# Massive MIMO Full-duplex: Theory and Experiments

Ashu Sabharwal

Joint work with Evan Everett, Clay Shepard and Prof. Lin Zhong



#### Data Rate Through Generations



# Gains from Spectrum, Densification & Spectral Efficiency

#### In-band Full-duplex Wireless



# In-band Full-duplex Wireless



#### Full-duplex Wireless: Two Main Interferences



#### Full-duplex Wireless: Focus on Self-Interference



# Self-interference bottleneck



# Self-interference bottleneck



# Self-interference bottleneck



# Self-interference suppression



# Self-interference suppression



# Two Experimental Demonstrations in 2010

#### Achieving Single Channel, Full Duplex Wireless Communication

Jung II Choi<sup>†</sup>, Mayank Jain<sup>†</sup>, Kannan Srinivasan<sup>†</sup>, Philip Levis, Sachin Katti Stanford University California, USA {jungilchoi,mayjain,srikank}@stanford.edu, pal@cs.stanford.edu, skatti@stanford.edu <sup>†</sup>Co-primary authors

#### Full-Duplex Wireless Communications Using Off-The-Shelf Radios: Feasibility and First Results

Melissa Duarte and Ashutosh Sabharwal Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005 Email: {mduarte, ashu}@rice.edu

# Lots of <u>well-deserved</u> skepticism

# Identifying The Bottlenecks

#### Experiment-Driven Characterization of Full-Duplex Wireless Systems

Melissa Duarte, Chris Dick, and Ashutosh Sabharwal





• Experimentally observed digital & analog cancellation is not additive, and in fact, inversely related

# Identifying The Bottlenecks



- Experimentally observed digital & analog cancellation is not additive, and in fact, inversely related
- Culprit was transmitter phase noise, explained all our results

# Practical Protocols with Experimental Demonstrations

 $\begin{array}{c} \left( \begin{array}{c} \mathbb{Y} & \mathbb{Y} & \mathbb{Y} \\ \mathbb{Y} & \mathbb{Y} & \mathbb{Y} \\ \mathbb{Y} & \mathbb{Y} & \mathbb{Y} \end{array} \right) \\ \begin{array}{c} \text{Multiple-antenna} \\ \text{Full-duplex BS} \end{array} \\ \begin{array}{c} \mathbb{Y} & \mathbb{Y} \\ \mathbb{Y} \\ \mathbb{Y} & \mathbb{Y} \\ \mathbb{Y}$ 

2015

2017

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 14, NO. 7, JULY 2015

#### Power-Controlled Medium Access Control Protocol for Full-Duplex WiFi Networks

Wooyeol Choi, Hyuk Lim, Member, IEEE, and Ashutosh Sabharwal, Fellow, IEEE

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 15, NO. 12, DECEMBER 2016

# Sequential Beamforming for Multiuser MIMO With Full-Duplex Training

Xu Du, John Tadrous, Member, IEEE, and Ashutosh Sabharwal, Fellow, IEEE

IEEE/ACM TRANSACTIONS ON NETWORKING

#### Leveraging One-Hop Information in Massive MIMO Full-Duplex Wireless Systems

Wenzhuo Ouyang, Member, IEEE, Jingwen Bai, and Ashutosh Sabharwal, Fellow, IEEE



# Multi-cell Analysis Promises Spectral Efficiency Gains



# Asymptotic Analysis of MIMO Multi-Cell Full-Duplex Networks

2017

Jingwen Bai and Ashutosh Sabharwal, Fellow, IEEE

- Network throughput gains, even with errors, half-duplex nodes and increased interference
- Asymptotically spectral efficiency approaches 2X
- With 64-256 antenna gains approaches I.8X (5G array sizes)

Full-duplex in Wireless and Wireline

• 3GPP full-duplex backhaul

Deutsche Telekom completes 5G full duplex field trial with Kumu Networks

FierceWireless, Sept'I 5

• Cable Labs: next-gen cable modems

Full Duplex DOCSIS® 3.1 Technology: Raising the Ante with Symmetric Gigabit Service

CableLabs, Feb'16

# New Headache – Too Much Analog !



# "All-digital" Full-duplex (no new analog) ?



# Goal: All-digital Full-duplex Architecture via Beamforming



# Questions to Answer



- I. In what conditions is all-digital FD feasible?
- 2. What are practical algorithms for all-digital FD?

### Questions to Answer



# **Components of Self-Interference**



Everett, Sahai and Sabharwal "Passive Self-interference Suppression For Full-duplex Infrastructure Nodes" in IEEE Trans. Wireless Comm, 2014.

#### **Experimental Evidence for Backscattering**



Everett, Sahai and Sabharwal "Passive Self-interference Suppression For Full-duplex Infrastructure Nodes" in IEEE Trans. Wireless Comm, 2014.

# The Challenge of Backscattering



#### Direct-path can be passively suppressed

# Backscattering becomes bottleneck

Everett, Sahai and Sabharwal "Passive Self-interference Suppression For Full-duplex Infrastructure Nodes" in IEEE Trans. Wireless Comm, 2014. Can we do a better job of spatial isolation in a backscattering environment?

Yes, but there is a catch !

# Half-duplex Spatial Multiplexing



Downlink

Half-duplex Spatial Multiplexing



# Full-duplex Spatial Multiplexing



# Full-duplex Spatial Multiplexing



#### Rate Region for Wireless Full-duplex



# Choosing the Model

- Need tractable model, captures the physics
- Two key aspects to model
  - Antenna design
  - Scattering

# **Modeling Antennas**



Poon, Broderson, and Tse. ''Degrees of freedom in multiple-antenna channels: a signal space approach.'' 2005 IEEE Trans Info Thry.





# **Modeling Antennas**



Poon, Broderson, and Tse. ''Degrees of freedom in multiple-antenna channels: a signal space approach.'' 2005 IEEE Trans Info Thry.








Everett and Sabharwal, ''Spatial Self-interference Isolation for In-band Fullduplex Wireless...,''



Everett and Sabharwal, ''Spatial Self-interference Isolation for In-band Fullduplex Wireless...,''



Everett and Sabharwal, "Spatial Self-interference Isolation for In-band Fullduplex Wireless...,"



Everett and Sabharwal, "Spatial Self-interference Isolation for In-band Fullduplex Wireless...,"



Everett and Sabharwal, "Spatial Self-interference Isolation for In-band Fullduplex Wireless...,"



Everett and Sabharwal, ''Spatial Self-interference Isolation for In-band Fullduplex Wireless...,''



#### When, and By How Much, Is Full-duplex Better?



# If scattering overlapped, and base station arrays no larger than mobile arrays, <u>no gain</u>



# Gain proportional to non-overlap between backscattering forward scattering



# Gain proportional to non-overlap between backscattering forward scattering



# Further improve full-duplex with <u>larger</u> arrays at base station



Leverage extra DoFs for nulling

# Further improve full-duplex with <u>larger</u> arrays at base station



Leverage extra DoFs for nulling

# Further improve full-duplex with <u>larger</u> arrays at base station ("Massive MIMO Regime")



# Spatial degrees-of-freedom in large-array full-duplex: the impact of backscattering

Evan Everett<sup>\*</sup> and Ashutosh Sabharwal

## Questions to Answer



## Suppression via Transmit Beamforming





Self-interference

- For 2D arrays, many direct self-interference path
- Transmit beamforming must suppress both direct and reflected paths

### Nulling is Not Possible





- (# of Tx antennas) (# of Nulls) = # of Effective antennas
- More nulls means less power to each user

## But we don't need to null self-interference?



# SoftNull

- Given a required # of effective Tx antennas,  $D_{TX}$
- Select beam-weight matrix,  $oldsymbol{P}_{\mathsf{self}}$ , which maximally suppresses self-interference
- Effective self-interference channel:  $oldsymbol{H}_{ extsf{self}}oldsymbol{P}_{ extsf{self}}$

$$oldsymbol{P}_{\mathsf{self}} = \mathrm{argmin} \, \|oldsymbol{H}_{\mathsf{self}}oldsymbol{P}_{\mathsf{self}}\|_F$$

s.t. 
$$\boldsymbol{P}_{\mathsf{self}}^{\mathrm{H}} \boldsymbol{P}_{\mathsf{self}} = \boldsymbol{I}_{D_{\mathsf{TX}} \times D_{\mathsf{TX}}}$$

Simple closed form solution



### SoftNull example:

Self-interference power vs. # of effective Tx antennas,  $D_{TX}$ 



# SoftNull example:

Self-interference power vs. # of effective Tx antennas,  $D_{TX}$ 



# SoftNull tradeoff

- As # of effective antennas decreases:
  - Uplink benefits from better self-interference suppression
  - Downlink suffers due to lower SNR



# SoftNull Feasibility Study

- Is a ''good'' SoftNull tradeoff feasible for real channels?
  - Impact of array partitioning
  - Impact of backscattering
- Is benefit to uplink SoftNull worth the cost to the downlink?

# Argos-based Measurement Platform

- NASA Array+Argos Base Station
  - 72 patch antennas, 8x9 grid
  - 18 WARP nodes



- 4 Users via WARP Measure 72 X 72 self-coupling channel
- OFDM pilots from each antenna while all others listen
  - Enables comparison of arbitrary Tx/Rx partitions
  - Measure 72x4 uplink and 4x72 downlink channel

# Measurement Campaign: 3 Environments

#### Anechoic Chamber



#### <u>Outdoor</u>



<u>Indoor</u>



# SoftNull Feasibility Study

- Is a ''good'' SoftNull tradeoff feasible for real channels?
  - Impact of array partitioning
  - Impact of backscattering
- Is benefit to uplink worth the cost to the downlink?

# Tx/Rx Partitioning





#### Northwest-Southeast





# Tx/Rx Partitioning Results (Anechoic Chamber)



# Tx/Rx Partitioning Results (Anechoic Chamber)

North-South



East-West

Northwest-Southeast

(NW-SE)



- Contiguous splits are best
- Minimizes angular spread of the self-interference

# SoftNull Feasibility Study

- Is a ''good'' tradeoff feasible for real channels?
  - Impact of array partitioning
  - Impact of backscattering
- Is benefit to uplink worth the cost to the downlink?

# Impact of Back-scattering



- More backscattering leads to less suppression (as theory predicts)
- Reason: backscatter breaks antenna correlation

# SoftNull Feasibility Study

- Is a "good" tradeoff feasible for real channels?
  - Impact of array partitioning
  - Impact of backscattering
- Is benefit to uplink worth the cost to the downlink?

# Is Benefit to Uplink Worth the Cost to the Downlink?





<u>Outdoor</u>



<u>Indoor</u>

- Scenario: East-West split, indoor and outdoor
- Methodology: simulation using real measured channels
- Compare uplink and downlink rates of SoftNull versus half duplex and ideal full-duplex

#### Simulation Parameters

| Base station power  | 0 dBm           |
|---------------------|-----------------|
| Mobile user power   | -10d Bm         |
| Noise power         | -95 dBm         |
| Dynamic range limit | 25 dB           |
| Number of users     | 4               |
| Path Loss           | 85 dB<br>(300m) |








#### Is benefit worth the loss in downlink SNR?



### Impact of distance (i.e. path loss)



# Impact of distance (i.e. path loss)



# Impact of distance (i.e. path loss)



# SoftNull Feasibility Study

- Is a "good" tradeoff feasible for real channels?
  - Yes, when array partitioned contiguously
  - Especially in low-backscattering deployments (like on basestations)
- Is benefit to uplink worth the cost to the downlink?
  - Yes, for low to medium path losses
  - Especially when # of antennas >> # number of users

# JointNull: A Small # of Analog Cancellers



- Add a small number of analog cancellers, that can make any antenna full-duplex
- So there are three parts to overall cancellation
  - Transmit pre-coding
  - Analog cancellation
  - Digital cancellation
- Sum-rate maximizing antenna configuration & precoding

#### JointNull: A Small # of Analog Cancellers



- If analog cancellers are low-quality, ~M/10 achieve 90% of max sum-rate
- If higher quality, need  $\sim$ M/2 cancellers to achieve 90%

# Conclusions

- Massive MIMO means many more transmit dimensions
  - SoftNull uses it for **all-digital full-duplex**
  - No new analog components build on today's radios
  - JointNull generalizes it partial-analog full-duplex
- Platform crucial
  - Have real-time implementation & evaluation of SoftNull
  - Real-time results closely match today's results

### Rice Argos V2: 96 Antennas (Scalable to 144 Antennas)



# ArgosMobile



# ArgosNet: Total of 400 Radios



NSF CRI 2014-2017: ArgosNet by Zhong, Knightly and Sabharwal

#### Questions or Comments ?

Full-duplex: <u>http://fullduplex.rice.edu</u> WARP: <u>http://warp.rice.edu</u> Argos: <u>http://argos.rice.edu</u> Scalable Health: <u>http://sh.rice.edu</u>