
Decentralized Optimization under Asynchrony and Delays

Wotao Yin (UCLA/Math)

joint with: Tianyu Wu (Math), Kun Yuan (EE), Qing Ling (USTC/Auto),
Ali Sayed (EE)

Emerging Wireless Networks @ IPAM — February 7, 2017

1 / 38

Background

Decentralized optimization

• G = (V,E) has n = |V | agents and is strongly connected

• consensus optimization: find a consensus solution to

minimize
x1,...,xn∈Rp

n∑

i=1

fi(xi) subject to xi = xj , ∀ edge (i, j).

• assumption: no center, only neighbors can communicate

• benefits: no long-dist communication, privacy, fault tolerance

2 / 38

Applications

• Sensor networks (signal processing, tracking, ...)

• Distributed control (UAVs, cars, ...)

• Distributed learning (classification, dictionary learning, ...)

3 / 38

Consensus averaging (product of stochastic matrices)

• data: each agent i has a number yi

• goal: compute ȳ =
∑n

i=1 yi

• if G is a complete graph, then trivial to solve.

• in general, an iterative algorithm:

• strategy: average with neighbors’s iterates

xk+1
i ←

∑

j∈Ni∪{i}

wijx
k
j

• thus, entire network iterates (matrix-form)

xk =Wxk−1 =W 2xk−2 = ∙ ∙ ∙ =W kx0.

• product of sto matrices (Touri-Nedic’12), optimize W (Lin-Boyd’04),

PushSum (Kempe et al’03) ...

4 / 38

Decentralized gradient descent

• consensus average is equivalent to

minimize
x1,...,xn

n∑

i=1

|xi − yi|
2 subject to xi = xj , ∀ edge (i, j).

• more general, consensus minimization

minimize
x1,...,xn

n∑

i=1

fi(xi) subject to xi = xj , ∀ edge (i, j).

• decentralized gradient descent (Nedic-Ozdaglar’09, related to diffusion):

xk+1
i ←

∑

j∈Ni∪{i}

wijx
k
j−α∇fi(x

k
i)

• easy to implement, easy to generalize

• if α is fixed, converge to approximate, non-consensual solution

• so, use either a small α or diminishing α = O(1/kε), ε ∈ (0, 1]

5 / 38

EXTRA (Shi et al’14)

• much faster than DGD, converge with a fixed α

• three-point iteration

xk+1 ← (W + I)xk −
1
2

(W + I)xk−1 − α
(
∇f(xk)−∇f(xk−1)

)

• interpretation: DGD with correction

xk+1 ←Wxk − α∇f(xk) +
k−1∑

i=0

1
2

(W − I)xi

︸ ︷︷ ︸
correction

• also from linearized ADMM or monotone operator splitting

• generalized to proximable functions PG-EXTRA (Shi et al’15) and

Nesterov acceleration (Ye et al’15)

6 / 38

Example: decentralized least squares fi = ‖Aixi − bi‖2

0 1000 2000 3000 4000 5000 6000 7000 8000
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

k

R
e
s
id
u
a
l

DGD with fixed α

DGD with α
k
= α/k1/3

DGD with α
k
= α/k1/2

EXTRA with fixed α

7 / 38

Example: decentralized sum of Huber functions fi = h(Aixi − bi)

0 500 1000 1500 2000 2500 3000
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

k

R
e
s
id
u
a
l

DGD with fixed α

DGD with α
k
= α/k1/3

DGD with α
k
= α/k1/2

EXTRA with fixed α

8 / 38

Decentralized ADMM (Schizas et al’08)

• ADMM:

minimize
x,y

f(x) + g(y) subject to Ax+By = b.

f, g can be nonsmooth. Alternates two simpler subproblems.

• ADMM reformulation for decentralized optimization ():

minimize
{xi}i∈V , {yij}(i,j)∈E

∑
i∈V fi(xi)

subject to xi = yij , xj = yij , ∀(i, j) ∈ E

• ADMM alternates between two steps

• update xi while fixing yij , by each agent
• update yij and dual var while fixing xi’s, between each edge (i, j)

• also very fast

9 / 38

Go Asynchronous

Sync versus Async

Agent 1

Agent 2

Agent 3

idle idle

idle

idle

Synchronous

(wait for the slowest)

Agent 1

Agent 2

Agent 3

Asynchronous

(non-stop, no wait)

10 / 38

How to synchronize?

Use:

• global clock, coordinator

• barrier, memory locks, semaphore, mutex, interrupt mask

• conditional variables, atomic variables, while-loop wait

which lead to synchronization overheads

11 / 38

Speed comparisons

CPU speed� streaming speed � response speed

async speedup

48-core workstation 5∼30x

cluster 10∼100x

decentralized significant

12 / 38

Naive approach work?

Keep existing algorithms, just add random activation and/or delays

• async DGD: still converge :-)

• async EXTRA or D-ADMM: fails to converge :-(

0 500 1000 1500 2000 2500 3000
10−30

10−25

10−20

10−15

10−10

10−5

100

epoch

di
st

an
ce

 to
 s

ol
ut

io
n

Sync EXTRA

Async EXTRA (naive)

13 / 38

Async does not always work

x2 update is delayed; distance to solution increases!

14 / 38

Async does not always work

x2 update is delayed; distance to solution increases!

15 / 38

Async does not always work

x2 update is delayed; distance to solution increases!

16 / 38

Async does not always work

If x1 is updated more frequently than x2

then a divergent example is easy to find.

17 / 38

How to make async work?

• use a nice iteration operator T , for example,

• ⇒ sufficient objective descent, or
• ⇒ nonexpansive toward the solution

• skillfully select ik (index of kth coordinate update)

• or both

18 / 38

History of Async Algorithms

Brief history of async algorithms

• 1969 – a linear equation solver by Chazan and Miranker;

• 1978 – fixed-point problems by Baudet under the absolute-contraction1

• next 20–30 years, many papers on linear, nonlinear and differential

equations

• 1989 – Parallel and Distributed Computation: Numerical Methods by

Bertsekas and Tsitsiklis.

• 2000 – Review by Frommer and Szyld.

• 1991 – gradient-projection itr assuming a local linear-error bound by Tseng

• 2001 – domain decomposition assuming strong convexity by Tai & Tseng

1An operator T : Rn → Rn is absolute-contractive if |T (x)− T (y)| ≤ P |x− y|, component-wise, where
|x| denotes the vector with components |xi|, i = 1, ..., n, and P ∈ Rn×n+ and ρ(P) < 1.

19 / 38

Brief history of async algorithms

• 2011 – Hogwild!, JellyFish, Lian’15, Parallel stochastic gradient descent.

• 2013 – Liu eta al’13, Liu-Wright’14, Sto coordinate descent (CD) for

convex composite minimization.

• 2015 – Hsieh et al., Sto dual CD for regression problems.

ARock: sto coordinate update for fixed-point problems, ADMM etc.

• 2016 – Davis, Cannelli et al: Nonconvex sto-CD. Hannah-Y.’16, Peng at

al.’16: “unbounded” delay.

• Decentralized: async EXTRA, Eisen et al’16: quasi-Newton

• Async sto (splitting/distributed/incremental) methods: Wei-Ozdaglar’13,

Iutzeler et al’13, Zhang-Kwok’14, Hong’14, Chang et al’15

20 / 38

ARock framework

ARock2: Async-parallel coordinate update

• problem: x = T (x), where x = (x1, . . . , xm)

• sub-operator Si(x) := xi − (T (x))i

• algorithm: each agent randomly picks ik ∈ {1, . . . ,m}:

xk+1
i ←

{
xki − ηkSi(x

k−dk), if i = ik

xki , otherwise.

• assumptions: nonexpansive T , no locking (dk is a vector), atomic update

• guarantee: almost sure weak convergence under proper ηk

2Peng-Xu-Yan-Y. SISC’16
21 / 38

Convergence results

Definitions: m is # coordinates, τ is the maximum delay.

Theorem (convergence)

Assume that T is nonexpansive and has a fixed point. Let (xk)k≥0 be the

sequence generated by ARock with the step sizes ηk ∈ [ηmin,
1

1+2 τ√
m

), ∀k.

Then, with probability one, (xk)k≥0 weakly converges to a fixed point of T .

Theorem (linear rate)

If S is quasi-μ-strongly monotone if 〈x− y, Sx− Sy〉 ≥ μ‖x− y‖2 for any

x ∈ H and y ∈ zerS := {y ∈ H : Sy = 0}, then with certain fixed step size

E‖xk − x∗‖2 ≤ ck ∙ ‖x0 − x∗‖2, with c < 1.

22 / 38

Unbounded delays3 with known distribution

• jk,i: delay of xi at iteration k

• P` := Pr[maxi{jk,i} ≥ `]: iteration-independent distribution of max delay

• ∃B 3 ∀k, |jk,i − jk,i′ | < B: xi’s delays are evenly old at each iteration

Theorem

Assume that T is nonexpansive and has a fixed point. Fix c ∈ (0, 1). Use fixed

step size η = cH for either of the following cases:

1. if
∑
`
(`P`)1/2 <∞, set H =

(
1 + 1√

m

∑
`
P

1/2
` (`1/2 + `−1/2)

)−1

2. if
∑
`
`P

1/2
` <∞, set H =

(
1 + 2√

m

∑
`
P

1/2
`

)−1

Then, with probability one, xk ⇀ x∗ ∈ FixT .

3R.Hannah and W.Yin’16
23 / 38

Arbitrary unbounded delays4

• jk,i: async delay of xi at iteration k

• jk = maxi{jk,i}: max delay at iteration k

• lim inf jk <∞: all but finitely many iterations have a bounded delay

Theorem

Assume that T is nonexpansive and has a fixed point. Fix c ∈ (0, 1) and

R > 1. Use step sizes

ηk = c
(

1 +
Rjk−1/2

√
m(R− 1)

)−1

.

Then, with probability one, xkbnd ⇀ x
∗ ∈ FixT .

• Optionally optimize R based on {jk}.

4R.Hannah and W.Yin’16
24 / 38

Convergence theory: take-home messages

• Has rigorous convergence guarantees, even without memory locks

• Speed depends on load balance (LB):

• good LB: async is noticeably faster than sync

• mediocre LB: async is significantly faster than sync

• poor LB: async is order-of-magnitude faster than sync

• Scalability: assume: m blocks and good LB

• blocks fully coupled: scale up to p ∼
√
m agents

• blocks loosely coupled: scale up to p ∼ m agents

25 / 38

Async EXTRA

Async EXTRA overview

• uncoordinated: agents start and complete at any time

• delays Okay, either bounded or unbounded

• however, random activations and independent delays

26 / 38

Async EXTRA technical overview

• rewrite sync-EXTRA into a fixed-point iteration:

zk+1 = T (zk)

where T has some contractive property, zk = (xk, dual vark)

• define kth iteration at completion of kth update, by some agent ik

• async iteration:

zk+1
i =

{
zki + η(T − I)i(ẑk), i = ik,

zki , i 6= ik.

where ẑk is delayed information and η ≤ 1 is damping.

• analysis: find the weakest assumptions so that zk → z∗.

27 / 38

Terminology of async decentralized algorithms

• single activation: a random agent/edge at a time, but no overlap or delay

(Boyd et al’06, Dimakis et al’10)

• multi-activation: many random agents/edges at a time, no overlap or

delay (Iutzeler et al’13, Lorenzo et al’12, Wei-Ozdaglar’13,

Hong-Chang’15)

• zero delay: random activations, link failures, arrivals of information

(Nedic-Olshevsky’15, Zhao-Sayed’15)

• fixed delay: coordinated, no delay after adding dummy nodes/edges

(Tsianos-Rabbat’12)

• ideal: uncoordinated (start an update at any time, run for any duration),

allowing delays, no global clock

28 / 38

Async EXTRA

• si are convex Lipschitz-differentiable, ri are proximable

• formulation:

minimize
x1,∙∙∙ ,xn∈Rp

n∑

i=1

si(x
i) +

n∑

i=1

ri(x
i),

subject to x1 = x2 = ∙ ∙ ∙ = xn.

29 / 38

Async EXTRA algorithm

Algorithm 1: Async EXTRA

initialization: {xi,0}, {ye,0}, counter k = 0;

while every agent i asynchronously do
compute (30) with whatever information it has;

send xi,k+1 and {ye,k+1}e∈Li to neighbors;






computing:

x̃i,k+1=proxαri

(∑

j∈Ni

wijx
j,k−τkj−α∇si(x

i,k−τki)−
∑

e∈Ei

veiy
e,k−δke

)

ỹe,k+1=ye,k−δ
k
e +

(
veix

i,k−τki + vejx
j,k−τkj

)
, ∀e ∈ Li;

damped updates:

xi,k+1 = xi,k + ηi
(
x̃i,k+1 − xi,k−τ

k
i

)
,

ye,k+1 = ye,k + ηi
(
ỹe,k+1 − ye,k−δ

k
e

)
, ∀e ∈ Li,

(1)

30 / 38

Deriving Async EXTRA

• original matrix form:

minimize
X∈Rn×p

s(X) + r(X),

subject to (I −W)X = 0.

• scaled incidence matrix V such that V TV = 1
2 (I −W)

• same problem, but constraints (metric) are changed:

minimize
X∈Rn×p

s(X) + r(X),

subject to V X = 0.

31 / 38

• apply Condat-Vu primal-dual splitting:
{
Y k+1 =Y k + V Xk,

Xk+1 =proxαr[Xk−α∇s(Xk)−V >(2Y k+1−Y k)].

• eliminate Y k+1 for 2nd line, use W = I − 2V TV , arrive at
{
Y k+1 = Y k + V Xk,

Xk+1 = proxαr[WXk−α∇s(Xk)−V >Y k].

• this final iteration operator is nonexpansive, thus ARock is applicable

32 / 38

Simulation setup

• 10 nodes randomly placed in a 30×30 area

• 14 edges (i, j) under dist(i, j) < 15

• simulated computing times ∼ exp(1/(2 + |μ̄|)) and μ̄ ∼ N(0, 1)

• simulated communication delays ∼ exp(1/0.6)

• compare rel.errors: sync-DGD, async-DGD, sync-EXTRA, async-EXTRA

33 / 38

Decentralized `1 compressed sensing

0 500 1000 1500 2000
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Time(ms)

R
el

at
iv

e
er

ro
r

Sync-EXTRA
Async-EXTRA

Sync-DGD
Async-DGD

34 / 38

Decentralized classification (sparse log. regression)

0 100 200 300 400 500 600 700
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Time(ms)

R
el

at
iv

e
er

ro
r

Sync-EXTRA
Async-EXTRA

Sync

Async

35 / 38

Decentralized matrix completion (Ling et al’11)

0 200 400 600 800 1000
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Time(ms)

R
el

at
iv

e
er

ro
r

Sync-EXTRA
Async-EXTRA

Sync

Async

36 / 38

Summary

async algorithm:

• async reduces idle time, communication congestion, coordination

• surprising many parallel algorithms still work if async’d

not presented: using expander graphs reduces communication in decentralized

optimization (Chow et al’16)

37 / 38

Thank you!

Acknowledgements: NSF

All papers in this talk can be found online. Paper of this work.

38 / 38

http://www.math.ucla.edu/~wotaoyin/papers/async_extra.html

	Background
	Go Asynchronous
	History of Async Algorithms
	ARock framework
	Async EXTRA
	Summary

