
inr = snr%, %log(l _I_ Snr) L [ ] ( 1 2) 1S aciievable >
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AWGN: the “W” curve for the GDoF

highlights effect of interference rather than noise

( )

R
: ? = 1:2 y R 7R . hi bl .
inr = snr%, % log(l _I_ Snr) [ ] ( 1 2) 1S acnievable >

\ ShE J

“W’” curve for R,=R;

R = Ry

orthogonal (TDM or FDM) |

R, interference treated as noise
Ry =R
image taken from
0 05 0.66 1 15
[R. Etkin, D. Tse, and H. Wang, log INR
“Gaussian interference channel “= log SNR

capacity to within one bit,” IEEE
Trans. Inf. Theory, vol. 54, no. 12,
pp. 5534-5562, Dec. 2008. ] 22



AWGN: the “W” curve for the GDoF

image + formula taken from

[R. Etkin, D. Tse, and H. Wang, ! N
“Gaussian interference channel \
capacity to within one bit,” IEEE \
Trans. Inf. Theory, vol. 54, no. 12, L \
pp. 5534-5562, Dec. 2008. ] \

capacity

0-66 ............... \'EEETEE . AR ..............................................................................
: orthogonal (TDM or FDM) -

0.5

(log (?'\'—FF{{) log INR < L log SNR I . _

log INR 2 1log SNR < log INR < Z1og SNR | |
SNR 5 { interference treated as noise
10gm gl()gSNR<10gINR<1()gSNR B \\\ |
log VINR  log SNR < log INR < 21log SNR {

\ log SNR log INR > 21log SNR | | % I |
0 08 o0.66 1 15 2 25

A log INR
~ log SNR

Reg| Mmes Very weak Mixed Strong  Very strong

7\

Coym R

Very weak: treating interference as noise is sometimes sum-capacity optimal, capacity partially known

[X. Shang, G. Kramer, and B. Chen, “A new outer bound and the noisy-interference sum-rate capacity for Gaussian interference channels,” IEEE Trans. Inf.
Theory, vol. 55, no. 2, pp. 689—699, Feb. 2009.]

[V.S. Annapureddy and V. V. Veeravalli, “Gaussian interference networks: Sum capacity in the low interference regime and new outer bounds on the capacity
region,” IEEE Trans. Inf. Theory, vol. 55, no. 7, pp. 3032-3050, July 2009. ]

[A. S. Motahari and A. K. Khandani, “Capacity bounds for the Gaussian interference channel,” IEEE Trans. Inf. Theory, vol. 55, no. 2, pp. 620-643, Feb.
20009. ] 23



AWGN: the “W” curve for the GDoF

image + formula taken from

[R. Etkin, D. Tse, and H. Wang, 1 \
“Gaussian interference channel '
capacity to within one bit,” IEEE

Trans. Inf. Theory, vol. 54, no. 12, 5 i
pp. 5534-5562, Dec. 2008. ]

0.66

capacity

orthogonal (TDM or FDM) _

0.5

(log (?'\'—5) log INR < L log SNR I _

log INR L1og SNR < log INR < 21log SNR

SNR 2
1ogm 3 log SNR < log INR < log SNR

log VINR  log SNR < log INR < 2log SNR
(logSNR  log INR > 21log SNR

interference treated as noise

{

0 06 o066 1 15 2 2.5
A log INR
~ log SNR

Reg| Mmes Very weak Mixed Strong  Very strong

Very weak: treating interference as noise is sometimes sum-capacity optimal, capacity partially known

Treating interference as noise inner bound (with Gaussian inputs):

1 51 1 52
R < -1 I+ o Ry < -1 1 4 S



AWGN: the “W” curve for the GDoF

image + formula taken from

[R. Etkin, D. Tse, and H. Wang, 1
“Gaussian interference channel
capacity to within one bit,” IEEE
Trans. Inf. Theory, vol. 54, no. 12, L

pp. 5534-5562, Dec. 2008. | /
0_66 ........... \ ............ ..............................................................................

L \\ orthogonal (TDM or FDM)
0.5 .

capacity

(log (?'\'—FF{{) log INR < L log SNR I _
log INR L1og SNR < log INR < 2log SNR | |
%, ~ 4 SNR 5 { interference treated as noise
sym ~ 1()g\/m 3 log SNR < log INR < log SNR i |
log vINR log SNR < log INR < 21log SNR ;
. log SNR log INR > 21log SNR ! 1 3 | ,
0 0.5 0.66 1 1.5 2 2.5
_ log INR
R . “~log SNR
egl mes Very weak Mixed Strong  Very strong

Very weak: treating interference as noise is sometimes sum-capacity optimal, capacity partially known

Strong: jointly decoding both messages at both receivers is capacity optimal, capacity known

24



AWGN: the “W” curve for the GDoF

image + formula taken from

[R. Etkin, D. Tse, and H. Wang, 1 \
“Gaussian interference channel ‘ |
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Trans. Inf. Theory, vol. 54, no. 12, L \\\

pp. 5534-5562, Dec. 2008. ] \
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Alex Dysto Daniela Tuninetti Natasha Devroye

How does lack of codebook knowledge affect
capacity of the Gaussian |C!?

some slides taken from Alex Dytso’s Ph.D. defense, May 2016

|ldea: use non-Gaussian inputs in a Gaussian
interference channel!
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How does lack of codebook knowledge affect
capacity of the Gaussian |C!?

some slides taken from Alex Dytso’s Ph.D. defense, May 2016

|ldea: use non-Gaussian inputs in a Gaussian
interference channel!

e e

LDecent performance, and can "estimate” and strip off! |
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|Cs with lack of codebook knowledge

Our motivation:

Wi, —»

Fi || F
Fy l l P )
i X'ln Yln . i n n l l
Encoder 1 |—» Channel » Decoder 1 —» W, X Yy .
Wi —»| Encoder 1 — Channel  —{ Decoder 1 —» W,
(Y1, y2|T1, T2)
X Y . ,Ya|x1, @
Encoder 2 2 »] | 2! Decoder 21— Wo Xy Plys, yalor, @2) Yy .
T Wy —»| Encoder 2 ——» +—| Decoder 2—» 11,
F: F T
2 2 F2 F2

IC with one
oblivious Rx

IC with two
oblivious Rx

A. Dytso, N. Devroye, and D. Tuninetti, “On the capacity of interference channels with partial codebook knowledge,” ISIT 2013

A. Dytso, D. Tuninetti and N. Devroye, ~"On the Two-User Interference Channel With Lack of Knowledge of the Interference Codebook at
One Receiver," IEEE Transactions on Information Theory, Vol. 61, No. 3, pp. 1256-1276, March 2015.

A. Dytso, D. Tuninetti and N. Devroye. “On Gaussian Interference Channels with Mixed Gaussian and Discrete Inputs,” ISIT 2014

A. Dytso, D. Tuninetti and N. Devroye “Interference as Noise: Friend of Foe?” IEEE Trans. on Info Theory, June 2016.
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Past work: lack of codebooks leads to non-

W—->

Gaussians outperforming Gaussians

n
Encoder—X>
A
F

Py, v,1x

+——| Relay

+—| Relay

Decoder

i

F

W, “ ¥ X
X
X {% ,
¥
% d)yO\W
G

A. Sanderovich, S. Shamai, Y. Steinberg, and G. Kramer, “Communication
via decentralized processing,” IT July 2008.

1. Upper and lower bounds, which coincide for deterministic channels
2. Gaussian noise: optimizing input unknown
3. Gaussian noise: example where BPSK outperforms Gaussian inputs
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Past work: lack of codebooks leads to non-
Gaussians outperforming Gaussians

I/V\ ¥

X

Y.  / A. Sanderovich, S. Shamai, Y. Steinberg, and G. Kramer, “Communication
1 11 Relay via decentralized processing,” IT July 2008.
X" ﬁm o R 1. Upper and lower bounds, which coincide for deterministic channels
W——sEincoder >3 Decoder [ 1}/ 2. Gaussian noise: optimizing input unknown
A Qi” Yy P 4 A 3. Gaussian noise: example where BPSK outperforms Gaussian inputs
! +—| Relay l
F ) o
: ~~
é‘? Fy 2
~ \ |
8 n M v
X {l i Yl > Decoder ——>W
W1_> Encoder > E%H — i 1
A —
I L) ]
O. Simeone, E. Erkip, and S. Shamai, “On codebook information for F'1 = i
interference relay channels with out-of-band relaying,” IT May 2011. g |
)
~ n :
1. Primitive relay channel: capacity with compress forward n S Y3 > Relay
2. IC+R+Oblivious receivers: capacity with compress forward and TIN Frood X2 ~ T F
3. Gaussian noise: optimizing input unknown WZ » Bhcoder ><ﬁ ;
: : =
Fy H |
> :
pCoR | ] Ry < I(X13Y1|Q) B | v S
— & —»|  Decoder — V-
R2 < ](XQ,YQ’Q) >~ i I 2
PoP P S . .
QIX11QIX21Q
Ry Py

[Ye Tian and Aylin Yener, Relaying for Multiuser Networks in the Absence of Codebook Information,
|IEEE Transactions on Information Theory, 61(3), pp. 1247-1256, Mar. 2015.]




Discrete inputs in Gaussian channels — deeper?

Other supporting arguments

e E. Abbe and L. Zheng, “A coordinate .
system for Gaussian networks,” IT ’ N ©9g DoF Gain
2012.

e E. Calvo, J. Fonollosa, and J. Vidal, . .

“On the totally asynchronous * Discrete In ® ut
interference channel with single-user con CI usions are

receivers,” 1SIT 2009 ) )
simulation based
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Questions

*|loss in performance in IC due to lack of
interfering codebook knowledge?

are there inputs that outperform Gaussians
in the AWGN |C under these conditions?

*can we show analytical gains!?

32



How we tackle discrete inputs for G-IC

 best inner bound for Gaussian IC is the complex H+K scheme
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RIINnOTS | 0< Ry <I(X1;Y7)
in - YPx,x,=Px, Px, 0< Ry, < [<X2; YQ)
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 best inner bound for Gaussian IC is the complex H+K scheme
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- we show discrete inputs in TINNnoTS performs well!

 neat, general tools to bound minimum distance of sum-sets, and mutual
information achieved by discrete RVs in Gaussian noise along the way
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How we tackle discrete inputs for G-IC

 best inner bound for Gaussian IC is the complex H+K scheme

- simpler scheme — Treating Interference as Noise with no Time Sharing:

72 TINnoTS 0< Ry <I(X1;Y7) }

— UPXlXQZPleXQ { O S R2 S I(XZ,YQ)
- we show discrete inputs in TINNnoTS performs well!

 neat, general tools to bound minimum distance of sum-sets, and mutual
information achieved by discrete RVs in Gaussian noise along the way

S. Li, Y.-C. Huang, T. Liu, and H.D. Pfister, “On the limits of treating interference as noise in the

SI m I Ia. I" reS u Its as two-user Gaussian symmetric interference channel,” ISIT 2015.

33



|C channel capacity is known.... sort of

. , < Ry < 2I(X75Y7")
Ca pCICIi')’: € = limy o co (UPX{LXS_PX?PXS { 0< Ry < %I(X%“;Y;") })

R. Ahlswede, “Multi-way communication channels,” in Proc. IEEE Int. Symp. Inf. Theory, March 1973, pp. 23-52.
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|C channel capacity is known.... sort of

T s ()gng%I(X{L;Yl")
Cq qu”y. € =limp_e co (UPX{LXS':PXI‘PXS’ { 0< Ry < LI(XF:Yy)

R. Ahlswede, “Multi-way communication channels,” in Proc. IEEE Int. Symp. Inf. Theory, March 1973, pp. 23-52.

li.i.d. inputs

Treat Interference as Noise Inner Bound:

RENTS —co(Upvrr { 02 21w ) With Time Sharing

RIINnOTS | 0< Ry < I(X1;Y7)
o - P =PaPx, 10 < Ry < I1(X0:Ya)

No Time Sharing
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R. Ahlswede, “Multi-way communication channels,” in Proc. IEEE Int. Symp. Inf. Theory, March 1973, pp. 23-52.
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Treat Interference as Noise Inner Bound:
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|C channel capacity is known.... sort of

CCIPCIC”')’: C = lim,_oco (UPX{LXS’:PX?PX?{ 0<R2 1I(X§L Y2n)

R. Ahlswede, “Multi-way communication channels,” in Proc. IEEE Int. Symp. Inf. Theory, March 1973, pp. 23-52.

li.i.d. inputs

Treat Interference as Noise Inner Bound:

RENTS —co(Upvrr { 02 21w ) With Time Sharing

RIINnOTS | 0< Ry < I(X1;Y7)
o - P =PaPx, 10 < Ry < I1(X0:Ya)

No Time Sharing
How far away is TINnoTS from capacity?

ls it really “treating interference as noise”?
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Gaussian channels with discrete inputs

Z1,Z9 ~ N(0,1)

zy
v by v ¥
Wi —| Enc. = Vsnr > Dec. 11, Y, = \/ﬁXl +VinrXs + 74
Vinr yn Y2 =V ianl + san2 + ZQ
W2 —»| Enc. X7 N »GTB - »| Dec. —»T1,
L L

- instead of taking X1 and X:2to be Gaussian, take them to be discrete

- difficulty: how to evaluate mutual information expressions with discrete

and Gaussian mixtures
RIINwOTS | 0< R, <I(X;;11)
m Px,x,=Px, Px, 0< Ry < I(XQ;Y2)

35
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Tools for Discrete
Inputs



Discrete+mixed inputs

x|
- Discrete input Xp~P(Xp) =) pid(x;)
=1
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Discrete+mixed inputs

- Discrete input Xp~P(Xp) =) pid(x;)

=1
1
Xp ~PAM(N), [X| = N,p; = & for all i € [1,...,N]

A A A A A A 4 A 4

* PAM input
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Discrete+mixed inputs

* Discrete input

* PAM input

* Minimum distance

=1
1
Xp ~PAM(N), [X| = N,p; = & for all i € [1,...,N]

A A A A A A 4 A 4

dmin(XD) — xrsillrzl;é] sz _ :U’LH
iy Lj:
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Discrete+mixed inputs

» Discrete input Xp ~P(Xp) =) pid(x;)

=1
1
Xp ~PAM(N), [X| = N,p; = & for all i € [1,...,N]

A A A A A A 4 A 4

* PAM input
* Minimum distance  dmin(Xp) = min lz; — o
* Mixed inputs Xmix = V1 —0Xp + VX,
6 € (0,1],
Xg ~ N(Oa 1)
E[X5] <1
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Discrete+mixed inputs

» Discrete input Xp ~P(Xp) =) pid(x;)

=1
1
Xp ~PAM(N), [X| = N,p; = & for all i € [1,...,N]
A A A A A A A A A

* PAM input Wh)’ PAMe

X

* Minimum distance  dmin(Xp) = min lz; — o
* Mixed inputs Xmix = V1 —0Xp + VX,

0 € 10,1],

Xg ~ N(Ov 1)

E[X5] <1
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Bounds on mutual information

Setup: Y = VsmX + Z,
Z ~ N(0,1)
We define: I(X; Yane) = I(X, snr)

E [(X — E[X|Yan])?] = mmse(X, snr)
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Bounds on mutual information

Setup: Y = VsmX + Z,
Z ~ N(0,1)
We define: I(X; Yane) = I(X, snr)

E [(X — E[X|Ysn))?] = mmse(X, snr)

Interested in:  [H(Xb) - gap]™ < I(Xp,snr) < H(Xp)

Want the tightest version of the “gap” term
for a given PMF

38



Bounds on mutual information

[H(XDp)

Ozarow W?'ner-

gaPow.A = flongr (1—=¢)log

1 —

Ozarow-Wyner-B

1p < 11 (’716)
P =~ O —

1
2

— log (1+

1
3

Immse(X, snr)

+ £ log(N —

dmin(XD)2

39

1),

)

—gap]" < I(Xp,snr) < H(Xp)

£ =20 (\/Sﬁd;ﬂin(xm)

L. Ozarow and A. Wyner, “On the capacity of the Gaussian
channel with a finite number of input levels,” IEEE Trans. Inf.
Theory, vol. 36, no. 6, pp. 1426—1428, Nov 1990.




Bounds on mutual information

[H(Xp) — gap]" < I(Xp,snr) < H(Xp)

Ozarow W?'ner-

gaPow.A = flongr (1—=¢)log

1 L \/Sﬁdmin(XD)
T §+§log(N—1),§.—2Q( 5 )

Ozarow-Wyner-B

<t 1 1 7T€ n 1 1 | n 1mmse(X, sSh r) LhOzarlowltahnd ?..:Nyner,t;‘On ;tche capl)acitly (’)’fEEEG‘?USSiaFf
gap < 0og — log channel with a finite number of input levels, rans. Inf.
2 dmin (XD)2 Theory, vol. 36, no. 6, pp. 1426—1428, Nov 1990.

DTD-ITA" 14-B

1+
iDi snr(aci—acj)2 1
log( Z Dibj o=—4 ) —ilog(Zﬂe) < I(Xp,snr) < H(Xp)
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Bounds on mutual information

[H(Xp) — gap]" < I(Xp,snr) < H(Xp)

Ozarow W?'ner-

gaPow-A = flog£—|— (1—¢)log

— £ +Elog(N — 1), €:=20 (\/Sﬁd;}“i“(m)

Ozarow-Wyner-B

]_ 7Te ]_ 1mmse(X, sSn r) L. Ozarowl and A..Wyner, “On the capacity (3f the Gaussian
gap < — log —|— — 10g ]_ _|_ channel with a finite number of input levels,” IEEE Trans. Inf.

) dmin (X D ) 2 Theory, vol. 36, no. 6, pp. 1426—1428, Nov 1990.
DTD-ITA" 14-B -
— log Z Pibj Jemrleng)” ) %log (2me)| < I(Xp,snr) < H(Xp)
i (i,j)€[1:N]? \/_ ]

snrd

sapira < 5 10g (5) + log (1 + (N = T)e” ) DTD-ITA" 14-A

Dytso, A.; Tuninetti, D.; Devroye, N., "On discrete alphabets for the two-
user Gaussian interference channel with one receiver lacking knowledge
39 of the interfering codebook," ITA, 2014, vol., no., pp.1,8, 9-14 Feb. 2014




Comparison of bounds

InpUt: PAM With N = |vV1+snr| = H(X) = log(N) ~ %log(1+snr)
number of points

20 2 | T
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DTD-ITA14-A DTD-ITA14-B
DTD-ITA14-B shaping loss
16 |

Capacity /

1 1 1 1 1 1 1 1 L L ! ! ! ! !
0 10 20 30 40 50 60 70 80 920 100 110 0 10 20 30 40 50 60 70 80 90 100 110
SNRdB SNRdB
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More recent tighter bounds

Tighter Ozarow-Wyner bounds on gaps available,

based on the MMPE:

A. Dytso, R. Bustin, D. Tuninetti, N. Devroye, H.V. Poor and S. Shamai
“On the Minimum Mean p-th Error in Gaussian channels and its
Application,” under submission to TranslIT, 2016.
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O —_
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0
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Why is discrete good?

good input

good interferer

42



Discrete is a good input.
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1.Pointto-point Gaussian noise Channel

Y = /snr '+ T
E[X?] <1,Zg ~ N(0,1)
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C = 5 log(1 + snr)

achieved by Gaussian
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Discrete is a good input.

X
o
.
X
o

1.Pointto-point Gaussian noise Channel gy

Y = /surf+ Zc -
E[X?] <1,Zg ~ N(0,1)
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Capacity with PAM:
C = %log(l + snr) N = |1 + snr|

1
C > 5 log(1 + snr) — gap
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achieved by Gaussian
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Discrete is a good interferer.

2 .Pointto-point Gaussian noise Channel with State

Y = X + i+ Z ;
EIX?) < 1, Z ~ N(0, 1),
T ~ discrete: |T| = N and d?nin(T) > 0

44



Discrete is a good interferer.

2 .Pointto-point Gaussian noise Channel with State

Y = X + i+ Z ;
EIX?) < 1, Z ~ N(0, 1),
T ~ discrete: |T| = N and d?nin(T) > 0

Discrete Interference ¢ > I(Xg;vsurXe + AT + Zg)
> % log(1 + snr) — gap

a, _110 @ 1+ 12 ‘h‘QgT
S =508 1o 2 (T) |h|2Er + 1 + snr

min
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Discrete is a good interferer.

2 .Pointto-point Gaussian noise Channel with State

Y = X + i+ Z ;
E[X?) < 1, Za ~ N(0,1),

T ~ discrete: |T| = N and d?nin(T) > 0

Discrete Interference

Gaussian Interference

C > I(Xg; vsnrXeq + hT + Zc;)

1
> 5 log(1 4+ snr) — gap

1

=~
gap = 7 log

12 d?

min

2me - 12 |h|?Er
(T) |h|?Er + 1 + snr

)

44
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Discrete inputs in multi-user channels

More complex in multi-user scenarios

X1p
\f
—» Y
/@
Xap

45

“sum-set’”’

hiXip + hoXop = {h1x1p + hezap|r1 € Xip, 22 € Xop}




Discrete inputs in multi-user channels

More complex in multi-user scenarios

hiXip + hoXop = {h1x1p + hezap|r1 € Xip, 22 € Xop}

X1p
h Z €6 99
\ | sum-set
Xap

|h1X1p + hoXop| = [{h1z1p + hoxop|r1s € Xip, 22 € Xop }| ???

dmin(thlD + hQXQD) = min{\si — Sjl . SZ',S]' - h1X1D -+ hQXQD,’I: 7& j} ???
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New phenomenon

Example, BPSK:
Xip = Xop ={—1,+1}

(h1=Lho=

hiX1p + hoXop {3 —1,1,3}

M=Lh=b oy o 1)

“Cardinality is Sensitive to Channel Gain Values.”
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Overall proposition / tool

- cardinality of the sum-set {h;X + h,Y }

Proposition: Let X ~ PAM(|X|,dyinx)) and Y ~ PAM(]Y|, dpiny))-
Then for (hg,h,) € R?

|he X + h,Y| = |X||Y| almost everywhere (a.e.), (1)

 minimum distance of the sum-set

and dmin(hxX—I—th) > . ?
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Cardinality

h,X 4+ h,Y| = |X]|]Y| almost everywhere (a.e.)

Set of values where cardinality is less
is a union of lines, of measure O

AT
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Minimum distance

Example:h2=1, N1=N2=10

Very Irregular

Can we even have a
lower bound?

12

<1 (We)+11 1+
gaPow-B > 9 0g 6 9 0og
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Minimum distance, case |: no overlap

We have

Aenin(hy X +hyv) = WD ([ha]dmin(x)s [y dmin(y))
under the following conditions

either ‘Yth’dmm(Y) < |hx|dmin(X)7
or | X||hg|dmin(x) < |hyldminy) (shown below).
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Minimum distance, case 2: with overlap

Then, up to a set of (hy, h,) of measure no more than -, we have

Qenin(ho X +hyY) = By X1y - TN ([ | dimin(x) s [Py | dimin(yys Ehal hy 11X 1Y)

) _ v/2
IXEYTT Y 4 In(max(|X], |Y])

’hx|dmin(X) ’hy’dmin(Y)

Elhal by |, X[, y] += Max ( Y ) X

03

0.35
A A
| | - I X 0.25 |-
I I P L X+ hXs
| | 02}
| [ £
| I 0.15
| I
I A A | 0.1
EERNEIHNE
| i l 0.05
I I
| [
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Applications of discrete
INpUts



Approximate capacity without codebooks

Channel

(Y1, y2|T1, 22)

Y

Yy

Channel

p(yla y2|x1, 5132)

Fy
I
W1 —»| Encoder |—»
X5
Wy —»| Encoder |—=p
Iy
Fy
L .
W1 —» Encoder |—
Xq
Wy —»| Encoder 5
Fy

Decoder 1/,
Fy| | Iy
Decoder [y,
F Fs
Decoder |1y,

Decoder
bt
F Fy

HK+Gaussian Inputs

1/2 bit

R. Etkin, D. Tse, and H. Wang, “Gaussian interference
channel capacity to within one bit,” IEEE Trans. Inf.
Theory, vol. 54, no. 12, pp. 5534-5562, Dec. 2008.

“One-sided” HK+
Mixed Inputs
3.34 bits

A. Dytso, D. Tuninetti, and N. Devroye, “On the two-user
interference channel with lack of knowledge of the interference
codebook at one receiver,” IEEE Trans. Inf. Theory, vol. 61, no.
3, pp. 1257-1276, March 2015.
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Approximate capacity without codebooks

Fy
Y’n
Y Xp —» Decod W ==
W1 —| Encoder ——1—> Channel TeCO T TI N nOTS
n (Y1, y2|1, 2) F ﬁ Mlxed In pUi'S
Wy —»| Encoder |2, yn
2 A~
T —[oeoter |, constant or log-log gaps
Fy x T A. Dytso, D. Tuninetti, and N. Devroye, “Interference as Noise:
Fy Friend of Foe?” IEEE Trans. Inf. Theory, Vol. 62, No. 6, pp. 3561
-- 3596, June, 2016.
Xi=+/1-6 Xip + b Xa,
0; € [O 1]
TINnoTS 0< R <I(Xy;Y1) - Y
Rin = U { 0 < Ry < I(X5;Y3) W"h Xip ~ PAM (o),
N17N2751952 X’[,G NN(O 1)
i=1,2.
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Approximate capacity without codebooks

Fy
Y’n
y X7 > Decoder wW- +
W1 —| Encoder ——1—> Channel T ° s TI N n OTS
n (Y1, y2|1, 2) F ﬁ Mlxed |npU|'S
Wy —»| Encoder 2, yn
2 A~
T —[ o Lo, constant or log-log gaps
Fy x T A. Dytso, D. Tuninetti, and N. Devroye, “Interference as Noise:
Fy Friend of Foe?” IEEE Trans. Inf. Theory, Vol. 62, No. 6, pp. 3561
-- 3596, June, 2016.
= /1-0; X;p +V6; Xic,
7o TINnoTS _ U 0< Ry <I(Xy;Y7) With &; € [0,1],
mo T 0 < Ry < I(Xy;Y2) Xip ~ PAM ().
N17N2751,52 X’[,G NN(O 1)
i=1,2.

discrete < public
Gaussian < private

Choice of N, 5i looks like
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Approximate optimality of TINnoTS in Gaussian-IC

Very Weak Weak | :Weak Il  Strong VeryStrong

' - up to an outage '

' of controllable measure

. 1/2 . 2/3 . 1 : 2 . o
Gaussian / Mixed / Mixed Discrete Discrete
XZ:\/1—5ZXZD+\/572XZ(;,ZE[12],

B DoF gain over

snrdB Gaussians with
TINnoTS!
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1/2 2/3 1 o 55



Approximate optimality of TINnoTS in Gaussian-IC

Very Weak Weak | :Weak Il  Strong VeryStrong

' - up to an outage '

' of controllable measure

. 1/2 . 2/3 . 1 : 2 . o
Gaussian / Mixed / Mixed Discrete Discrete
XZ:\/1—5ZXZD+\/572XZ(;,ZE[12],

B DoF gain over

snrdB Gaussians with
TINnoTS!

oV

1/2 2/3 1 o 55



Approximate optimality of TINnoTS in Gaussian-IC

Very Weak Weak | :Weak Il  Strong VeryStrong

' - up to an outage '

' of controllable measure
- >

0 o 1/2 . 2/3 . 1 . 2 . &/
Gaussian / Mixed / Mixed Discrete Discrete
X, =+/1—-06; Xip+/0; Xic, i € [1:2],

- Closed-form expressions
snrdB for number of points,
power splits and gap




Key ideas + open problems

 use non-Gaussian inputs: good inputs, good interferers
- general tools on bounding dmin, mutual information applicable elsewhere?

- mixed inputs hence approximately optimal for the codebook oblivious G-1C
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Key ideas + open problems

 use non-Gaussian inputs: good inputs, good interferers
- general tools on bounding dmin, mutual information applicable elsewhere?

- mixed inputs hence approximately optimal for the codebook oblivious G-1C

- OPEN: is the log log (min(S,l)) and outage fundamental?
- OPEN: are we essentially already using discrete inputs in practice?
« OPEN: better constellation than PAM? What about higher dimensions?

- OPEN: can we develop a smart set of multi-letter discrete inputs and
evaluate these in the capacity achieving expression for the G-1C?

-— n

L 0< Ry < LIX7 YY)
Cq GCIi. . € =limp o co UPX?XQZPX{LPXQ 0< R, < LI(XD:Y]
> 42 =~ 5 ( 2 2)

R. Ahlswede, “Multi-way communication channels,” in Proc. IEEE Int. Symp. Inf. Theory, March 1973, pp. 23-52.
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Discussion: relation to............

Characterizing when (low INR) TIN is optimal in larger interference networks:

[Chunhua Geng, Syed A. Jafar, On the Optimality of Treating Interference as Noise:
Compound Interference Networks , IEEE Trans. on Info.Theory, Accepted, 2016.]

[Hua Sun, Syed A. Jafar, On the Optimality of Treating Interference as Noise for K
user Parallel Gaussian Interference Networks , IEEE Transactions on Information
Theory,Vol. 62, No. 4, Pages: 1911-1930,April 2016.]

[Chunhua Geng, Syed A. Jafar, On the Optimality of Treating Interference as Noise: General
Message Sets, IEEE Transactions on Information Theory,Vol. 61, No. 7, Pages: 3722-3736, July 2015.]

[Chunhua Geng, Navid Naderializadeh, Salman Avestimehr, Syed A. Jafar, On the

Optimality of Treating Interference as Noise, IEEE Transactions on Information
Theory,Vol. 61, No. 4, Pages: 1753-1767,April 2015.]
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Theory,Vol. 62, No. 4, Pages: 1911-1930,April 2016.]

[Chunhua Geng, Syed A. Jafar, On the Optimality of Treating Interference as Noise: General
Message Sets, IEEE Transactions on Information Theory,Vol. 61, No. 7, Pages: 3722-3736, July 2015.]

[Chunhua Geng, Navid Naderializadeh, Salman Avestimehr, Syed A. Jafar, On the

Optimality of Treating Interference as Noise, IEEE Transactions on Information
Theory,Vol. 61, No. 4, Pages: 1753-1767,April 2015.]

Using point-to-point codes in interference networks:

[F. Baccelli,A. El Gamal, D.Tse, “Interference Networks with Point-to-
Point Codes,’ IEEE Trans. on Info.Theory,Vol. 57, No. 5, May 201 1.]

[J. Sebastian, C. Karakus, S. Diggavi “Approximately achieving the feedback
interference channel capacity with point-to-point codes” ISIT 2016.]

[Young Han Kim et al. http://circuit.ucsd.edu/~yhk/pdfs/swcm.pdf]

[B. Bandemer, A. El Gamal,Y.-H. Kim, “Optimal achievable rates for
interference networks with random codes” Trans IT 2015.]
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BASIC MODEL FOR INTERFERING WIRELESS CHANNELS:
THE INTERFERENCE CHANNEL

codebook knowledge

channel state

small versus zero error

use this channel model to exemplify the effect
(or lack thereof) of several commonly made
network information theoretic assumptions
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Approximate capacity of ICs with lack of
synchronization

*in networks, often assume all nodes are synchronized

Frame-asynchronous IC Received signal at Rx 1
' o= »
O Q B A

4
.
o T
s .
S .
9 .
9 .
5 .
S .
> .
.
. .
. e
e
128
(20NN
. .

Symbols Xaiof codeword Xq Codewords are not synchr.omzed
Symbols are synchronized

mE O O - .
A A 2o
n J = v4
Symbols Xzj of codeword X5 -

Received signal at Rx 2

Mild asynchronism Total asynchronism Strong asynchronism
ﬁ =0 Ai€{0,1,... n-1} Lij = eaijn
n

*this may be unrealistic sometimes....
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Approximate capacity of ICs with
total asynchronism

Treat Interference as Noise without Time
Sharing Inner Bound:

RENTS Uy eora 0s syt No Time Sharing

[E. Calvo, J.R. Fonollosa, J.Vidal, "On the Totally Asynchronous Interference Channel with Single-User Receivers” ISIT 2009.]

*this is achievable by asynchronous G-IC, so our
approximate gap to capacity results apply even without
synchronization!
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Zero-error versus epsilon error networks

Network coding: [T. Chan and A. Grant, "On capacity regions of non-multicast networks” ISIT 2010]

[M. Langberg, M. Effros, Network coding: is zero error always possible?” Allerton 201 1.]

later talks / speakers?
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On a particular zero-error interference channel studied by Ahlswede and Simonyi:“It is probably

impossible to convince an information theorist to get to work on this problem after such an
exposition.A combinatorialist would hardly be willing to listen to it at all.”

BC: [S. Hu, O. Shayevitz,“The rho-capacity of a graph” ISIT 2016, https://arxiv.org/abs/1607.07263.]

When zero-error capacity is positive for MAC, relay, IC, BC:
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Relay channel:
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showing that get slightly further in a zero-error scenario than an epsilon error scenario.When can zero-error help?

[Y. Chen, N. Devroye “On the optimality of Color-and-Forward Relaying for a Class of Zero-error

Primitive Relay Channels?” ISIT 2015, under submission to TransIT]
64



Zero-error versus epsilon error networks

Network coding: [T. Chan and A. Grant, "On capacity regions of non-multicast networks” ISIT 2010]

[M. Langberg, M. Effros, Network coding: is zero error always possible?” Allerton 201 1.]

MAC: Binary adder channel later talks / speakers?

[O. Ordentlich, O. Shayevitz,“A VC-dimension based outer bound for =
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On a particular zero-erropies=="" - S‘\\O DY Ahlswede and Simonyi: “It is probably
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/
//
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synchronization

channel state

small versus zero error
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Questions + discussions now, later, email
are always welcome

Natasha Devroye
devroye(@uic.edu
www.ece.uic.edu/Devroye

ELECTRICAL
ENGINEERING

AND
COMPUTER

O
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