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Fundamental Limits

“Noise Barrier'” — Shannon
“Bandwidth Barrier’ — MIMO
“Interference Barrier’ — 7

TDMA/FDMA/CDMA, Cellular-reuse patterns, Zero forcing,
Dirty Paper Coding, Successive Interference Cancellation,
Opportunistic Beamforming, Interference Alignment, Interference
Neutralization, Joint Space-Time Precoding, Rate Splitting,
Interference Forwarding, Elevated Multiplexing, Improper Signaling



Transmitters Receivers

X1 — — Y = \/EGHXl -+ \/5612)(2 -+ \/5613)(3 + Z;

X — — Y = \/EGlel + '\/EGQQXQ -+ \/EGQ3X3 + Z>

X3 — — Y3 = \/EG31X1 -+ \/EG?,QXQ -+ \/EG33X3 + Z3
E|X:2<1 Zi~N(0,1) Gi; = Gij; +€Gy; CSIT: G Perfect CSIR
One hop

MISO Broadcast Channel: ALL messages shared by all TX.

X Channel: Each Tx has an independent message for each RX.

Interference Channel: Each Tx has an independent message for its corresponding RX.



Exact Capacity




Exact Capacity

Approximate

Degrees of Freedom (DoF)




Limitations of DoF

Transmitters Receivers
X1 — — Y: = VPG11 X1+ VPG1xXs +VPGi13 X3 + Z4
X2 — — Yo = VPGo1 X1 + VPG Xs + VPG Xz + Zo
X3 — —+ Y3 = VPG X1+ VPG3X + VPG33 X3 + Z3
ElXi? <1 Z; ~N(0,1) Gi; = G'i,j + €G7;j CSIT: G Perfect CSIR
DOE = Lim Network Capacity _ No. of interference free Links
pP—oo Link Capacity ~ that can be created in the network

Unable to capture diversity of channel strength Levels.
Strong channel = Weak channel
Unable to capture diversity of channel knowledge Llevels.
Finite Precision CSIT = No CSIT
Perfect CSIT: DoF depend on Channels Rational/Irrational



Capacity

Bounded Gap Approximations

\ Progressive
Refinements

Approach

Degrees of Freedom (DoF)



Degrees of Freedom (DoF){} ... ...



Generalized Degrees of Freedom

[Etkin, Tse, Wang, IT Trans. 2008]
(Basis for Deterministic Models of [Avestimehr, Diggavi, Tse, IT Trans. 2011])

Transmitters Receivers

Xl — —>\/1 = \/PO‘HG21X1—|—\/PO‘12X2—|—\/PO‘13X3—|—Zl
Xo — — Y2 = VPG X1 + VP2 Xy + VP X3 4 £
X3 — — Y5 = VP¥ Ga1 X1 + VP X, + VP X3 + Z3
ElX:]* <1 Gij = Gij + VP PuGyy CSIT: G
Z: ~ N(0, 1) Perfect CSIR
GDoF — um Netyvork Cap§C|ty
pP—oo Link Capacity

FAQ: Linear scaling of powers for DoF was understandable.
But what does the exponential scaling of powers mean?



(Networks of Capacitated Links)

Network Capacity: C Network Capacity: C’

C' = 2C

If we wanted C, but it was somehow easier to find C’,
then we could find C as C = C’/2.



(Networks of Capacitated Links)

Network Capacity: C Network Capacity: C’

If we wanted C, but it was somehow easier to find C’,
then we could find C as C = C’ /7y



Intuition extended to Wireless Networks

Network Capacity: C Network Capacity: C’

Intuition: C’' = «C

If we wanted C, but it was somehow easier to find C’,
then we could find C approximately as C = C’ /7y

(Spatial Invariance Conjecture, Jafar, ITA 2014) Suppose we dou-
ble the number of antennas at every node (generic channels). Then
the network DoF must double as well.



Wireless Network

Network Capacity: C Network Capacity: C’

Yi = V/SNR; X; + N

Link Capacity C; ~ Log(SNR;) vC; = Log(SNRY)
Measure SNR in dB scale vCi = Log(107*)
define a; = Log15(SNR;)

v Define 107 = P YCi = Log(P*)
Y =VPxX + N
(GDoF Setting) c c
C~= Lim — = Lim

y—00 Y P—oo LOg(P)



DoF versus GDoF

DoF Perspective GDoF Perspective

AS v — o0 all channels equally strong relative strengths preserved

DoF metric scales SNR Llinearly (C; — C; + 7v)
GDoF scales SNR exponentially (C; — vC;).



Generalized Degrees of Freedom

Transmitters Receivers
X1 — — Y1 = VPG X1+ VP2 Xy + VP33 X3 + 23
X2 — — Y2 = VPG X1 + VP2 Xy + VP X3 4 Z£o
X3 — — Y3 = VPG X1 + VP Xy + VP X3 4 Z3
Zi ~ N(O, 1) Perfect CSIR

Network Capacit
GDoF = lim — pacty
pP—oo Link Capacity

The Next Frontier

GDoF Characterizations under arbitrary Levels
of channel knowledge, arbitrary Levels of channel strengths



Some Examples of Robust GDoF Results

e 2 user interference channel with arbitrary oy, Gij

e 2 user MISO BC with arbitrary aij, Bij

e K user IC: Optimality of treating interference as noise
® Topological Interference Management = Index Coding

® Optimality of TDMA /coloring for
Topological Interference Management and Index Coding



R. Etkin, D. Tse, H. Wang, Gaussian Interference Channel
Capacity to Within One Bit, 54(12), IT Trans. 2008.

Vo oan=1 I

d(a)

per user

2/3

1/2




Some Examples of Robust GDoF Results

® 2 user interference channel with arbitrary oy, Bij

e 2 user MISO BC with arbitrary aj, Bij

e K user IC: Optimality of treating interference as noise
® Topological Interference Management = Index Coding

® Optimality of TDMA /coloring for
Topological Interference Management and Index Coding



2 User MISO BC

Arbitrary channel strengths and uncertainty Levels [ArXiV 1602.02203, Davoodi, Yuan, Jafar]

A
11, Bi11

Yi = VPG X1+ VP¥M2G12Xy + £y
Yo = VPG X1+ VPY¥2GnXy + Zo

Qoo, B22 _ 5
Gkt = Gri+ VP PGy

max(a11, a12) + max(aor — a1 + Min(Bi1, Bi2), o2 — a12 + Min(Bi1, Bi2), 0)
max(a21, 022) + max(a11 — @21 + Min(Ba1, B22), d12 — A2z + Min(Ba1, B22), 0)

55
||

e Does not depend on strongest CSIT for each receiver.

e Optimal to serve only User 1 iff each Tx antenna prefers User 1
over User 2 by at least B1. 11 — a1 2> B1 and aiz — ax 2> B

e Sum GDoF vs CSIT budget (8 = >_ Bij) Ds(5)
when each Tx antennas prefer User 1,
and a11 + ao 2> aan + Qo

ot o2 3 AL L L LA L L L L L EL L L L L ELS

an+ (@ —an)t |=mceeemmmm =

Aligned Image Sets

max(au, a12)

S ——

- B/2 —
0 Q12 min(Qi11, @12) min(ai1, a12)
—Q22  —min(aol, 022) + min(az1, a22)




Some Examples of Robust GDoF Results

® 2 user interference channel with arbitrary oy, Bij

e 2 user MISO BC with arbitrary aij, Bij

e K user IC: Optimality of treating interference as noise
® Topological Interference Management = Index Coding

® Optimality of TDMA /coloring for
Topological Interference Management and Index Coding



TIN Optimality Condition

Strongest Interference  >trongest Interference )
from User i to Userzt

> N

/

K-user Gaussian IC



GDOoOF Region of TIN-optimal IC

Direct Characterization of GDoF Region:
Depends only on max strengths,
even though power optimization is fully involved.

(FM elimination of power control variables)

0<d; <2

0<dr <1

0<d;<1.5
i tdr <23
di +ds < 2.4
do +ds < 1.5
di + do + ds < 3.7
di +do +ds < 2.5

M = 4{(1,2)1(1,3),(2,3),(1,2,3),(1,3,2)}
all possible cycles in the channel




GDOoOF Region of TIN-optimal IC

Direct Characterization of GDoF Region:
Depends only on max strengths,
even though power optimization is fully involved.

(FM elimination of power control variables)

TXq RX1 0 S ds S >
0.5 0<dy<1
Y 0.2 Y 0<d3<1.5
Txo 1 Rx di+dx <23
di + ds < 2.4
do+ds < 1.5

di + do + ds < 3.7
di +do +ds < 2.5

M = 4{(1,2)1(1,3),(2,3),(1,2,3),(1,3,2)}
all possible cycles in the channel




GDOoOF Region of TIN-optimal IC

Direct Characterization of GDoF Region:
Depends only on max strengths,
even though power optimization is fully involved.

(FM elimination of power control variables)

TX1 RX1

0<d <2

0.1 0<dr <1

0<ds <15
di +dy <23
di +ds < 2.4
bt ads <15
| U dtdtd<3r

Txs Rx3s|  di+do+ds <25
1.5

Mk = {(1,2),(1,3)} (2,3),(1,2,3),(1,3,2)}
all possible cycles in the channel




GDOoOF Region of TIN-optimal IC

Direct Characterization of GDoF Region:
Depends only on max strengths,
even though power optimization is fully involved.

(FM elimination of power control variables)

0<d; <2

0<dr <1
Y Y 0<d3;<1.5
Txo 1 Rx di +dx <23
03 di +ds < 2.4
do+ds < 1.5
Y os Y di +do+ds < 3.7
TX3 p Rx3| di4+do+ds <25

Mk = {(1,2),(1,3)[(2,3)}(1,2,3),(1,3,2)}
all possible cycles in the channel




GDOoOF Region of TIN-optimal IC

Direct Characterization of GDoF Region:
Depends only on max strengths,
even though power optimization is fully involved.

(FM elimination of power control variables)

2
s Ry 0<d; <2
0. 0<d, <1
Y 0.2 Y 0 < ds i 1.5
TX2 1 sz di + d» S 2.3
di +ds < 2.4
d> +dz < 1.5
Y 0.5 Y d1 +do 4+ ds < 3.7
TX3 RX3 di +ds+dzs < 2.5
1.5

Mk ={(1,2),(1,3),(2,3),[(1,2,3)} (1,3,2)}
all possible cycles in the channel




GDOoOF Region of TIN-optimal IC

Direct Characterization of GDoF Region:
Depends only on max strengths,
even though power optimization is fully involved.

(FM elimination of power control variables)

2
™ Rx1 0<d <2
0.5 0<dr <1
Y Y 0<d3;<1.5
Txo 1 Rx di +dx <23
03 di +ds < 2.4
' do +ds < 1.5
! ) di+dx +ds < 3.7
TXs3 Rx3 di +ds +ds < 2.5
1.5

Nk = {(1,2),(1,3),(2,3),(1,2,3)J(1, 3,2)}
all possible cycles in the channel




GDOF Region of TIN-optimal IC

Direct Characterization of GDoF Region:
Depends only on max strengths,
even though power optimization is fully involved.

(FM elimination of power control variables)

0< dy <2
0< dp <1
0<d3<1.5
a1 +dr <23
di +ds <24
dr +ds < 1.5

di1 +do 4+ ds < 3.7

di1 +do+ds <25

|—|K — {(1’ 2)’ (1’ 3)’ (2' 3)’ (1’ 2’ 3)’ (1’ 31 2)} Naderializadeh, Avestimehr, ITLinQ: A New Approach for Spec-

trum Sharing in D2D Communication Systems, JSAC 2014.

all possible cycles in the channel Yi, Caire,Optimality of treating interference as noise: A com-

binatorial perspective, TIT 62(8), 2016.




Some Examples of Robust GDoF Results

® 2 user interference channel with arbitrary oy, Bij

e 2 user MISO BC with arbitrary aij, Bij

e K user IC: Optimality of treating interference as noise
® Topological Interference Management = Index Coding

® Optimality of TDMA /coloring for
Topological Interference Management and Index Coding



Topological Interference Management afar, IT Trans. 2014]
aq; € {0,1}, 684 =0

Index Coding
Transformation: TIM — Index Coding
TIM
Complements
< >

Topolo Graph
) P 9y P Antidote Graph
Given

The topology graph is the complement of the antidote graph
Arbitrary Multiple Unicast Message Set (each message has unique source, unique destination)

1. Index Coding Capacity Region includes TIM DoF region.

2. Equivalent for Linear schemes.



Some Examples of Robust GDoF Results

® 2 user interference channel with arbitrary oy, Bij

e 2 user MISO BC with arbitrary aij, Bij

e K user IC: Optimality of treating interference as noise
® Topological Interference Management = Index Coding

® Optimality of TDMA /coloring for
Topological Interference Management and Index Coding



Optimality of TDMA (Fractional Coloring)
for TIM (Index Coding)

[Yi, Sun, Jafar, Gesbert, ArXiv:1501.07870]

Given: Arbitrary Network Topology Graph Index Coding
Not Given: Message Set

(can be any multiple unicast setting)

TIM
Complements
= =
Topology Graph Antidote Graph
Is TDMA optimal? Is Fractional Coloring Optimal?

Optimal for every possible multiple unicast message set.
Optimal for entire DoF /capacity region.

Answer for both TIM and Index Coding:
Yes, if and only if network topology graph is chordal bipartite.




https://en.wikipedia.org/wiki/Chordal_graph
Chordal Graphs

Every cycle that can have a chord, must have a chord.

A graph is chordal if

it has no chordless cycles of Length > 4.
Network Topology graphs are Bipartite Graphs. 40\
What about bi-partite graphs?

Cycles cannot have odd Length.
Cycles of Length 4 cannot have chords.

A bipartite graph is chordal bipartite if
it has no chordless cycles of lLength > 6.

=><
=
2 Z

Chordal bipartite. Chordal bipartite. Not chordal bipartite.

TDMA /fractional-coloring optimal TDMA /fractional-coloring sub-optimal
for all message sets. for some message sets.



Sanity Check

Recall that TDMA is suboptimal.
Cannot be Chordal Bipartite.

Must have a chordless cycle
of length > 6




Applying the Result

TIM Index Coding
51 Dl
D
S5 2
D3
S3
D4
54 D5
Ss D
Topology Graph Antidote Graph

Topology Graph is Chordal Bipartite ¢/

= For any unicast message set
e TDMA achieves TIM DoF region.
e Fractional Coloring Achieves Index Coding Capacity Region.

Consider the messages: Wiz, Wha, Wa1, Was, Wies, Wiss, Wes.
What is the DoF/Capacity Region?



TIM
51 Dl
D
S5 g
D3
S3
D4
54 D5
Ss D

Topology Graph

DoF /Capacity Region

Index Coding

Antidote Graph

Messages: Wiz, Waa, W31, Was, Wiso, Wes, Wes



DoF /Capacity Region

Index Coding

Topology Graph Antidote Graph

Messages: Wiz, Waa, W31, Was, Wiso, Wes, Wes



Index Coding

Topology Graph Antidote Graph

Messages: Wiz, Waa, W31, Was, Wiso, Wes, Wes

i Wis Wes
Message Conflict Graph
Messages conflict if
W4
they come from the same source,
are intended for the same destination,
or if the source of one interferes Wes

with the destination of the other W31 Wis
Message Conflict Graph

Wes




Index Coding

Topology Graph Antidote Graph

Messages: Wiz, Waa, W31, Was, Wiso, Wes, Wes

i Wis Wes
Message Conflict Graph
Messages conflict if
W4
they come from the same source,
are intended for the same destination,
or if the source of one interferes Wes

with the destination of the other W31 Wis
Message Conflict Graph

Wes




Index Coding

Topology Graph Antidote Graph

Messages: Wiz, Waa, W31, Was, Wiso, Wes, Wes

i Wis Wes
Message Conflict Graph
Messages conflict if
W4
they come from the same source,
are intended for the same destination,
or if the source of one interferes Wes

with the destination of the other W31 Wis
Message Conflict Graph

Wes




Index Coding

Topology Graph Antidote Graph

Messages: Wiz, Waa, W31, Was, Wiso, Wes, Wes

i Wis Wes
Message Conflict Graph
Messages conflict if
W4
they come from the same source,
are intended for the same destination,
or if the source of one interferes Wes

with the destination of the other W31 Wis
Message Conflict Graph

Wes




DoF /Capacity Region Index Coding
(Clique Inequalities)

O D>
O D5
2O Dy
O Ds
O Deg
Topology Graph Antidote Graph
TIM DoF Region Index Coding Capacity Region
dos +d31 < 1 Roa+R31 < 1
d13—|—d31—|—d63 S 1 R13+R31+R63 S 1
A3+ das +des < 1 Riz+das+ Res < 1 Wis Wes
das +dss +dezs < 1 Rus+ Rss+ Rezs < 1
das +dss +dsy < 1 Ras+ Rss+Rso < 1 Wy, Wes

DoF (Capacity) Region (Clique Inequalities)
For each clique of message conflict graph, W1 Wias

sum of DoF (rates) < 1. Message Conflict Graph



DoF /Capacity Region Index Coding

O D,
O Do
O D5
2O Dy
Ds
O Dg
Topology Graph Antidote Graph
TIM Index Coding
If the Topology Graph If the complement of the antidote graph
is chordal-bipartite is chordal-bipartite
then for any multiple unicast message set then for any multiple unicast message set
the DoF region the Capacity region
IS achieved by TDMA IS achieved by Fractional Coloring
and is described by the clique inequalities and is described by the clique inequalities
of the message conflict graph. of the message conflict graph.

Next: Proof.



Demand Graph

[Neely, Tehrani, Zhang, IT Trans. 2013]

Index Coding

Topology Graph

Demand Graph

Wi on the Lleft

D; on the right

Edge from Wz'j to its D;
Edge from D; to Wi,

if D; is not connected to Sg.

Acyclic Demand Graph Bound
If Demand Graph is acyclic for

a subset of messages,

then the sum-rate/DoF

for that set of messages is < 1.




Proof of Converse (Outer Bound)

Index Coding

Topology Graph

Claim

If Topology Graph G is chordal bipartite
then every clique in Message Conflict Graph
induces an Acyclic Demand Graph.

O Do
W31 @ A
Wis Wes ODs
Was >
ODa4
W4 Wis Wes
Ds
Wis
Wi
W31 Was >2 W3 De

Message Conflict Graph Demand Graph



Proof of Converse (Outer Bound)

Index Coding

Topology Graph

Claim

If Topology Graph G is chordal bipartite
then every clique in Message Conflict Graph
induces an Acyclic Demand Graph.

O Do
W31 @ A
Wis Wes ODs
Was >
ODa4
W4 Wis Wes
Ds
Wis
Wi
W31 Was >2 W3 De

Message Conflict Graph Demand Graph



Index Coding

Antidote Graph

Topology Graph

Claim
If Topology Graph G is chordal bipartite Wis ‘\)O
D1

then every clique in Message Conflict Graph
induces an Acyclic Demand Graph.

W31
Wis Wes Ds
Was Wss  Ris+ Ra1i 4+ Res < 1
W
W31 Wis > W63F Ds

Message Conflict Graph Demand Graph



Proof of Converse (Outer Bound)

Index Coding

Topology Graph

Claim

If Topology Graph G is chordal bipartite
then every clique in Message Conflict Graph
induces an Acyclic Demand Graph.

O Do
W31 @ A
Wis Wes ODs
Was >
ODa4
W4 Wis Wes
Ds
Wis
Wi
W31 Was >2 W3 De

Message Conflict Graph Demand Graph



Index Coding

Antidote Graph

Topology Graph
Claim
If Topology Graph G is chordal bipartite Wis
then every clique in Message Conflict Graph D

induces an Acyclic Demand Graph.

Wiz Wes

Was
D
W24 Wes !
R13 + Ras + Re3 < 1
Wi
W31 Was >2 Wess o— 4)006

Message Conflict Graph Demand Graph



Proof of Converse (Outer Bound)

Index Coding

Topology Graph

Claim

If Topology Graph G is chordal bipartite
then every clique in Message Conflict Graph
induces an Acyclic Demand Graph.

O Do
W31 @ A
Wis Wes ODs
Was >
ODa4
W4 Wis Wes
Ds
Wis
Wi
W31 Was >2 W3 De

Message Conflict Graph Demand Graph



Index Coding

Antidote Graph

Topology Graph
Claim
If Topology Graph G is chordal bipartite
then every clique in Message Conflict Graph

induces an Acyclic Demand Graph.

Wis Wes
Was
W .\x}&;
24 Wes Rss + Rss + Re3 < 1
Ds
W Wes
W31 Wis >2 Wi —>(Ds

Message Conflict Graph Demand Graph



Proof of Converse (Outer Bound)

Index Coding

Topology Graph

Claim

If Topology Graph G is chordal bipartite
then every clique in Message Conflict Graph
induces an Acyclic Demand Graph.

O Do
W31 @ A
Wis Wes ODs
Was >
ODa4
W4 Wis Wes
Ds
Wis
Wi
W31 Was >2 W3 De

Message Conflict Graph Demand Graph



Index Coding

Antidote Graph

Topology Graph
Claim
If Topology Graph G is chordal bipartite
then every clique in Message Conflict Graph

induces an Acyclic Demand Graph.

R R Rss < 1
Wis Wes 45 + Rs2 + Rs5 <

Wi
W31 Wis >

Message Conflict Graph Demand Graph



Index Coding

Topology Graph
Claim
If Topology Graph G is chordal bipartite
then every clique in Message Conflict Graph

induces an Acyclic Demand Graph.

Wiz Wes

Wi
W31 Wis >

Message Conflict Graph Demand Graph



Proof of Converse (Outer Bound)

Index Coding

Topology Graph Antidote Graph
Claim
If Topology Graph G is chordal bipartite
then every clique in Message Conflict Graph Ros 4+ Ra; < 1
induces an Acyclic Demand Graph. —
Y P Riz+ R31+ Re3s < 1
" " Riz+das + Rez < 1
>’ > Rss + Rss + Rezs < 1
Ras + Rss + Rso < 1
W4 Wis : - .
Clique Inequalities provide
Capacity Region Outer Bounds
W, .
Wi Was 52 True for this example.

Message Conflict Graph General Proof?



Claim

If Topology Graph G is chordal bipartite
then every clique in Message Conflict Graph
induces an Acyclic Demand Graph.

Proof by Contradiction:

Suppose a clique in message conflict graph
induces a demand graph that has directed cycles.

Choose the shortest such cycle.

It must be a chordless cycle.

(Otherwise the chord creates a shorter directed cycle)



Claim

If Topology Graph G is chordal bipartite
then every clique in Message Conflict Graph
induces an Acyclic Demand Graph.

Proof by Contradiction:

Suppose a clique in message conflict graph
induces a demand graph that has directed cycles.

Choose the shortest such cycle.

It must be a chordless cycle. Wi

A chordless cycle in a demand graph, Wa
cannot involve multiple messages from
the same source.

Suppose W7, Ws come from the same source.

Wi must have an incoming edge from some destination D in the
induced cycle.

W5 must also have an incoming edge from same destination D in
the induced cycle.

D has multiple outgoing edges, so the cycle cannot be chordless.



Claim

If Topology Graph G is chordal bipartite
then every clique in Message Conflict Graph
induces an Acyclic Demand Graph.

Proof by Contradiction:

Suppose a clique in message conflict graph
induces a demand graph that has directed cycles.

Choose the shortest such cycle.

It must be a chordless cycle.

A chordless cycle in a demand graph,
cannot involve multiple messages from
the same source.

Let the Length of this chordless cycle be n.
1. must be even (because the demand graph is bi-partite).

n # 2 because the destination must hear its desired source.

n # 4 because then the messages do not conflict.

(the messages must conflict because W D
they form a clique in the message conflict graph)

Son €{6,8,10,---} w’ D’



Claim
If Topology Graph G is chordal bipartite
then every clique in Message Conflict Graph

induces an Acyclic Demand Graph.

Proof by Contradiction: (continued)
Chordless cycle in induced demand graph of lLengthn € {6,8,10,---}

S1 =W D+ S, [ = -O D4
So = Wh D» S, @-— -O D>
53 — W3 Ds 53 [ & -O D3
 J
|
 J
Sn/2 0- O Dn/2
Snio — Whyo D2
Chordless Cycle in Demand Graph Implies Chordless Cycle of Length 6

in Topology Graph G



Claim
If Topology Graph G is chordal bipartite
then every clique in Message Conflict Graph

induces an Acyclic Demand Graph.

Proof by Contradiction: (continued)

S, — W1 D+
52 — W2 D2
S3 —> Ws Ds
o
o
o
Sn/o — Whyo D /2

Chordless Cycle in Demand Graph

Contradiction!

Sq D1

52 D2

Ss3 -O D3
Sni2 @ D2

Implies Chordless Cycle of Length 6
in Topology Graph G

But G is chordal bipartite.



Achievability

Whatever we need, in graph theory there is a theorem for that.

Converse

If network topology graph G is chordal bipartite,
then the clique inequalities of the message conflict graph

v are outer bounds on the capacity region.

Achievability
Why is this outer bound achievable with TDMA?

Message Conflict Graph is G2,
i.e., the square of the Line graph of G

If G is chordal bipartite,
Topology Graph then it is weakly chordal.

If G is weakly chordal,
then G2 is also weakly chordal.

Weakly chordal graphs are perfect graphs.

The region described by clique inequalities of perfect graphs
has integral vertices

Every vertex of outer bound region is achievable by TDMA.

TDMA achieves the entire DoF region.
Fractional coloring achieves the entire capacity region.



What if Topology Graph is Not Chordal Bipartite?
Contains chordless cycle of length > 6

Then there exists a multiple unicast message set
for which TDMA is not optimal.

Case 1: n/2 is odd.

4
.- .
4

(Not Chordal Bipartite)
Topology Graph

TDMA (fractional coloring) can only achieve total DoF (rate) < 1.
Multicast achieves DoF (rate) 3/2.



What if Topology Graph is Not Chordal Bipartite?

Then there exists a multiple unicast message set
for which TDMA is not optimal.

Case 2: n/2 is even.

e

Topology Graph
(Not Chordal Bipartite)

TDMA (fractional coloring) can only achieve total DoF (rate) < 2.
Interference Alignment achieves DoF (rate) = 8/3 [Jafar, IT Trans 2014]



What if Topology Graph is Not Chordal Bipartite?

Then there exists a multiple unicast message set
for which TDMA is not optimal.

Case 2: n/2 is even.

/

Via + Vib Vi(b' 4+ d') 4+ vaa’ + vac’

C V / / d/ /

/ﬁ voc +vid @ vo (' + f) +vid + vze

€ v
Topology Graph vse + Vo f va(e! + h') 4 Vof’ + vag’
(Not Chordal Bipartite) s
g v/

vag + vsh @ va(a' 4+ g') + vit’ + v3h

Vi, Vo, V3, V4 are 3 X 1 vectors.
Align interference to D; along Vv;. Any v;, V4, Vi are Linearly independent.
8 symbols sent over 3 channel uses.
Interference Alignment achieves 8/3 DoF.
(Equiv. IA achieves rate 8/3 for Index Coding) (Incidentally, 8/3 is optimal.)

TDMA (fractional coloring) is not optimal.



Conclusion

Fundamental Limits
Robust insights
G DO |: Vast scope
Challenging
Not always beyond reach



