Decentralized Optimization under Asynchrony and Delays

Wotao Yin (UCLA/Math)

joint with: Tianyu Wu (Math), Kun Yuan (EE), Qing Ling (USTC/Auto),
Ali Sayed (EE)

Emerging Wireless Networks @ IPAM — February 7, 2017

1/38

Background

Decentralized optimization

G = (V,E) has n = |V] agents and is strongly connected

consensus optimization: find a consensus solution to

T1,...,Tn ERP

minimize Z fi(zs) subject to x; = xz;, Vedge (3,]).
i=1

assumption: no center, only neighbors can communicate

benefits: no long-dist communication, privacy, fault tolerance

38

Applications

= Sensor networks (signal processing, tracking, ...)
= Distributed control (UAVs, cars, ...)

= Distributed learning (classification, dictionary learning, ...)

Consensus averaging (product of stochastic matrices)

data: each agent ¢ has a number y;
goal: compute j = " | i
if G is a complete graph, then trivial to solve.

in general, an iterative algorithm:

= strategy: average with neighbors’s iterates
S Y
JEN;U{i}
= thus, entire network iterates (matrix-form)

k k—1 2 _k—2 k_0O
x" =Wx =W"x =--.=W"x".

= product of sto matrices (Touri-Nedic'12), optimize W (Lin-Boyd'04),
PushSum (Kempe et al’03) ...

Decentralized gradient descent

consensus average is equivalent to

n
minimize Z |zi —yi|> subject to x; = x;, Vedge (i,7).
L1,y Ty

i=1
more general, consensus minimization
n
minimize E fi(z;) subject to z; = x;, Vedge (i,7).

TLyesTn
i=

decentralized gradient descent (Nedic-Ozdaglar'09, related to diffusion):

k1 k e (ke
it — Z wijx; —aV fi(z;)

JEN;U{i}

easy to implement, easy to generalize
if v is fixed, converge to approximate, non-consensual solution

so, use either a small « or diminishing a = O(1/k°), € € (0, 1]

EXTRA (Shi et al'14)

much faster than DGD, converge with a fixed «

three-point iteration

M (W4 D)x" - %(W +Dx" - a(Vf(xk) — Vi

interpretation: DGD with correction

x" T WxP — avE(x +Z (W - Dx

correction

also from linearized ADMM or monotone operator splitting

generalized to proximable functions PG-EXTRA (Shi et al'15) and

Nesterov acceleration (Ye et al'15)

1))

Example: decentralized least squares f; = ||A;x; — b;||?

10
DGD with fixed o
- - -DGD with o* = a/k'/?
== DGD with o* = a/k'/*
TRA with fixed o
107 L
E el
107 =
210
]
~
107
10°
10°°
0

1000 2000 3000 4000 5000 6000 7000 8000
k

7/38

Example: decentralized sum of Huber functions f; = h(A;z; — b;)

Residual
=
o,

FOTTTTTI oo

DGD with fixed o
- - -DGD with o* = a/k'/?
== DGD with o* = a/k'/*
EXTRA with fixed o

500

1000 1500
k

2000 2500 3000

Decentralized ADMM (Schizas et al’08)

ADMM:

minimize f(z)+ g(y) subject to Az + By =b.

z,y

f,g can be nonsmooth. Alternates two simpler subproblems.

ADMM reformulation for decentralized optimization ():

minimize -y fi(z)
{zitiev . {vijta,er ZZGV o

subject to z; = yij, T; = yij, V(i,j) € E

ADMM alternates between two steps
= update x; while fixing y;;, by each agent
= update y;; and dual var while fixing z;'s, between each edge (3, j)

also very fast

Go Asynchronous

Sync versus Async

Agent 1 [N [
P o BT —
Agent s [T]

Synchronous
(wait for the slowest)

Agent 1 [T
Agent 2 [
Agent 3 []

Asynchronous
(non-stop, no wait)

10/38

How to synchronize?

Use:

= global clock, coordinator
= barrier, memory locks, semaphore, mutex, interrupt mask

= conditional variables, atomic variables, while-loop wait

which lead to synchronization overheads

Speed comparisons

CPU speed > streaming speed > response speed

async speedup

48-core workstation

5~30x

cluster

10~100x

decentralized

significant

Naive approach work?

Keep existing algorithms, just add random activation and/or delays

= async DGD: still converge :-)

= async EXTRA or D-ADMM: fails to converge :-(

Async EXTRA (naive)

Sync EXTRA

distance to solution

0 500 1000 1500 2000 2500 3000
epoch

Async does not always work

k+1

Async does not always work

Async does not always work

T2 update is delayed; distance to solution increases!

16 /38

Async does not always work

If z1 is updated more frequently than x2

then a divergent example is easy to find.

How to make async work?

= use a nice iteration operator T, for example,

= = sufficient objective descent, or

= => nonexpansive toward the solution
= skillfully select i) (index of kth coordinate update)

= or both

History of Async Algorithms

Brief history of async algorithms

= 1969 - a linear equation solver by Chazan and Miranker;
= 1978 — fixed-point problems by Baudet under the absolute-contraction®

= next 20-30 years, many papers on linear, nonlinear and differential
equations

= 1989 — Parallel and Distributed Computation: Numerical Methods by
Bertsekas and Tsitsiklis.

= 2000 — Review by Frommer and Szyld.
= 1991 — gradient-projection itr assuming a local linear-error bound by Tseng

= 2001 - domain decomposition assuming strong convexity by Tai & Tseng

L An operator T : R — R™ is absolute-contractive if |T(x) — T(y)| £ Plz — y|, component-wise, where
|| denotes the vector with components |z;|, i = 1,...,n, and P € Rixn and p(P) < 1.
19/38

Brief history of async algorithms

2011 — Hogwild!, JellyFish, Lian'15, Parallel stochastic gradient descent.

2013 - Liu eta al'13, Liu-Wright'14, Sto coordinate descent (CD) for
convex composite minimization.

2015 — Hsieh et al., Sto dual CD for regression problems.
ARock: sto coordinate update for fixed-point problems, ADMM etc.

2016 — Davis, Cannelli et al: Nonconvex sto-CD. Hannah-Y 16, Peng at
al’16: “unbounded” delay.

Decentralized: async EXTRA, Eisen et al'16: quasi-Newton

Async sto (splitting/distributed /incremental) methods: Wei-Ozdaglar'13,
lutzeler et al'13, Zhang-Kwok'14, Hong'14, Chang et al'15

ARock framework

ARock?: Async-parallel coordinate update

= problem: x = T'(x), where x = (z1,...,Tm)

= sub-operator S;(z) := z; — (T'(x));

= algorithm: each agent randomly picks ix, € {1,...,m}:
k1 ol —mSi(a"), =
LA
xi, otherwise.

= assumptions: nonexpansive T', no locking (dj is a vector), atomic update

= guarantee: almost sure weak convergence under proper 7

2 Peng-Xu-Yan-Y. SISC'16

Convergence results

Definitions: m is # coordinates, 7 is the maximum delay.

Theorem (convergence)

Assume that T is nonexpansive and has a fixed point. Let (z*)1>0 be the

sequence generated by ARock with the step sizes Nk € [Nmin, Hﬁ% Vk.
Vm

Then, with probability one, (z*);>0 weakly converges to a fixed point of T.

Theorem (linear rate)

If S is quasi-p-strongly monotone if (x — vy, Sx — Sy) > pllx — y||* for any
x € H and y € zerS := {y € H : Sy = 0}, then with certain fixed step size

Ell® — z*|® < ¢ - ||a® — 2¥||?, with ¢ < 1.

Unbounded delays® with known distribution

* ji,i: delay of x; at iteration k
= P, := Pr[max;{jr,:} > {|: iteration-independent distribution of max delay

= 3B 3 Vk,|jr,i — Jri| < B: x;'s delays are evenly old at each iteration

Theorem

Assume that T is nonexpansive and has a fixed point. Fix ¢ € (0,1). Use fixed

step size n = cH for either of the following cases:
1 if Y2, (EP)? < oo, set H = (1+ =37, P72 (012 +¢71/2)) 7

2. if 3, 0P)* < oo, set H = (1+ 23, Pél/Q)_l

k

Then, with probability one, x© — x* € FixT.

3R.Hannah and W.Yin'16

Arbitrary unbounded delays*

= jr,i: async delay of x; at iteration k
» jr = max;{jk,.}: max delay at iteration k

= liminf ji < oco: all but finitely many iterations have a bounded delay

Theorem

Assume that T is nonexpansive and has a fixed point. Fix ¢ € (0,1) and
R > 1. Use step sizes

Rik—1/2 -1
Nk :C<1+)>

Vm(R — 1

Then, with probability one, zf,; — =* € FixT.

= Optionally optimize R based on {ji}.

#R.Hannah and W.Yin'16

24 /38

Convergence theory: take-home messages

= Has rigorous convergence guarantees, even without memory locks

= Speed depends on load balance (LB):

= good LB: async is noticeably faster than sync
= mediocre LB: async is significantly faster than sync

= poor LB: async is order-of-magnitude faster than sync

= Scalability: assume: m blocks and good LB

= blocks fully coupled: scale up to p ~ \/m agents

= blocks loosely coupled: scale up to p ~ m agents

25/38

Async EXTRA

Async EXTRA overview

= uncoordinated: agents start and complete at any time
= delays Okay, either bounded or unbounded

= however, random activations and independent delays

26 /38

Async EXTRA technical overview

rewrite sync-EXTRA into a fixed-point iteration:

2 = T (25
where 7 has some contractive property, z* = (x*, dual var”)
define kth iteration at completion of kth update, by some agent iy
async iteration:

Zk+1 Zi‘c +77(T_I)1(2k)7 i =g,

z¥, RS

where 2* is delayed information and < 1 is damping.

analysis: find the weakest assumptions so that z® — z*.

N
=

Terminology of async decentralized algorithms

single activation: a random agent/edge at a time, but no overlap or delay
(Boyd et al'06, Dimakis et al'10)

multi-activation: many random agents/edges at a time, no overlap or
delay (lutzeler et al'13, Lorenzo et al'12, Wei-Ozdaglar'13,
Hong-Chang'15)

zero delay: random activations, link failures, arrivals of information
(Nedic-Olshevsky'15, Zhao-Sayed'15)

fixed delay: coordinated, no delay after adding dummy nodes/edges
(Tsianos-Rabbat’'12)

ideal: uncoordinated (start an update at any time, run for any duration),

allowing delays, no global clock

Async EXTRA

= s; are convex Lipschitz-differentiable, r; are proximable

= formulation:

n n

minimize Z si(z') + Z ri(zh),
ol zm ERP

i=1 =

subject to z' =2% =-.. =",

29/38

Async EXTRA algorithm

Algorithm 1: Async EXTRA

initialization: {z%°}, {y®°}, counter k = 0;

while every agent i asynchronously do
compute (30) with whatever information it has;
i,k+1 and {ye,k+1}

send z eec,; to neighbors;

computing:
~i k+1 j,k—7F ik—rF e,k—6¥
T =prox,,. | Y wix?"t i—aVsi(xVTT)Y vey g

JEN; ee&;
~e,k+1 k—sk i k—rk i k—1k
g =yt 0% 4 (e a7, Ve € L

damped updates:

. . —: ok
mz,k+l — Iz,k + 0i (Iz,k+1 _ mz,k T) ,

ye,k+1 — ye,k +77'L (’:Je,k+1 _ ye,kfc??) , Ve € £i7

Deriving Async EXTRA

= original matrix form:
minimize s(X) + r(X),
XERnXp
subject to (I — W)X =0.
» scaled incidence matrix V such that V'V = 1(I — W)
= same problem, but constraints (metric) are changed:
minimize s(X) + r(X),
X eRnXp

subject to VX = 0.

= apply Condat-Vu primal-dual splitting:

YE —y* L vXFE,
Xk =prox, [X*—aVs(X*) -V T 2Y*T-YH)).

= eliminate Y**! for 2nd line, use W = I — 2VTV, arrive at

YR = vF 4+ vxk,
X5 — prox, [WXF—aVs(X*)-VTY*].

= this final iteration operator is nonexpansive, thus ARock is applicable

Simulation setup

10 nodes randomly placed in a 30x30 area

14 edges (i,5) under dist(4,5) < 15

simulated computing times ~ exp(1/(2+ |i])) and i ~ N(0,1)
simulated communication delays ~ exp(1/0.6)

compare rel.errors: sync-DGD, async-DGD, sync-EXTRA, async-EXTRA

Decentralized /; compressed sensing

10 N S i Sk ol TE ey e
T S
107k T]
LR .
R

107 E
<]
s a3
5107 E
o
2
e
< 107 q
i

107 E

-4 - Sync-DGD
Async-DGD
10°L |-m- Sync-EXTRA i
—e— Async-EXTRA
10’7 L L L L
0 500 1000 1500 2000

Time(ms)

34 /38

Decentralized classification (sparse log. regression)

10°
TN - -
S
107k ey Syne
m
-

107
<]
[ape)
5107
o Async
B g
< 107
i

107

107

- m- Sync-EXTRA
—e— Async-EXTRA
7
10 n n n
0 100 200 300 400 500 600 700

Time(ms)

Decentralized matrix completion (Ling et al’11)

Relative error
3

o

= -

"‘--N._ Sync
S
hLEEE Oy
"~ -~ o
Async
7L|-® - Sync-EXTRA
—e— Async-EXTRA
200 400 600 800 1000

Time(ms)

36/38

Summary

async algorithm:

= async reduces idle time, communication congestion, coordination

= surprising many parallel algorithms still work if async'd

not presented: using expander graphs reduces communication in decentralized
optimization (Chow et al'16)

Thank you!

Acknowledgements: NSF

All papers in this talk can be found online. Paper of this work.

38

http://www.math.ucla.edu/~wotaoyin/papers/async_extra.html

	Background
	Go Asynchronous
	History of Async Algorithms
	ARock framework
	Async EXTRA
	Summary

