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Interference channel

• sender j = 1, 2 sends an independent message Wi to receiver j
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• lower case x is an instance of random variable X in calligraphic alphabet X

• a discrete memoryless interference channel (DM-IC) (X1⇥
X2, p(y1, y2|x1, x2),Y1⇥Y2) consists of 4 finite sets/alphabets

X1,X2,Y1,Y2 and a collection of conditional pmfs p(y1, y2|x1, x2)
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• A (2

nR1
, 2

nR2
, n) code for the IC consists of:

1. Two message sets [1 : 2

nR1
], and [1 : 2

nR2
]

2. Two encoders:

w1 2 [1 : 2

nR1
] ! x

n
1 (w1)

w2 2 [1 : 2

nR2
] ! x

n
2 (w2)

3. Two decoders:

y

n
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nR1
] [ error

y
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• we assume W1 and W2 are uniformly distributed on [1 : 2

nR1
] and [1 : 2

nR2
]

respectively
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Ŵ1

Ŵ2
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Ŵ2

• Rate pair (R1, R2) is achievable if there exists a sequence of (2nR1 , 2nR2 , n) codes

with P (n)
e ! 0 as n ! 1

• average probability of error:

P (n)
e := P{(cW1, cW2) 6= (W1,W2)}

5

small error



Formal definition
W1

W2

Encoder 1

Xn
1

Xn
2 Y n

2

Y n
1

Encoder 2

Decoder 1

Decoder 2

p(y1, y2|x1, x2)

Channel
Ŵ1
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Ŵ1

Ŵ2
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Ŵ1

Ŵ2
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Q: how do assumptions affe
ct capacity region?



Codebook knowledge
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Point to point codebook knowledge

Encoder Decoder

p(y|x)
Channel
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.

.

.
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CCCCCCCCA

“F” is the codebook, known to the Tx,Rx
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Ŵ1
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IC with one  
oblivious Rx

A. Dytso, N. Devroye, and D. Tuninetti, “On the capacity of interference channels with partial codebook knowledge,” ISIT 2013  

A. Dytso, D. Tuninetti and N. Devroye, ``On the Two-User Interference Channel With Lack of Knowledge of the Interference Codebook at 
One Receiver,'' IEEE Trans. on Infor. Theory, March 2015.

A. Dytso, D. Tuninetti and N. Devroye. “On Gaussian Interference Channels with Mixed Gaussian and Discrete Inputs,” ISIT 2014

A. Dytso, D. Tuninetti and N. Devroye “Interference as Noise: Friend of Foe?”  IEEE Trans. on Info Theory, June 2016.
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Ŵ1
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Networks with lack of codebook knowledge

W
F

Ŵ

F

F

F

F

F

F

F

•in networks, often assume nodes know all 
codebooks of ALL other nodes 

•this may be unrealistic sometimes….
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The interference channel

11

How do we use the codebook knowledge?
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Ŵ1

F1



Interfering codebook knowledge in AWGN IC

•  Use it to decode interference in very strong and strong 
interference regimes

joint decoding, successive interference cancellation



I(X1;Y1|X2)  I(X1;Y2)
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Successive interference cancellation achieves capacity!

Decode interference, then desired

Decode interference, then desired
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codebook knowledge!
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Ŵ2
Y2

Y1

Z1 ⇠ N (0, 1)
Power 1

Power 1
Z2 ⇠ N (0, 1)

p
S1

p
S2

p
I2

p
I1

14

I(X1;Y1|X2)  I(X1;Y2|X2)

I(X2;Y2|X1)  I(X2;Y1|X1)

Simultaneous decoding achieves capacity!

cW1

cW2

codebook knowledge!



Interfering codebook knowledge in AWGN IC

•  Use it to decode interference in very strong and strong 
interference regimes

• Use it to decode public messages in Han + Kobayashi 
achievable rate region

Best general rate region



Han+Kobayashi inner bound +
[T. S. Han and K. Kobayashi, “A new achievable rate region for the interference 

channel,” IEEE Trans. Inf. Theory, vol. 27, no. 1, pp. 49–60, 1981.]

Theorem (Han+Kobayashi inner bound). A rate pair (R1, R2) is

achievable for a DM-IC (X1 ⇥ X2, p(y1, y2|x1, x2),Y1 ⇥ Y2) if it satisfies

R1  I(X1;Y1|U2, Q) (1)

R2  I(X2;Y2|U1, Q) (2)

R1 +R2  I(X1, U2;Y1|Q) + I(X2;Y2|U1, U2, Q) (3)

R1 +R2  I(X1;Y1|U1, U2, Q) + I(X2, U1;Y2|Q) (4)

R1 +R2  I(X1, U2;Y1|U1, Q) + I(X2, U1;Y2|U2, Q) (5)

2R1 +R2  I(X1, U2;Y1|Q) + I(X1;Y1|U1, U2, Q) + I(X2, U1;Y2|U2, Q) (6)

R1 + 2R2  I(X2, U1;Y2|Q) + I(X2;Y2|U1, U2, Q) + I(X1, U2;Y1|U1, Q) (7)

for some p(q, u1, u2, x1, x2) = p(q)p(u1, x1|q)p(u2, x2|q) where |U1|  |X1| + 4,

|U2|  |X2|+ 4, and |Q|  7.
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Han+Kobayashi inner bound

[T. S. Han and K. Kobayashi, “A new achievable rate region for the interference channel,” IEEE Trans. Inf. Theory, vol. 27, no. 1, pp. 49–60, 1981.]

Largest single-letter achievable rate region for IC

+
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Requires knowledge of codebooks at both 
receivers - WHY?
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The AWGN-IC
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 of practical relevance in wireless systems: 
cellular,  wireless local area networks (WiFi), 
ad hoc networks (wireless sensors or nodes)

Excellent survey of results on Gaussian IC in Introduction of [R. Bustin, H.V. Poor, and S. Shamai “The Effect of Maximal Rate Codes on the Interfering 
Message Rate,” http://arxiv.org/abs/1404.6690]
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Interfering codebook knowledge in AWGN IC

•  Use it to decode interference in very strong and strong 
interference regimes

• Use it to decode public messages in Han + Kobayashi 
achievable rate region

• Use it to achieve capacity to within 1/2 bit for Gaussian 
noise channels



AWGN: H+K achieves capacity to within 1/2 bit
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Theorem (gap for Gaussian IC) If (R1, R2) is in the outer boundRAWGN

O

then (R1 � 1/2, R2 � 1/2) is achievable.
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Etkin, Tse, Wang show how to pick 
Gaussian inputs in H+K scheme

21



AWGN: H+K achieves capacity to within 1/2 bit

�

�

W1

W2

Encoder 1

Encoder 2

Decoder 1

Decoder 2

Ŵ1
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depends on the regime of operation
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AWGN: the “W” curve for the GDoF
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Fig. 11. Generalized degrees of freedom for two suboptimal schemes versus capacity. These suboptimal schemes are treating interference as noise and orthogo-
nalizing the users over time or frequency.

choice of private message power that achieves a symmetric rate
with bounded difference from the upper bound (9) is

, and this choice of private message power does not re-
sult in a gap that vanishes as .

In the strong interference regime, the symmetric capacity is
given by

(33)

which asymptotically approaches for as
.

Finally, in the very strong interference regime the symmetric
capacity is given by

(34)

which asymptotically approaches for .
We summarize the results of this subsection in the following

theorem.

Theorem 2: Let . For
and , the approximation given in

(35), shown at the bottom of the page, is asymptotically tight in
the sense that the difference between and the approxima-
tion goes to zero as go to infinity with fixed.

IV. WITHIN ONE BIT OF THE GENERAL CAPACITY REGION

In the previous section, we showed that a simple Han–
Kobayashi scheme can achieve to within one bit of the sym-
metric rate of the symmetric Gaussian interference channel.
We will show that this is also true for the whole capacity region
of the general two-user Gaussian interference channel (not
necessarily symmetric). Depending on the parameters of the
Gaussian interference channel ( , and ),
we can divide the analysis of the Gaussian interference channel
into the following three cases.

1) Weak interference channel:
In this case, the parameters of the Gaussian interference
channel satisfy and .

(35)
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Fig. 11. Generalized degrees of freedom for two suboptimal schemes versus capacity. These suboptimal schemes are treating interference as noise and orthogo-
nalizing the users over time or frequency.
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sult in a gap that vanishes as .
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given by
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In the previous section, we showed that a simple Han–
Kobayashi scheme can achieve to within one bit of the sym-
metric rate of the symmetric Gaussian interference channel.
We will show that this is also true for the whole capacity region
of the general two-user Gaussian interference channel (not
necessarily symmetric). Depending on the parameters of the
Gaussian interference channel ( , and ),
we can divide the analysis of the Gaussian interference channel
into the following three cases.

1) Weak interference channel:
In this case, the parameters of the Gaussian interference
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Very weak: treating interference as noise is sometimes sum-capacity optimal, capacity partially known

[X. Shang, G. Kramer, and B. Chen, “A new outer bound and the noisy-interference sum-rate  capacity for Gaussian interference channels,” IEEE Trans. Inf. 
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[V. S. Annapureddy and V. V. Veeravalli, “Gaussian interference networks: Sum capacity in the low interference regime and new outer bounds on the capacity 
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made can be thought of as computing analogous limits for the
achievable rates and upper bounds. Since the lower and upper
bounds on the symmetric capacity we derived earlier differ by
at most one bit, they allow us to precisely characterize .
For , this is plotted in Fig. 9. corresponds to
the strong and very strong interference regimes, and since the
capacity is known in these regimes, we can compute in
a straightforward way.

In the very strong interference case, each user can decode the
interfering message before decoding his own message [2]. After
decoding the interference and subtracting it from the received
signal, the user effectively gets an AWGN channel for commu-
nicating his own message. It follows that the symmetric capacity
in the very strong interference case is

(21)

The channel is in the very strong interference situation whenever
. Taking logs and assuming

, the very strong interference condition becomes
. In this regime, we obtain , and therefore,

interference does not reduce the available degrees of freedom of
the channel.

In the strong interference regime, each receiver is able to de-
code both messages. The capacity region of the interference
channel is given by the intersection of the capacity regions of
the two MACs formed by the two transmitters and each of the
receivers. In the symmetric case, the sum capacity of both MACs
is the same and the corresponding symmetric capacity is given
by

(22)

The symmetric channel is in the strong interference situation
whenever it is not in very strong interference and ,
which after taking logs becomes

This condition and (22) together with the assumption
imply that . It follows

that under strong interference the generalized degrees of
freedom are

(23)

We now have the complete picture shown in (24) at the bottom
of the page, and

(25)

The generalized degrees of freedom are plotted in Fig. 11,
together with the performance of the baseline strategies of or-
thogonalizing the users (in frequency or time) and treating inter-
ference as noise. Note that orthogonalizing between the links, in
which each link achieves half the degrees of freedom, is strictly
suboptimal except when and . Treating interfer-
ence as noise, on the other hand, is strictly suboptimal except
for .

Note that there are five regimes in which the qualitative be-
haviors of the capacity are different. The first three regimes fall
into the weak interference regime, and the characterization of
the symmetric capacity in these regimes is a consequence of the
new results that we obtained. In these regimes, the interference
is not strong enough to be decoded in its entirety. In fact, in
regime 1, where the interference is very weak, treating interfer-
ence as noise is optimal. In regimes 2 and 3, where the inter-
ference is not very weak, decoding it partially can significantly
improve performance.

Interestingly, the capacity is not monotonically decreasing
with in the weak interference regime. Increasing has
two opposing effects: more common information can be de-
coded and canceled but less private information can be sent
under the constraint . Depending on which of these
two effects dominates, the capacity increases or decreases with

.
In regime 1, where treating interference as noise is optimal,

the common messages carry negligible information. In this
regime, the loss in the private rate due to the increase in
makes the capacity decrease with . However, once interfer-
ence becomes strong enough to reach regime 2, the users can
start using common information to partially cancel interfer-
ence. As the interference level increases, more and more of this
common information can be decoded and partially canceled,
and this effects dominates the behavior of capacity with .
Therefore, capacity increases with in regime 2. However,
as increases further to reach regime 3, the gains obtained
by partially canceling interference through the common mes-
sages are not enough to offset the loss of rate in the private
information. In this regime, capacity decreases with until

(24)
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Fig. 11. Generalized degrees of freedom for two suboptimal schemes versus capacity. These suboptimal schemes are treating interference as noise and orthogo-
nalizing the users over time or frequency.

choice of private message power that achieves a symmetric rate
with bounded difference from the upper bound (9) is

, and this choice of private message power does not re-
sult in a gap that vanishes as .
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given by
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theorem.
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tion goes to zero as go to infinity with fixed.
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In the previous section, we showed that a simple Han–
Kobayashi scheme can achieve to within one bit of the sym-
metric rate of the symmetric Gaussian interference channel.
We will show that this is also true for the whole capacity region
of the general two-user Gaussian interference channel (not
necessarily symmetric). Depending on the parameters of the
Gaussian interference channel ( , and ),
we can divide the analysis of the Gaussian interference channel
into the following three cases.

1) Weak interference channel:
In this case, the parameters of the Gaussian interference
channel satisfy and .
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made can be thought of as computing analogous limits for the
achievable rates and upper bounds. Since the lower and upper
bounds on the symmetric capacity we derived earlier differ by
at most one bit, they allow us to precisely characterize .
For , this is plotted in Fig. 9. corresponds to
the strong and very strong interference regimes, and since the
capacity is known in these regimes, we can compute in
a straightforward way.

In the very strong interference case, each user can decode the
interfering message before decoding his own message [2]. After
decoding the interference and subtracting it from the received
signal, the user effectively gets an AWGN channel for commu-
nicating his own message. It follows that the symmetric capacity
in the very strong interference case is

(21)

The channel is in the very strong interference situation whenever
. Taking logs and assuming

, the very strong interference condition becomes
. In this regime, we obtain , and therefore,

interference does not reduce the available degrees of freedom of
the channel.

In the strong interference regime, each receiver is able to de-
code both messages. The capacity region of the interference
channel is given by the intersection of the capacity regions of
the two MACs formed by the two transmitters and each of the
receivers. In the symmetric case, the sum capacity of both MACs
is the same and the corresponding symmetric capacity is given
by

(22)

The symmetric channel is in the strong interference situation
whenever it is not in very strong interference and ,
which after taking logs becomes

This condition and (22) together with the assumption
imply that . It follows

that under strong interference the generalized degrees of
freedom are
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We now have the complete picture shown in (24) at the bottom
of the page, and
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The generalized degrees of freedom are plotted in Fig. 11,
together with the performance of the baseline strategies of or-
thogonalizing the users (in frequency or time) and treating inter-
ference as noise. Note that orthogonalizing between the links, in
which each link achieves half the degrees of freedom, is strictly
suboptimal except when and . Treating interfer-
ence as noise, on the other hand, is strictly suboptimal except
for .

Note that there are five regimes in which the qualitative be-
haviors of the capacity are different. The first three regimes fall
into the weak interference regime, and the characterization of
the symmetric capacity in these regimes is a consequence of the
new results that we obtained. In these regimes, the interference
is not strong enough to be decoded in its entirety. In fact, in
regime 1, where the interference is very weak, treating interfer-
ence as noise is optimal. In regimes 2 and 3, where the inter-
ference is not very weak, decoding it partially can significantly
improve performance.

Interestingly, the capacity is not monotonically decreasing
with in the weak interference regime. Increasing has
two opposing effects: more common information can be de-
coded and canceled but less private information can be sent
under the constraint . Depending on which of these
two effects dominates, the capacity increases or decreases with

.
In regime 1, where treating interference as noise is optimal,

the common messages carry negligible information. In this
regime, the loss in the private rate due to the increase in
makes the capacity decrease with . However, once interfer-
ence becomes strong enough to reach regime 2, the users can
start using common information to partially cancel interfer-
ence. As the interference level increases, more and more of this
common information can be decoded and partially canceled,
and this effects dominates the behavior of capacity with .
Therefore, capacity increases with in regime 2. However,
as increases further to reach regime 3, the gains obtained
by partially canceling interference through the common mes-
sages are not enough to offset the loss of rate in the private
information. In this regime, capacity decreases with until
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Fig. 11. Generalized degrees of freedom for two suboptimal schemes versus capacity. These suboptimal schemes are treating interference as noise and orthogo-
nalizing the users over time or frequency.

choice of private message power that achieves a symmetric rate
with bounded difference from the upper bound (9) is

, and this choice of private message power does not re-
sult in a gap that vanishes as .

In the strong interference regime, the symmetric capacity is
given by

(33)

which asymptotically approaches for as
.

Finally, in the very strong interference regime the symmetric
capacity is given by

(34)

which asymptotically approaches for .
We summarize the results of this subsection in the following

theorem.

Theorem 2: Let . For
and , the approximation given in

(35), shown at the bottom of the page, is asymptotically tight in
the sense that the difference between and the approxima-
tion goes to zero as go to infinity with fixed.

IV. WITHIN ONE BIT OF THE GENERAL CAPACITY REGION

In the previous section, we showed that a simple Han–
Kobayashi scheme can achieve to within one bit of the sym-
metric rate of the symmetric Gaussian interference channel.
We will show that this is also true for the whole capacity region
of the general two-user Gaussian interference channel (not
necessarily symmetric). Depending on the parameters of the
Gaussian interference channel ( , and ),
we can divide the analysis of the Gaussian interference channel
into the following three cases.

1) Weak interference channel:
In this case, the parameters of the Gaussian interference
channel satisfy and .

(35)
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Very weak: treating interference as noise is sometimes sum-capacity optimal, capacity partially known

Strong: jointly decoding both messages at both receivers is capacity optimal, capacity known
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bounds on the symmetric capacity we derived earlier differ by
at most one bit, they allow us to precisely characterize .
For , this is plotted in Fig. 9. corresponds to
the strong and very strong interference regimes, and since the
capacity is known in these regimes, we can compute in
a straightforward way.
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interfering message before decoding his own message [2]. After
decoding the interference and subtracting it from the received
signal, the user effectively gets an AWGN channel for commu-
nicating his own message. It follows that the symmetric capacity
in the very strong interference case is
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interference does not reduce the available degrees of freedom of
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code both messages. The capacity region of the interference
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by
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whenever it is not in very strong interference and ,
which after taking logs becomes

This condition and (22) together with the assumption
imply that . It follows

that under strong interference the generalized degrees of
freedom are

(23)

We now have the complete picture shown in (24) at the bottom
of the page, and

(25)
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which each link achieves half the degrees of freedom, is strictly
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ence as noise, on the other hand, is strictly suboptimal except
for .

Note that there are five regimes in which the qualitative be-
haviors of the capacity are different. The first three regimes fall
into the weak interference regime, and the characterization of
the symmetric capacity in these regimes is a consequence of the
new results that we obtained. In these regimes, the interference
is not strong enough to be decoded in its entirety. In fact, in
regime 1, where the interference is very weak, treating interfer-
ence as noise is optimal. In regimes 2 and 3, where the inter-
ference is not very weak, decoding it partially can significantly
improve performance.

Interestingly, the capacity is not monotonically decreasing
with in the weak interference regime. Increasing has
two opposing effects: more common information can be de-
coded and canceled but less private information can be sent
under the constraint . Depending on which of these
two effects dominates, the capacity increases or decreases with

.
In regime 1, where treating interference as noise is optimal,

the common messages carry negligible information. In this
regime, the loss in the private rate due to the increase in
makes the capacity decrease with . However, once interfer-
ence becomes strong enough to reach regime 2, the users can
start using common information to partially cancel interfer-
ence. As the interference level increases, more and more of this
common information can be decoded and partially canceled,
and this effects dominates the behavior of capacity with .
Therefore, capacity increases with in regime 2. However,
as increases further to reach regime 3, the gains obtained
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Fig. 11. Generalized degrees of freedom for two suboptimal schemes versus capacity. These suboptimal schemes are treating interference as noise and orthogo-
nalizing the users over time or frequency.
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given by

(33)

which asymptotically approaches for as
.

Finally, in the very strong interference regime the symmetric
capacity is given by

(34)

which asymptotically approaches for .
We summarize the results of this subsection in the following

theorem.

Theorem 2: Let . For
and , the approximation given in

(35), shown at the bottom of the page, is asymptotically tight in
the sense that the difference between and the approxima-
tion goes to zero as go to infinity with fixed.

IV. WITHIN ONE BIT OF THE GENERAL CAPACITY REGION

In the previous section, we showed that a simple Han–
Kobayashi scheme can achieve to within one bit of the sym-
metric rate of the symmetric Gaussian interference channel.
We will show that this is also true for the whole capacity region
of the general two-user Gaussian interference channel (not
necessarily symmetric). Depending on the parameters of the
Gaussian interference channel ( , and ),
we can divide the analysis of the Gaussian interference channel
into the following three cases.

1) Weak interference channel:
In this case, the parameters of the Gaussian interference
channel satisfy and .

(35)

AWGN: the “W” curve for the GDoF
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“Gaussian interference channel 
capacity to within one bit,” IEEE 
Trans. Inf. Theory, vol. 54, no. 12, 
pp. 5534–5562, Dec. 2008. ]

Very weak Mixed Strong Very strong

Very weak: treating interference as noise is sometimes sum-capacity optimal, capacity partially known

Very strong: first decode interference then desired is capacity optimal, capacity known

Strong: jointly decode both messages at both receivers is capacity optimal, capacity known
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made can be thought of as computing analogous limits for the
achievable rates and upper bounds. Since the lower and upper
bounds on the symmetric capacity we derived earlier differ by
at most one bit, they allow us to precisely characterize .
For , this is plotted in Fig. 9. corresponds to
the strong and very strong interference regimes, and since the
capacity is known in these regimes, we can compute in
a straightforward way.

In the very strong interference case, each user can decode the
interfering message before decoding his own message [2]. After
decoding the interference and subtracting it from the received
signal, the user effectively gets an AWGN channel for commu-
nicating his own message. It follows that the symmetric capacity
in the very strong interference case is

(21)

The channel is in the very strong interference situation whenever
. Taking logs and assuming

, the very strong interference condition becomes
. In this regime, we obtain , and therefore,

interference does not reduce the available degrees of freedom of
the channel.

In the strong interference regime, each receiver is able to de-
code both messages. The capacity region of the interference
channel is given by the intersection of the capacity regions of
the two MACs formed by the two transmitters and each of the
receivers. In the symmetric case, the sum capacity of both MACs
is the same and the corresponding symmetric capacity is given
by

(22)

The symmetric channel is in the strong interference situation
whenever it is not in very strong interference and ,
which after taking logs becomes

This condition and (22) together with the assumption
imply that . It follows

that under strong interference the generalized degrees of
freedom are

(23)

We now have the complete picture shown in (24) at the bottom
of the page, and

(25)

The generalized degrees of freedom are plotted in Fig. 11,
together with the performance of the baseline strategies of or-
thogonalizing the users (in frequency or time) and treating inter-
ference as noise. Note that orthogonalizing between the links, in
which each link achieves half the degrees of freedom, is strictly
suboptimal except when and . Treating interfer-
ence as noise, on the other hand, is strictly suboptimal except
for .

Note that there are five regimes in which the qualitative be-
haviors of the capacity are different. The first three regimes fall
into the weak interference regime, and the characterization of
the symmetric capacity in these regimes is a consequence of the
new results that we obtained. In these regimes, the interference
is not strong enough to be decoded in its entirety. In fact, in
regime 1, where the interference is very weak, treating interfer-
ence as noise is optimal. In regimes 2 and 3, where the inter-
ference is not very weak, decoding it partially can significantly
improve performance.

Interestingly, the capacity is not monotonically decreasing
with in the weak interference regime. Increasing has
two opposing effects: more common information can be de-
coded and canceled but less private information can be sent
under the constraint . Depending on which of these
two effects dominates, the capacity increases or decreases with

.
In regime 1, where treating interference as noise is optimal,

the common messages carry negligible information. In this
regime, the loss in the private rate due to the increase in
makes the capacity decrease with . However, once interfer-
ence becomes strong enough to reach regime 2, the users can
start using common information to partially cancel interfer-
ence. As the interference level increases, more and more of this
common information can be decoded and partially canceled,
and this effects dominates the behavior of capacity with .
Therefore, capacity increases with in regime 2. However,
as increases further to reach regime 3, the gains obtained
by partially canceling interference through the common mes-
sages are not enough to offset the loss of rate in the private
information. In this regime, capacity decreases with until

(24)
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Fig. 11. Generalized degrees of freedom for two suboptimal schemes versus capacity. These suboptimal schemes are treating interference as noise and orthogo-
nalizing the users over time or frequency.

choice of private message power that achieves a symmetric rate
with bounded difference from the upper bound (9) is

, and this choice of private message power does not re-
sult in a gap that vanishes as .

In the strong interference regime, the symmetric capacity is
given by

(33)

which asymptotically approaches for as
.

Finally, in the very strong interference regime the symmetric
capacity is given by

(34)

which asymptotically approaches for .
We summarize the results of this subsection in the following

theorem.

Theorem 2: Let . For
and , the approximation given in

(35), shown at the bottom of the page, is asymptotically tight in
the sense that the difference between and the approxima-
tion goes to zero as go to infinity with fixed.

IV. WITHIN ONE BIT OF THE GENERAL CAPACITY REGION

In the previous section, we showed that a simple Han–
Kobayashi scheme can achieve to within one bit of the sym-
metric rate of the symmetric Gaussian interference channel.
We will show that this is also true for the whole capacity region
of the general two-user Gaussian interference channel (not
necessarily symmetric). Depending on the parameters of the
Gaussian interference channel ( , and ),
we can divide the analysis of the Gaussian interference channel
into the following three cases.

1) Weak interference channel:
In this case, the parameters of the Gaussian interference
channel satisfy and .

(35)
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Very weak Mixed Strong Very strong

Very weak: treating interference as noise is sometimes capacity optimal, capacity partially known

Very strong: first decode interference then desired is capacity optimal, capacity known

Strong: jointly decode both messages at both receivers is capacity optimal, capacity known

Mixed 1: partially decode interference H+K is gDoF optimal — larger INR, cancel more, capacity unknown

26

Regimes

5542 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 12, DECEMBER 2008

made can be thought of as computing analogous limits for the
achievable rates and upper bounds. Since the lower and upper
bounds on the symmetric capacity we derived earlier differ by
at most one bit, they allow us to precisely characterize .
For , this is plotted in Fig. 9. corresponds to
the strong and very strong interference regimes, and since the
capacity is known in these regimes, we can compute in
a straightforward way.

In the very strong interference case, each user can decode the
interfering message before decoding his own message [2]. After
decoding the interference and subtracting it from the received
signal, the user effectively gets an AWGN channel for commu-
nicating his own message. It follows that the symmetric capacity
in the very strong interference case is

(21)

The channel is in the very strong interference situation whenever
. Taking logs and assuming

, the very strong interference condition becomes
. In this regime, we obtain , and therefore,

interference does not reduce the available degrees of freedom of
the channel.

In the strong interference regime, each receiver is able to de-
code both messages. The capacity region of the interference
channel is given by the intersection of the capacity regions of
the two MACs formed by the two transmitters and each of the
receivers. In the symmetric case, the sum capacity of both MACs
is the same and the corresponding symmetric capacity is given
by

(22)

The symmetric channel is in the strong interference situation
whenever it is not in very strong interference and ,
which after taking logs becomes

This condition and (22) together with the assumption
imply that . It follows

that under strong interference the generalized degrees of
freedom are

(23)

We now have the complete picture shown in (24) at the bottom
of the page, and

(25)

The generalized degrees of freedom are plotted in Fig. 11,
together with the performance of the baseline strategies of or-
thogonalizing the users (in frequency or time) and treating inter-
ference as noise. Note that orthogonalizing between the links, in
which each link achieves half the degrees of freedom, is strictly
suboptimal except when and . Treating interfer-
ence as noise, on the other hand, is strictly suboptimal except
for .

Note that there are five regimes in which the qualitative be-
haviors of the capacity are different. The first three regimes fall
into the weak interference regime, and the characterization of
the symmetric capacity in these regimes is a consequence of the
new results that we obtained. In these regimes, the interference
is not strong enough to be decoded in its entirety. In fact, in
regime 1, where the interference is very weak, treating interfer-
ence as noise is optimal. In regimes 2 and 3, where the inter-
ference is not very weak, decoding it partially can significantly
improve performance.

Interestingly, the capacity is not monotonically decreasing
with in the weak interference regime. Increasing has
two opposing effects: more common information can be de-
coded and canceled but less private information can be sent
under the constraint . Depending on which of these
two effects dominates, the capacity increases or decreases with

.
In regime 1, where treating interference as noise is optimal,

the common messages carry negligible information. In this
regime, the loss in the private rate due to the increase in
makes the capacity decrease with . However, once interfer-
ence becomes strong enough to reach regime 2, the users can
start using common information to partially cancel interfer-
ence. As the interference level increases, more and more of this
common information can be decoded and partially canceled,
and this effects dominates the behavior of capacity with .
Therefore, capacity increases with in regime 2. However,
as increases further to reach regime 3, the gains obtained
by partially canceling interference through the common mes-
sages are not enough to offset the loss of rate in the private
information. In this regime, capacity decreases with until
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Fig. 11. Generalized degrees of freedom for two suboptimal schemes versus capacity. These suboptimal schemes are treating interference as noise and orthogo-
nalizing the users over time or frequency.

choice of private message power that achieves a symmetric rate
with bounded difference from the upper bound (9) is

, and this choice of private message power does not re-
sult in a gap that vanishes as .

In the strong interference regime, the symmetric capacity is
given by

(33)

which asymptotically approaches for as
.

Finally, in the very strong interference regime the symmetric
capacity is given by

(34)

which asymptotically approaches for .
We summarize the results of this subsection in the following

theorem.

Theorem 2: Let . For
and , the approximation given in

(35), shown at the bottom of the page, is asymptotically tight in
the sense that the difference between and the approxima-
tion goes to zero as go to infinity with fixed.

IV. WITHIN ONE BIT OF THE GENERAL CAPACITY REGION

In the previous section, we showed that a simple Han–
Kobayashi scheme can achieve to within one bit of the sym-
metric rate of the symmetric Gaussian interference channel.
We will show that this is also true for the whole capacity region
of the general two-user Gaussian interference channel (not
necessarily symmetric). Depending on the parameters of the
Gaussian interference channel ( , and ),
we can divide the analysis of the Gaussian interference channel
into the following three cases.

1) Weak interference channel:
In this case, the parameters of the Gaussian interference
channel satisfy and .

(35)

AWGN: the “W” curve for the GDoF
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Very weak Mixed Strong Very strong

Very weak: treating interference as noise is sometimes capacity optimal, capacity partially known

Very strong: first decode interference then desired is capacity optimal, capacity known

Strong: jointly decode both messages at both receivers is capacity optimal, capacity known

Mixed 1: partially decode interference H+K is gDoF optimal — larger INR, cancel more, capacity unknown

Mixed 2: partially decode interference H+K is gDoF optimal — larger INR hurts, capacity unknown
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made can be thought of as computing analogous limits for the
achievable rates and upper bounds. Since the lower and upper
bounds on the symmetric capacity we derived earlier differ by
at most one bit, they allow us to precisely characterize .
For , this is plotted in Fig. 9. corresponds to
the strong and very strong interference regimes, and since the
capacity is known in these regimes, we can compute in
a straightforward way.

In the very strong interference case, each user can decode the
interfering message before decoding his own message [2]. After
decoding the interference and subtracting it from the received
signal, the user effectively gets an AWGN channel for commu-
nicating his own message. It follows that the symmetric capacity
in the very strong interference case is

(21)

The channel is in the very strong interference situation whenever
. Taking logs and assuming

, the very strong interference condition becomes
. In this regime, we obtain , and therefore,

interference does not reduce the available degrees of freedom of
the channel.

In the strong interference regime, each receiver is able to de-
code both messages. The capacity region of the interference
channel is given by the intersection of the capacity regions of
the two MACs formed by the two transmitters and each of the
receivers. In the symmetric case, the sum capacity of both MACs
is the same and the corresponding symmetric capacity is given
by

(22)

The symmetric channel is in the strong interference situation
whenever it is not in very strong interference and ,
which after taking logs becomes

This condition and (22) together with the assumption
imply that . It follows

that under strong interference the generalized degrees of
freedom are

(23)

We now have the complete picture shown in (24) at the bottom
of the page, and

(25)

The generalized degrees of freedom are plotted in Fig. 11,
together with the performance of the baseline strategies of or-
thogonalizing the users (in frequency or time) and treating inter-
ference as noise. Note that orthogonalizing between the links, in
which each link achieves half the degrees of freedom, is strictly
suboptimal except when and . Treating interfer-
ence as noise, on the other hand, is strictly suboptimal except
for .

Note that there are five regimes in which the qualitative be-
haviors of the capacity are different. The first three regimes fall
into the weak interference regime, and the characterization of
the symmetric capacity in these regimes is a consequence of the
new results that we obtained. In these regimes, the interference
is not strong enough to be decoded in its entirety. In fact, in
regime 1, where the interference is very weak, treating interfer-
ence as noise is optimal. In regimes 2 and 3, where the inter-
ference is not very weak, decoding it partially can significantly
improve performance.

Interestingly, the capacity is not monotonically decreasing
with in the weak interference regime. Increasing has
two opposing effects: more common information can be de-
coded and canceled but less private information can be sent
under the constraint . Depending on which of these
two effects dominates, the capacity increases or decreases with

.
In regime 1, where treating interference as noise is optimal,

the common messages carry negligible information. In this
regime, the loss in the private rate due to the increase in
makes the capacity decrease with . However, once interfer-
ence becomes strong enough to reach regime 2, the users can
start using common information to partially cancel interfer-
ence. As the interference level increases, more and more of this
common information can be decoded and partially canceled,
and this effects dominates the behavior of capacity with .
Therefore, capacity increases with in regime 2. However,
as increases further to reach regime 3, the gains obtained
by partially canceling interference through the common mes-
sages are not enough to offset the loss of rate in the private
information. In this regime, capacity decreases with until

(24)
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Fig. 11. Generalized degrees of freedom for two suboptimal schemes versus capacity. These suboptimal schemes are treating interference as noise and orthogo-
nalizing the users over time or frequency.

choice of private message power that achieves a symmetric rate
with bounded difference from the upper bound (9) is

, and this choice of private message power does not re-
sult in a gap that vanishes as .

In the strong interference regime, the symmetric capacity is
given by

(33)

which asymptotically approaches for as
.

Finally, in the very strong interference regime the symmetric
capacity is given by

(34)

which asymptotically approaches for .
We summarize the results of this subsection in the following

theorem.

Theorem 2: Let . For
and , the approximation given in

(35), shown at the bottom of the page, is asymptotically tight in
the sense that the difference between and the approxima-
tion goes to zero as go to infinity with fixed.

IV. WITHIN ONE BIT OF THE GENERAL CAPACITY REGION

In the previous section, we showed that a simple Han–
Kobayashi scheme can achieve to within one bit of the sym-
metric rate of the symmetric Gaussian interference channel.
We will show that this is also true for the whole capacity region
of the general two-user Gaussian interference channel (not
necessarily symmetric). Depending on the parameters of the
Gaussian interference channel ( , and ),
we can divide the analysis of the Gaussian interference channel
into the following three cases.

1) Weak interference channel:
In this case, the parameters of the Gaussian interference
channel satisfy and .
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Very weak Mixed Strong Very strong

Very weak: treating interference as noise is sometimes capacity optimal, capacity partially known

Very strong: first decode interference then desired is capacity optimal, capacity known

Strong: jointly decode both messages at both receivers is capacity optimal, capacity known

Mixed 1: partially decode interference H+K is gDoF optimal — larger INR, cancel more, capacity unknown

Mixed 2: partially decode interference H+K is gDoF optimal — larger INR hurts, capacity unknown
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made can be thought of as computing analogous limits for the
achievable rates and upper bounds. Since the lower and upper
bounds on the symmetric capacity we derived earlier differ by
at most one bit, they allow us to precisely characterize .
For , this is plotted in Fig. 9. corresponds to
the strong and very strong interference regimes, and since the
capacity is known in these regimes, we can compute in
a straightforward way.

In the very strong interference case, each user can decode the
interfering message before decoding his own message [2]. After
decoding the interference and subtracting it from the received
signal, the user effectively gets an AWGN channel for commu-
nicating his own message. It follows that the symmetric capacity
in the very strong interference case is

(21)

The channel is in the very strong interference situation whenever
. Taking logs and assuming

, the very strong interference condition becomes
. In this regime, we obtain , and therefore,

interference does not reduce the available degrees of freedom of
the channel.

In the strong interference regime, each receiver is able to de-
code both messages. The capacity region of the interference
channel is given by the intersection of the capacity regions of
the two MACs formed by the two transmitters and each of the
receivers. In the symmetric case, the sum capacity of both MACs
is the same and the corresponding symmetric capacity is given
by

(22)

The symmetric channel is in the strong interference situation
whenever it is not in very strong interference and ,
which after taking logs becomes

This condition and (22) together with the assumption
imply that . It follows

that under strong interference the generalized degrees of
freedom are

(23)

We now have the complete picture shown in (24) at the bottom
of the page, and

(25)

The generalized degrees of freedom are plotted in Fig. 11,
together with the performance of the baseline strategies of or-
thogonalizing the users (in frequency or time) and treating inter-
ference as noise. Note that orthogonalizing between the links, in
which each link achieves half the degrees of freedom, is strictly
suboptimal except when and . Treating interfer-
ence as noise, on the other hand, is strictly suboptimal except
for .

Note that there are five regimes in which the qualitative be-
haviors of the capacity are different. The first three regimes fall
into the weak interference regime, and the characterization of
the symmetric capacity in these regimes is a consequence of the
new results that we obtained. In these regimes, the interference
is not strong enough to be decoded in its entirety. In fact, in
regime 1, where the interference is very weak, treating interfer-
ence as noise is optimal. In regimes 2 and 3, where the inter-
ference is not very weak, decoding it partially can significantly
improve performance.

Interestingly, the capacity is not monotonically decreasing
with in the weak interference regime. Increasing has
two opposing effects: more common information can be de-
coded and canceled but less private information can be sent
under the constraint . Depending on which of these
two effects dominates, the capacity increases or decreases with

.
In regime 1, where treating interference as noise is optimal,

the common messages carry negligible information. In this
regime, the loss in the private rate due to the increase in
makes the capacity decrease with . However, once interfer-
ence becomes strong enough to reach regime 2, the users can
start using common information to partially cancel interfer-
ence. As the interference level increases, more and more of this
common information can be decoded and partially canceled,
and this effects dominates the behavior of capacity with .
Therefore, capacity increases with in regime 2. However,
as increases further to reach regime 3, the gains obtained
by partially canceling interference through the common mes-
sages are not enough to offset the loss of rate in the private
information. In this regime, capacity decreases with until

(24)

requires interfering codebooks to (partially) decode interference!
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choice of private message power that achieves a symmetric rate
with bounded difference from the upper bound (9) is

, and this choice of private message power does not re-
sult in a gap that vanishes as .

In the strong interference regime, the symmetric capacity is
given by

(33)

which asymptotically approaches for as
.

Finally, in the very strong interference regime the symmetric
capacity is given by
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which asymptotically approaches for .
We summarize the results of this subsection in the following
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(35), shown at the bottom of the page, is asymptotically tight in
the sense that the difference between and the approxima-
tion goes to zero as go to infinity with fixed.

IV. WITHIN ONE BIT OF THE GENERAL CAPACITY REGION

In the previous section, we showed that a simple Han–
Kobayashi scheme can achieve to within one bit of the sym-
metric rate of the symmetric Gaussian interference channel.
We will show that this is also true for the whole capacity region
of the general two-user Gaussian interference channel (not
necessarily symmetric). Depending on the parameters of the
Gaussian interference channel ( , and ),
we can divide the analysis of the Gaussian interference channel
into the following three cases.

1) Weak interference channel:
In this case, the parameters of the Gaussian interference
channel satisfy and .
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made can be thought of as computing analogous limits for the
achievable rates and upper bounds. Since the lower and upper
bounds on the symmetric capacity we derived earlier differ by
at most one bit, they allow us to precisely characterize .
For , this is plotted in Fig. 9. corresponds to
the strong and very strong interference regimes, and since the
capacity is known in these regimes, we can compute in
a straightforward way.

In the very strong interference case, each user can decode the
interfering message before decoding his own message [2]. After
decoding the interference and subtracting it from the received
signal, the user effectively gets an AWGN channel for commu-
nicating his own message. It follows that the symmetric capacity
in the very strong interference case is

(21)

The channel is in the very strong interference situation whenever
. Taking logs and assuming

, the very strong interference condition becomes
. In this regime, we obtain , and therefore,

interference does not reduce the available degrees of freedom of
the channel.

In the strong interference regime, each receiver is able to de-
code both messages. The capacity region of the interference
channel is given by the intersection of the capacity regions of
the two MACs formed by the two transmitters and each of the
receivers. In the symmetric case, the sum capacity of both MACs
is the same and the corresponding symmetric capacity is given
by
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The symmetric channel is in the strong interference situation
whenever it is not in very strong interference and ,
which after taking logs becomes

This condition and (22) together with the assumption
imply that . It follows

that under strong interference the generalized degrees of
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The generalized degrees of freedom are plotted in Fig. 11,
together with the performance of the baseline strategies of or-
thogonalizing the users (in frequency or time) and treating inter-
ference as noise. Note that orthogonalizing between the links, in
which each link achieves half the degrees of freedom, is strictly
suboptimal except when and . Treating interfer-
ence as noise, on the other hand, is strictly suboptimal except
for .

Note that there are five regimes in which the qualitative be-
haviors of the capacity are different. The first three regimes fall
into the weak interference regime, and the characterization of
the symmetric capacity in these regimes is a consequence of the
new results that we obtained. In these regimes, the interference
is not strong enough to be decoded in its entirety. In fact, in
regime 1, where the interference is very weak, treating interfer-
ence as noise is optimal. In regimes 2 and 3, where the inter-
ference is not very weak, decoding it partially can significantly
improve performance.

Interestingly, the capacity is not monotonically decreasing
with in the weak interference regime. Increasing has
two opposing effects: more common information can be de-
coded and canceled but less private information can be sent
under the constraint . Depending on which of these
two effects dominates, the capacity increases or decreases with

.
In regime 1, where treating interference as noise is optimal,

the common messages carry negligible information. In this
regime, the loss in the private rate due to the increase in
makes the capacity decrease with . However, once interfer-
ence becomes strong enough to reach regime 2, the users can
start using common information to partially cancel interfer-
ence. As the interference level increases, more and more of this
common information can be decoded and partially canceled,
and this effects dominates the behavior of capacity with .
Therefore, capacity increases with in regime 2. However,
as increases further to reach regime 3, the gains obtained
by partially canceling interference through the common mes-
sages are not enough to offset the loss of rate in the private
information. In this regime, capacity decreases with until
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is this treating interference as noise all we can do!?
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Gaussians outperforming Gaussians
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A. Sanderovich, S. Shamai, Y. Steinberg, and G. Kramer, “Communication 
via decentralized processing,” IT July 2008.
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O. Simeone, E. Erkip, and S. Shamai, “On codebook information for 
interference relay channels with out-of-band relaying,” IT May 2011.

1. Primitive relay channel: capacity with compress forward
2. IC+R+Oblivious receivers: capacity with compress forward and TIN
3. Gaussian noise: optimizing input unknown

CIC-OR =
[

PQPX1|QPX2|Q

⇢
R1  I(X1;Y1|Q)
R2  I(X2;Y2|Q)

�

[Ye Tian and Aylin Yener, Relaying for Multiuser Networks in the Absence of Codebook Information, 
IEEE Transactions on Information Theory, 61(3), pp. 1247-1256, Mar. 2015.]



Discrete inputs in Gaussian channels — deeper?
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• E. Abbe and L. Zheng, “A coordinate 
system for Gaussian networks,” IT 
2012.

• E. Calvo, J. Fonollosa, and J. Vidal, 
“On the totally asynchronous 
interference channel with single-user 
receivers,” ISIT 2009

Other supporting arguments

• No gDoF Gain 

• Discrete input 
conclusions are 
simulation based



Questions

32

•loss in performance in IC due to lack of 
interfering codebook knowledge?

•are there inputs that outperform Gaussians 
in the AWGN IC under these conditions?

•can we show analytical gains?
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• best inner bound for Gaussian IC is the complex H+K scheme
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• simpler scheme — Treating Interference as Noise with no Time Sharing:

• best inner bound for Gaussian IC is the complex H+K scheme

S. Li, Y.-C. Huang, T. Liu, and H.D. Pfister, “On the limits of treating interference as noise in the 
two-user Gaussian symmetric interference channel,” ISIT 2015.Similar results as



IC channel capacity is known…. sort of
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Is it really “treating interference as noise”?



Gaussian channels with discrete inputs
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35

• instead of taking X1 and X2 to be Gaussian, take them to be discrete

• difficulty: how to evaluate mutual information expressions with discrete 
and Gaussian mixtures



Tools for Discrete 
Inputs

36
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Why PAM?  



Bounds on mutual information

We define: I(X;Ysnr) = I(X, snr)

E
⇥
(X � E[X|Ysnr])

2
⇤
= mmse(X, snr)

Y =
p
snrX + Z,

Z ⇠ N (0, 1)
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We define: I(X;Ysnr) = I(X, snr)

E
⇥
(X � E[X|Ysnr])

2
⇤
= mmse(X, snr)

[H(XD)� gap]+  I(XD, snr)  H(XD)Interested in:

Want  the tightest version of the “gap” term 
for a given PMF

Y =
p
snrX + Z,

Z ⇠ N (0, 1)

38
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Bounds on mutual information
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where k2

n,p is defined in (71).

Proof: The proof follows by setting U = X and V = Y in the statement of Theorem 1.

B. Generalized Ozarow-Wyner Bound

In [31] the following “Ozarow-Wyner lower bound” on the mutual information achieved by

a discrete input X
D

transmitted over an AWGN channel was shown:
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where lmmse(X|Y ) is the LMMSE. The advantage of the bound in (72) compared to existing

bounds is its computational simplicity. The bound on the gap in (72) has been sharpened in [40,
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since lmmse(X, snr) � mmse(X, snr).

Next, we generalize the bound in (72) to discrete vector inputs and give the sharpest known

bound on the gap term.

Theorem 2. (Generalized Ozarow-Wyner Bound) Let X
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Comparison of bounds

Input: PAM with 
number of points
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More recent tighter bounds

Tighter Ozarow-Wyner bounds on gaps available, 
based on the MMPE:

41

33
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Fig. 3: Gap in equation (72a) and (74) vs. snr.

Theorem 3. Let U be uniform over the ball of radius r = d

min

(X

D

)

2

then for any p > 0

G
2,p(U) = O

✓
1

n
log

✓
n

p

◆◆
. (75a)

and therefore lim

n!1 G
2,p(U) = 0. Therefore,

1

n
H(X

D

) � 1

n
I(X

D

;Y) � 1

n
H(X

D

)�G
1,p(U,X

D

)�O

✓
1

n
log

✓
n

p

◆◆
, (75b)

where

e

G

1,p(U,X

D

)

for p � 1

 1 + 2

d
max

(X

D

)

d
min

(X

D

)

p

s
(p+ n)

n
¯Q

✓
n

2

;

snrd2
min

(X

D

)

8

◆
. (75c)

Proof: See Appendix M.

C. New bounds on the MMSE and Phase Transitions

The SCPP is instrumental in showing the behavior of the MMSE of capacity achieving codes.

For example, as the length of any capacity achieving code goes to infinity, the MMSE behaves

as follows:

lim sup

n!1
mmse(X, snr) =

8
>>><

>>>:

1

1+snr , 0  snr  snr
0

�

1+�snr , snr
0

 snr  snr
1

�

1+�snr , snr � snr
1

, (76)

as shown: in [12], for the Gaussian point-to-point channel with the output Ysnr
0

with � = � = 0;

in [13], for the Gaussian BC with outputs Ysnr
1

and Ysnr
0

, where snr
0

 snr
1

and rate pair
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where k2

n,p is defined in (71).

Proof: The proof follows by setting U = X and V = Y in the statement of Theorem 1.

B. Generalized Ozarow-Wyner Bound

In [31] the following “Ozarow-Wyner lower bound” on the mutual information achieved by

a discrete input X
D

transmitted over an AWGN channel was shown:

[H(X
D

)� gap]+  I(X
D

;Y )  H(X
D

), (72a)

gap  1

2

log

⇣⇡e
6

⌘
+

1

2

log

✓
1 +

lmmse(X, snr)

d
min

(X
D

)

2

◆
, (72b)

where lmmse(X|Y ) is the LMMSE. The advantage of the bound in (72) compared to existing

bounds is its computational simplicity. The bound on the gap in (72) has been sharpened in [40,

Remark 2] to

gap  1

2

log

⇣⇡e
6

⌘
+

1

2

log

✓
1 +

mmse(X, snr)

d
min

(X
D

)

2

◆
, (73)

since lmmse(X, snr) � mmse(X, snr).

Next, we generalize the bound in (72) to discrete vector inputs and give the sharpest known

bound on the gap term.

Theorem 2. (Generalized Ozarow-Wyner Bound) Let X
D

be a discrete random vector with finite

entropy, such that p
i

= P[X
D

= x

i

], and x

i

2 supp(X
D

), and let K
p

be a set of continuous

random vectors, independent of X
D

, such that for every U 2 K, h(U), kUkp < 1, and

supp(U+ x

i

) \ supp(U+ x

j

) = ;,

8 x

i

,x
j

2 supp(X
D

), i 6= j. (74a)

Then for any p > 0

[H(X

D

)� gapp]
+  I(X

D

;Y)  H(X

D

), (74b)
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where

n�1gapp  inf

U2Kp

(G
1,p(U,X

D

) +G
2,p(U)) ,

G
1,p(U,X

D

) = log

✓
kU+X

D

� fp(XD

|Y)kp
kUkp

◆
(74c)

for p � 1

 log

 
1 +

mmpe

1

p
(X

D

, snr, p)

kUkp

!
, (74d)

G
2,p(U) = log

 
k
n,p · n

1

p · kUkp
e

1

n

h

e

(U)

!
. (74e)

Proof: See Appendix L.

It is interesting to note that the lower bound in (74b) resembles the bound for lattice codes

in [41, Theorem 1], where U can be thought of as dither, G
2,p corresponds to the log of the

normalized p-moment of a compact region in Rn, G
1,p corresponds to the log of the normalized

MMSE term, and H(X

D

) corresponds with the capacity C.

In order to show the advantage of Theorem 2 over the original Ozarow-Wyner bound (case

of n = 1 and with LMMSE instead of MMPE), we consider X
D

uniformly distributed with the

number of points equal to N = b
p
1 + snrc, that is, we choose the number of points such that

H(X
D

) ⇡ 1

2

log(1 + snr). Fig. 3 shows:

• The solid cyan line is the “shaping loss” 1

2

log

�
⇡e

6

�
for a one-dimensional infinite lattice

and is the limiting gap if the number of points N grows faster than
p
snr;

• The solid magenta line is the gap in the original Ozarow-Wyner bound in (72); and

• The dashed purple, dashed-dotted blue and dotted green lines are the new gap due to Theo-

rem 2 for value of p = 2, 4, 6, respectively, and where we chose U ⇠ U
h
�d

min(X

D

)

2

,
d

min(X

D

)

2

i
.

We note that the version of the Ozarow-Wyner bound in Theorem 2 provides the sharpest bound

for the gap term. An open question, for n = 1, is what value of p provides the smallest gap and

if that coincide with the ultimate “shaping loss”.

Next we turn our attention to the case of n > 1. Another interesting question is how the gap

behaves as n ! 1.
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Why Mixed Inputs?

Discrete inputs are “good” inputs
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Discrete is a good input.

Y =
⇤

snrX + ZG :

E[X2] � 1, ZG ⇥ N (0, 1)

Capacity with PAM:
N = b
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1 + snrc
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Discrete is a good interferer.

Y =
⇤

snrX + hT + ZG :

E[X2] � 1, ZG ⇥ N (0, 1),

T ⇥ discrete: |T | = N and d2
min(T ) > 0

2.Point-to-point Gaussian noise Channel with State

44
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E[X2] � 1, ZG ⇥ N (0, 1),

T ⇥ discrete: |T | = N and d2
min(T ) > 0

2.Point-to-point Gaussian noise Channel with State

C � I(XG;
p
snrXG + hT + ZG)
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T ⇥ discrete: |T | = N and d2
min(T ) > 0

2.Point-to-point Gaussian noise Channel with State

C � I(XG;
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snrXG + hTG + ZG)
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log

✓
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snr

1 + |h|2ET

◆Gaussian Interference
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Discrete inputs in multi-user channels 

h1X1D + h2X2D = {h1x1D + h2x2D|x1 2 X1D, x2 2 X2D}

More complex in multi-user scenarios

�

X1D

X2D

h1

h2

Z

Y

“sum-set”
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Discrete inputs in multi-user channels 

h1X1D + h2X2D = {h1x1D + h2x2D|x1 2 X1D, x2 2 X2D}

More complex in multi-user scenarios

�

X1D

X2D

h1

h2

Z

Y

|h1X1D + h2X2D| = |{h1x1D + h2x2D|x1 � X1D, x2 � X2D}| ???
dmin(h1X1D + h2X2D) = min{|si � sj | : si, sj ⇥ h1X1D + h2X2D, i ⇤= j} ???

“sum-set”
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New phenomenon

Example, BPSK:
X1D = X2D = {�1,+1}

h1X1D + h2X2D
(h1=1,h2=2)

= {3,�1, 1, 3}
(h1=1,h2=1)

= {1, 0,�1}

“Cardinality is Sensitive to Channel Gain Values.”
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Overall proposition / tool

• cardinality of the sum-set


• minimum distance of the sum-set

Proposition: Let X ⇠ PAM(|X|, dmin(X)) and Y ⇠ PAM(|Y |, dmin(Y )).

Then for (h
x

, h
y

) 2 R2

|h
x

X + h
y

Y | = |X||Y | almost everywhere (a.e.), (1)

and dmin(h
x

X+h
y

Y ) � ......?

{h
x

X + h
y

Y }
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Cardinality

h1

h2

Set of values where cardinality is less 
is a union of lines, of measure 0

Proposition: Let X ⇠ PAM(|X|, dmin(X)) and Y ⇠ PAM(|Y |, dmin(Y )).

Then for (h
x

, h
y

) 2 R2

|h
x

X + h
y

Y | = |X||Y | almost everywhere (a.e.), (1)
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Minimum distance

Very Irregular 

Example:h2=1,  N1=N2=10

Can we even have a 
lower bound? 

gapOW-B  1

2

log

⇣⇡e
6

⌘
+

1

2

log

 
1 +

12

snr d2min(XD)

!

h1
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d m
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0.35

49



Minimum distance, case 1: no overlap

h1
2 3 4 5 6 7 8 9 10 11 12

d m
in

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Bound 1 HoldsBound 1 Does
Not Hold

We have

dmin(h
x

X+h

y

Y ) = min

�
|h

x

|dmin(X), |hy

|dmin(Y )

�

under the following conditions

either |Y ||h
y

|dmin(Y )  |h
x

|dmin(X),

or |X||h
x

|dmin(X)  |h
y

|dmin(Y ) (shown below).
16

}hxX }hxX }hxX}hxX

}hyY

|hx|dmin(X)|hy|dmin(Y )

Fig. 2: Structure of the sum-set under the conditions in Proposition 2.
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d m
in

 

 

Actual dmin

Lower bound on dmin with m=0.1

Lower bound on dmin with m=0.4

Lower bound on dmin with m=0.7

No Outage Set

Use Prop. 2Use Prop. 3
Prop. 2 is not valid

Need Outage Set

Fig. 3: Minimum distance (blue line) for the sum-set hxX + hyY as a function of hx for fixed

hy = 1 and for X ⇠ Y ⇠ PAM (10, 1). On the right of the vertical green line Proposition 2 is

valid. On the left of the vertical green line Proposition 3 must be used; in this case, the

minimum distance lower bound in (20a) holds for set of hx’s for which the blue line is above

the red / cyan / green line, where the red, cyan and green lines represent a different value for

the measure of the outage set.

July 1, 2015 DRAFT

50



Minimum distance, case 2: with overlap

dmin

h11X1

h11X1 + h12X2

Then, up to a set of (h
x

, h
y

) of measure no more than �, we have

dmin(h
x

X+h

y

Y ) � 
�,|X|,|Y | ·min

�
|h

x

|dmin(X), |hy

|dmin(Y ), ⇠|h
x

|,|h
y

|,|X|,|Y |
�
,


�,|X|,|Y | :=

�/2

1 + ln(max(|X|, |Y |)) ,

⇠|h
x

|,|h
y

|,|X|,|Y | := max

✓ |h
x

|dmin(X)

|Y | ,
|h

y

|dmin(Y )

|X|

◆
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Applications of discrete 
inputs
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Approximate capacity without codebooks

HK+Gaussian Inputs 
1/2 bit

R. Etkin, D. Tse, and H. Wang, “Gaussian interference 
channel capacity to within one bit,” IEEE Trans. Inf. 
Theory, vol. 54, no. 12, pp. 5534–5562, Dec. 2008.

A. Dytso, D. Tuninetti, and N. Devroye, “On the two-user 
interference channel with lack of knowledge of the interference 
codebook at one receiver,” IEEE Trans. Inf. Theory, vol. 61, no. 
3, pp. 1257–1276, March 2015.

“One-sided” HK+  
Mixed Inputs  

 3.34 bits
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Approximate capacity without codebooks

A. Dytso, D. Tuninetti, and N. Devroye, “Interference as Noise: 
Friend of Foe?”  IEEE Trans. Inf. Theory, Vol. 62, No. 6, pp. 3561 
-- 3596, June, 2016.

TINnoTS +  
Mixed Inputs  

 constant or log-log gaps

ChannelEncoder

Encoder

Decoder

F1

W1

W2

F2

F1

F2

Decoder

F1 F2p(y1, y2|x1, x2)

Xn
1

Xn
2

Y n
2

Y n
1

Ŵ1

Ŵ2

RTINnoTS

in

=
[

N1,N2,�1,�2

⇢
0  R

1

 I(X
1

;Y
1

)
0  R

2

 I(X
2

;Y
2

)

�
with

Xi =
p
1� �i XiD +

p
�i XiG,

�i 2 [0, 1],

XiD ⇠ PAM(Ni) ,

XiG ⇠ N (0, 1),

i = 1, 2.
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Approximate capacity without codebooks
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Friend of Foe?”  IEEE Trans. Inf. Theory, Vol. 62, No. 6, pp. 3561 
-- 3596, June, 2016.
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Ŵ1

Ŵ2
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1
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 I(X
2

;Y
2

)

�
with

Xi =
p
1� �i XiD +

p
�i XiG,

�i 2 [0, 1],

XiD ⇠ PAM(Ni) ,

XiG ⇠ N (0, 1),

i = 1, 2.

Choice of Ni, δi looks like discrete ⟺ 
Gaussian ⟺ private

public
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Approximate optimality of TINnoTS in Gaussian-IC

Very Weak

↵

Weak I Weak II Strong VeryStrong

1/2 2/3 1 2

gap = 1/2 gap = 3.79 gap = 1.25gap = O(log log(min(S, I))

up to an outage

of controllable measure

Gaussian Mixed Mixed Discrete Discrete
Xi =

p
1� �i XiD +

p
�i XiG, i 2 [1 : 2],

1 2
↵

2

1
5/3

2/31/2

dW (�)

TIN�G

↵ =
inrdB

snrdB

DoF gain over 
Gaussians with 

TINnoTS!
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Very Weak

↵

Weak I Weak II Strong VeryStrong

0 1/2 2/3 1 2

gap = 1/2 gap = 3.79 gap = 1.25gap = O(log log(min(S, I))

up to an outage

of controllable measure

Gaussian Mixed Mixed Discrete Discrete
Xi =

p
1� �i XiD +

p
�i XiG, i 2 [1 : 2],

Closed-form expressions 
for number of points, 
power splits and gap 

↵ =
inrdB

snrdB

Approximate optimality of TINnoTS in Gaussian-IC
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Key ideas + open problems

• use non-Gaussian inputs: good inputs, good interferers


• general tools on bounding dmin, mutual information applicable elsewhere?


• mixed inputs hence approximately optimal for the codebook oblivious G-IC
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Key ideas + open problems

• use non-Gaussian inputs: good inputs, good interferers


• general tools on bounding dmin, mutual information applicable elsewhere?


• mixed inputs hence approximately optimal for the codebook oblivious G-IC

• OPEN: better constellation than PAM? What about higher dimensions?

Capacity: C = limn!1 co

✓S
PXn

1 Xn
2

=PXn
1

PXn
2

⇢
0  R1  1

nI(Xn
1 ;Y n

1 )

0  R2  1
nI(Xn

2 ;Y n
2 )

�◆

R. Ahlswede, “Multi-way communication channels,” in Proc. IEEE Int. Symp. Inf. Theory, March 1973, pp. 23–52.

• OPEN: can we develop a smart set of multi-letter discrete inputs and 
evaluate these in the capacity achieving expression for the G-IC?

57

• OPEN: is the log log (min(S,I)) and outage fundamental?
• OPEN: are we essentially already using discrete inputs in practice?
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[Chunhua Geng, Syed A. Jafar, On the Optimality of Treating Interference as Noise: General 
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[Chunhua Geng, Navid Naderializadeh, Salman Avestimehr, Syed A. Jafar, On the 
Optimality of Treating Interference as Noise, IEEE Transactions on Information 

Theory, Vol. 61, No. 4, Pages: 1753-1767, April 2015.]

Characterizing when (low INR) TIN is optimal in larger interference networks:
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[F. Baccelli, A. El Gamal, D. Tse, “Interference Networks with Point-to-
Point Codes,” IEEE Trans. on Info. Theory, Vol. 57, No. 5, May 2011.]

[J. Sebastian, C. Karakus, S. Diggavi “Approximately achieving the feedback 
interference channel capacity with point-to-point codes’’ ISIT 2016.]

Using point-to-point codes in interference networks:

[B. Bandemer, A. El Gamal, Y.-H. Kim, “Optimal achievable rates for 
interference networks with random codes” Trans IT 2015.]
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Our message: use discrete inputs and TIN in interference networks for 

simple comm. where do not have synchronism or codebook knowledge 
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Basic model for interfering wireless channels: 
the interference channel
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use this channel model to exemplify the effect 
(or lack thereof) of several commonly made 
network information theoretic assumptions 

codebook knowledge

synchronization

channel state

small versus zero error



Approximate capacity of ICs with lack of 
synchronization

•in networks, often assume all nodes are synchronized

•this may be unrealistic sometimes….

of the random indices F1 and F2 of the transmitter codebooks, as in Fig. 2, similar to [16–18]. In [48],
for the case where only one Rx is oblivious / lacks codebook knowledge, we derived a novel outer bound
for a class of injective semi-deterministic IC; interestingly, we were able to characterize the capacity
region of the real-valued Gaussian noise channel to within 1/2 bit, but we were not able to determine the
set of optimal input distributions attaining such a gap. In [14], by having one Tx use a discrete input
(see motivating example in the previous section) we were able to show that, even without codebook
knowledge at one Rx, we may achieve arbitrarily close to the gDoF, or to within O(log(log(SNR))), of
the rate region outer bound of the IC with full codebook knowledge.

Our preliminary work highlights the following interesting new phenomena: 1) partial codebook knowl-
edge need not dramatically decrease the capacity of the IC; 2) inputs that are a mixture of discrete and
Gaussian parts may outperform i.i.d. Gaussian inputs; 3) the general lower bound in eq.(2), combined
with lower bounds on the cardinality and minimum distance of sum-sets, as well as with careful choices
of parameters in the discrete-Gaussian mixture, was crucial in obtaining analytical additive gap to ca-
pacity and gDoF results. While our initial results point to some surprising and new phenomena, much
remains to be done to obtain a comprehensive picture of the impact of codebook knowledge not only on
the capacity of networks, but also on what types of coding schemes may be useful in practice.

2.2 Theme 2: removing the assumption of global synchronism

In many existing communication systems, the synchronization of data streams is designed and imple-
mented separately from their encoding and decoding for error protection and correction. As such, most
information theoretic analysis of communication systems assumes that Txs and Rxs are synchronized.
For point-to-point systems this means that the Rx knows when the desired communication symbols start
and end. For networks, synchronization usually means that the multiple Txs and Rxs are both codeword
(frame) and symbol synchronous (see Fig. 3). This separation of synchronization and error correction
simplifies the system design, but is costly since some resources must be dedicated to synchronization.

Frame-asynchronous IC

 

 
Received signal at Rx 1

Symbol-asynchronous IC

Received signal at Rx 2

Δ1

Δ2

Codewords are not synchronized Symbols X1i of codeword X1 
n

Symbols X2j of codeword X2 
n

Symbols are synchronized 

Received signal at Rx 1

Received signal at Rx 2

!1

"2

Codewords are not synchronized Symbols X1i of codeword X1 
n

Symbols X2j of codeword X2 
n

Symbols are not synchronized 

Mild asynchronism Total asynchronism Strong asynchronism 

L11

L12

L21

L22

Δi

n → 0 Δi ∈{0,1,... n-1}
Inspired by continuous waveform channels

Lij = e���� 
Discrete-time channel has memory

Figure 3: Types of asynchronism to be considered for the interference channel.

Past work. Typically, in point-to-point channels, frame-synchronization is achieved by having the sender
periodically transmit dedicated pilot symbols which carry no data followed by separately encoded data
streams [101–103]. In the recent work [4, 5, 104, 105], the problem of jointly synchronizing and com-
municating data is considered; the work is motivated by bursty communication systems where frequent
re-synchronization may form a significant fraction of the total communication time. In [4, 5, 105] it is
shown that training-based schemes do not achieve the asynchronous capacity in general. In [4] a message
is encoded into a codeword and is sent over a memoryless channel; the start time of the transmission is
randomly and uniformly distributed over a transmission window of size A = e↵n, where ↵ is the “asyn-
chronism exponent” and n the block length (if the scaling of the window size is sub-exponential in n

8
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Approximate capacity of ICs with 
total asynchronism

Treat Interference as Noise without Time 
Sharing Inner Bound:

RTINnoTS
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�
No Time Sharing

•this is achievable by asynchronous G-IC, so our 
approximate gap to capacity results apply even without 
synchronization!
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[E. Calvo, J.R. Fonollosa, J. Vidal, ``On the Totally Asynchronous Interference Channel with Single-User Receivers’’ ISIT 2009.]
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use this channel model to exemplify the effect 
(or lack thereof) of several commonly made 
network information theoretic assumptions 

codebook knowledge

synchronization

channel state

small versus zero error
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Basic model for interfering wireless channels: 
the interference channel
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use this channel model to exemplify the effect 
(or lack thereof) of several commonly made 
network information theoretic assumptions 

codebook knowledge

synchronization

channel state

small versus zero error

Next talk?
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Basic model for interfering wireless channels: 
the interference channel
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use this channel model to exemplify the effect 
(or lack thereof) of several commonly made 
network information theoretic assumptions 

codebook knowledge

synchronization

channel state

small versus zero error



Zero-error versus epsilon error networks
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Network coding:
[M. Langberg, M. Effros, ``Network coding: is zero error always possible?” Allerton 2011.]

[T. Chan and A. Grant, ``On capacity regions of non-multicast networks” ISIT 2010]

later talks / speakers?
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does not affect things dramatically if use discrete inputs in Gaussian 

channels! “estimate” interference?

Conclusion for interference channel
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UIC is a great place to visit

- home of the “NICEST” lab

Natasha 
Devroye

Hulya 
Seferoglu

Besma 
Smida

Daniela 
Tuninetti

- home of the best “Brutalist” 
architecture in the world
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Questions + discussions now, later, email 
are always welcome

Natasha Devroye 
devroye@uic.edu 
www.ece.uic.edu/Devroye
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