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Optimal resource allocation in wireless systems

I Wireless channels characterized by random fading coefficients h

I Want to assign power p(h) as a function of fading to:

⇒ Satisfy prescribed constraints, e.g., average power, target SINRs

⇒ Optimize given criteria, e.g., maximize capacity, minimize power

I Two challenges

⇒ Resultant optimization problems are infinite dimensional (h is)

⇒ In most cases problems are not convex

I However, duality gap is null under mild conditions (Ribeiro-Giannakis ’10)

I And in the dual domain the problem is finite dimensional and convex

I Motivate use of stochastic optimization algorithms that

⇒ Have manageable computational complexity per iteration

⇒ Use sample channel realizations instead of channel distributions
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Large-scale empirical risk minimization

I We aim to solve expected risk minimization problem minw∈Rp Eθ[f (w,θ)]

⇒ The distribution is unknown

⇒ We have access to N independent realizations of θ

I We settle for solving the Empirical Risk Minimization (ERM) problem

min
w∈Rp

F (w) := min
w∈Rp

1

N

N∑
i=1

f (w,θi )

I Large-scale optimization or machine learning: large N, large p

⇒ N: number of observations (inputs)

⇒ p: number of parameters in the model

I Not just wireless

⇒ Many (most) machine learning algorithms reduce to ERM problems
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Optimization methods

I Stochastic methods: a subset of samples is used at each iteration

I SGD is the most popular; however, it is slow because of

⇒ Noise of stochasticity ⇒ Variance reduction (SAG, SAGA, SVRG, ...)

⇒ Poor curvature approx.⇒ Stochastic QN (SGD-QN, RES, oLBFGS, ...)

I Decentralized methods: samples are distributed over multiple processors

⇒ Primal methods: DGD, Acc. DGD, NN, ...

⇒ Dual methods: DDA, DADMM, DQM, EXTRA, ESOM, ...

I Adaptive sample size methods: start with a subset of samples and increase
the size of training set at each iteration ⇒ Ada Newton

⇒ The solutions are close when the number of samples are close
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Incremental Gradient Descent

I Objective function gradients ⇒ s(w) := ∇F (w) =
1

N

N∑
i=1

∇f (w,θi )

I (Deterministic) gradient descent iteration ⇒ wt+1 = wt − εt s(wt)

I Evaluation of (deterministic) gradients is not computationally affordable

I Incremental/Stochastic gradient ⇒ Sample average in lieu of expectations

ŝ(w, θ̃) =
1

L

L∑
l=1

∇f (w,θl) θ̃ = [θ1; ...;θL]

I Functions are chosen cyclically or at random with or without replacement

I Incremental gradient descent iteration ⇒ wt+1 = wt − εt ŝ(wt , θ̃t)

I (Incremental) gradient descent is (very) slow. Newton is impractical
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BFGS quasi-Newton method

I Approximate function’s curvature with Hessian approximation matrix B−1
t

wt+1 = wt − εt B
−1
t s(wt)

I Make Bt close to H(wt) := ∇2F (wt). Broyden, DFP, BFGS

I Variable variation: vt = wt+1 −wt . Gradient variation: rt = s(wt+1)− s(wt)

I Matrix Bt+1 satisfies secant condition Bt+1vt = rt . Underdetermined

I Resolve indeterminacy making Bt+1 closest to previous approximation Bt

I Using Gaussian relative entropy as proximity condition yields update

Bt+1 = Bt +
rtr

T
t

vtT rt
− Btvtvt

TBt

vtTBtvt

I Superlinear convergence ⇒ Close enough to quadratic rate of Newton

I BFGS requires gradients ⇒ Use stochastic/incremental gradients
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Stochastic/Incremental quasi-Newton methods

I Online (o)BFGS & Online Limited-Memory (oL)BFGS [Schraudolph et al ’07]

I oBFGS may diverge because Hessian approximation gets close to singular

⇒ Regularized Stochastic BFGS (RES) [Mokhtari-Ribeiro ’14]

I oLBFGS does (surprisingly) converge [Mokhtari-Ribeiro ’15]

I Problem solved? Alas. RES and oLBFGS have sublinear convergence

I Same as stochastic gradient descent. Asymptotically not better

I Variance reduced stochastic L-BFGS (SVRG+oLBFGS) [Mortiz et al ’16]

⇒ Linear convergence rate. But this is not better than SAG, SAGA, SVRG

I Computationally feasible quasi Newton method with superlinear convergence

Alejandro Ribeiro High Order Methods for Empirical Risk Minimization 9



Incremental aggregated gradient method

I Utilize memory to reduce variance of stochastic gradient approximation

∇f t1 ∇f tit ∇f tN

∇fit (wt+1)

∇f t+1
1

∇f t+1
it

∇f t+1
N

I Descend along incremental gradient ⇒ wt+1 = wt − α

N

N∑
i=1

∇f ti = wt −αg t
i

I Select update index it cyclically. Uniformly at random is similar

I Update gradient corresponding to function fit ⇒ ∇f
t+1
it = ∇fit (w

t+1)

I Sum easy to compute ⇒ g t+1
i = g t

i −∇f t+1
it +∇f t+1

it . Converges linearly
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Incremental BFGS method

I Keep memory of variables zti , Hessian approximations Bt
i , and gradients ∇f ti

⇒ Functions indexed by i . Time indexed by t. Select function fit at time t

zt1 ztit ztN

wt+1

Bt
1

Bt
it

Bt
N ∇f t1 ∇f tit ∇f tN

I All gradients, matrices, and variables used to update wt+1
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Incremental BFGS method

I Keep memory of variables zti , Hessian approximations Bt
i , and gradients ∇f ti

⇒ Functions indexed by i . Time indexed by t. Select function fit at time t

zt1 ztit ztN

wt+1

Bt
1

Bt
it

Bt
N ∇f t1 ∇f tit ∇f tN

∇fit (wt+1)

I Updated variable wt+1 used to update gradient ∇f t+1
it

= ∇fit (wt+1)
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Incremental BFGS method

I Keep memory of variables zti , Hessian approximations Bt
i , and gradients ∇f ti

⇒ Functions indexed by i . Time indexed by t. Select function fit at time t

zt1 ztit ztN

wt+1

Bt
1

Bt
it

Bt
N

Bt+1
it

∇f t1 ∇f tit ∇f tN

∇fit (wt+1)

I Update B t
it to satisfy secant condition for function fit for variable variation

ztit − wt+1 and gradient variation ∇f t+1
it
−∇f tit (more later)
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Incremental BFGS method

I Keep memory of variables zti , Hessian approximations Bt
i , and gradients ∇f ti

⇒ Functions indexed by i . Time indexed by t. Select function fit at time t

zt1 ztit ztN

wt+1

zt+1
1

zt+1
it

zt+1
N

Bt
1

Bt
it

Bt
N

Bt+1
it

Bt+1
1

Bt+1
it

Bt+1
N

∇f t1 ∇f tit ∇f tN

∇fit (wt+1)

∇f t+1
1

∇f t+1
it

∇f t+1
N

I Update variable, Hessian approximation, and gradient memory for function fit
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Update of Hessian approximation matrices

I Variable variation at time t for function fi = fit ⇒ vti := zt+1
i − zti

I Gradient variation at time t for function fi = fit ⇒ rti := ∇f t+1
it
−∇f tit

I Update Bt
i = Bt

it to satisfy secant condition for variations vti and rti

Bt+1
i = Bt

i +
rti r

t
i
T

rti
Tvti
− Bt

i v
t
i v

t
i
TBt

i

vti
TBt

i v
t
i

I We want Bt
i to approximate the Hessian of the function fi = fit
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A naive (in hindsight) incremental BFGS method

I The key is in the update of wt . Use memory in stochastic quantities

wt+1 = wt −

(
1

N

N∑
i=1

Bt
i

)−1(
1

N

N∑
i=1

∇f ti

)
I It doesn’t work ⇒ Better than incremental gradient but not superlinear

I Optimization updates are solutions of function approximations

I In this particular update we are minimizing the quadratic form

f (w) ≈ 1

n

n∑
i=1

[
fi (z

t
i ) +∇fi (zti )T (w − wt) +

1

2
(w − wt)TBt

i (w − wt)

]
I Gradients evaluated at zti . Secant condition verified at zti
I The quadratic form is centered at wt . Not a reasonable Taylor series
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A proper Taylor series expansion

I Each individual function fi is being approximated by the quadratic

fi (w) ≈ fi (z
t
i ) +∇fi (zti )T (w − wt) +

1

2
(w − wt)TBt

i (w − wt)

I To have a proper expansion we have to recenter the quadratic form at zti

fi (w) ≈ fi (z
t
i ) +∇fi (zti )T (w − zti ) +

1

2
(w − zti )

TBt
i (w − zti )

I I.e., we approximate f (w) with the aggregate quadratic function

f (w) ≈ 1

N

N∑
i=1

[
fi (z

t
i ) +∇fi (zti )T (w − zti ) +

1

2
(w − zti )

TBt
i (w − zti )

]
I This is now a reasonable Taylor series that we use to derive an update
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Incremental BFGS

I Solving this quadratic program yields the update for the IQN method

wt+1 =

(
1

N

N∑
i=1

Bt
i

)−1 [
1

N

N∑
i=1

Bt
i z

t
i −

1

N

N∑
i=1

∇fi (zti )

]

I Looks difficult to implement but it is more similar to BFGS than apparent

I As in BFGS, it can be implemented with O(p2) operations

⇒ Write as rank-2 update, use matrix inversion lemma

⇒ Independently of N. True incremental method.
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Superlinear convergence rate

I The functions fi are m-strongly convex.

I The gradients ∇fi are M-Lipschitz continuous.

I The Hessians ∇fi are L-Lipschitz continuous

Theorem The sequence of residuals ‖wt − w∗‖ in the IQN method converges to
zero at a superlinear rate,

lim
t→∞

‖wt − w∗‖
(1/N)(‖wt−1 − w∗‖+ · · ·+ ‖wt−N − w∗‖) = 0.

I Incremental method with small cost per iteration converging at superlinear rate

⇒ Resulting from the use of memory to reduce stochastic variances

Alejandro Ribeiro High Order Methods for Empirical Risk Minimization 19



Numerical results

I Quadratic programming f (w) := (1/N)
∑N

i=1 w
TAiw/2 + bT

i w

I Ai ∈ Rp×p is a diagonal positive definite matrix

I bi ∈ Rp is a random vector from the box [0, 103]p

I N = 1000, p = 100, and condition number (102, 104)

I Relative error ‖wt − w∗‖/‖w0 − w∗‖ of SAG, SAGA, IAG, and IQN
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Back to the ERM problem

I Our original goal was to solve the statistical loss problem

w∗ := argmin
w∈Rp

L(w) = argmin
w∈Rp

E [f (w,Z)]

I But since the distribution of Z is unknown we settle for the ERM problem

w†N := argmin
w∈Rp

LN(w) = argmin
w∈Rp

1

N

N∑
k=1

f (w, zk)

I Where the samples zk are drawn from a common distribution

I ERM approximates actual problem ⇒ Don’t need perfect solution
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Regularized ERM problem

I From statistical learning we know that there exists a constant VN such that

sup
w
|L(w)− LN(w)| ≤ VN , w.h.p.

I VN = O(1/
√
N) from CLT. VN = O(1/N) sometimes [Bartlett et al ’06]

I There is no need to minimize LN(w) beyond accuracy O(VN)

I This is well known. In fact, this is why we can add regularizers to ERM

w∗N := argmin
w

RN(w) = argmin
w

LN(w) +
cVN

2
‖w‖2

I Adding the term (cVN/2)‖w‖2 “moves” the optimum of the ERM problem

I But the optimum w∗N is still in a ball of order VN around w∗

I Goal: Minimize the risk RN within its statistical accuracy VN
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Adaptive sample size methods

I ERM problem R∗n for subset of n ≤ N unif. chosen samples

w∗n := argmin
w

Rn(w) = argmin
w

Ln(w) +
cVn

2
‖w‖2

I Solutions w∗m for m samples and w∗n for n samples are close

I Find approx. solution wm for the risk Rm with m samples

I Increase sample size to n > m samples

I Use wm as a warm start to find approx. solution wn for Rn

I If m < n, it is easier to solve Rm comparing to Rn since

⇒ The condition number of Rm is smaller than Rn

⇒ The required accuracy Vm is larger than Vn

⇒ The computation cost of solving Rm is lower than Rn
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Adaptive sample size Newton method

I Ada Newton is a specific adaptive sample size method using Newton steps

⇒ Find wm that solves Rm to its statistical accuracy Vm

⇒ Apply single Newton iteration ⇒ wn = wm −∇2Rn(wm)−1∇Rn(wm)

⇒ If m and n close, we have wn within statistical accuracy of Rn

w∗
m

w∗
n

I This works if statistical accuracy ball of Rm is
within Newton quadratic convergence ball of Rn.

I Then, wm is within Newton quadratic convergence
ball of Rn

I A single Newton iteration yields wn within
statistical accuracy of Rn

I Question: How should we choose α?
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Assumptions

I The functions f (w, z) are convex

I The gradients ∇f (w, z) are M-Lipschitz continuous

‖∇f (w, z)−∇f (w′, z)‖ ≤ M‖w − w′‖, for all z.

I The functions f (w, z) are self-concordant with respect to w for all z

Alejandro Ribeiro High Order Methods for Empirical Risk Minimization 26



Theoretical result

Theorem Consider wm as a Vm-optimal solution of Rm, i.e.,
Rm(wm)− Rm(w∗m) ≤ Vm, and let n = αm. If the inequalities[

2(M+cVm)Vm

cVn

] 1
2

+
2(n−m)

nc
1
2

+
((2+

√
2)c

1
2 + c‖w∗‖)(Vm−Vn)

(cVn)
1
2

≤ 1

4
,

144

[
Vm +

2(n −m)

n
(Vn−m + Vm) +

4 + c‖w∗‖2

2
(Vm − Vn)

]2

≤ Vn

are satisfied, then wn has sub-optimality error Vn w.h.p., i.e.,

Rn(wn)− Rn(w∗n ) ≤ Vn, w .h.p.

I Condition1 ⇒ wm is in the Newton quadratic convergence ball of Rn

I Condition 2 ⇒ wn is in the statistical accuracy of Rn

I Condition 2 becomes redundant for large m
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Doubling the size of training set

Proposition Consider a learning problem in which the statistical accuracy
satisfies Vm ≤ αVn for n = αm and limn→∞ Vn = 0. If c is chosen so that(

2αM

c

)1/2

+
2(α− 1)

αc1/2
≤ 1

4
,

then, there exists a sample size m̃ such that the conditions in Theorem 1 are
satisfied for all m > m̃ and n = αm.

I We can double the size of training set α = 2

⇒ If the size of training set is large enough

⇒ If the constant c satisfies c > 16(2
√
M + 1)2

I We achieve the S.A. of the full training set in about 2 passes over the data

⇒ After inversion of about 3.32 log10 N Hessians
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Adaptive sample size Newton (Ada Newton)

I Parameters: α0 = 2 and 0 < β < 1.

I Initialize: n = m0 and wn = wm0 with Rn(wn)− Rn(w∗n ) ≤ Vn

I while n ≤ N do

Update wm = wn and m = n. Reset factor α = α0

repeat [sample size backtracking loop]

1: Increase sample size: n = min{αm,N}.

2: Comp. gradient: ∇Rn(wm) = 1
n

∑n
k=1∇f (wm, zk) + cVnwm

3: Comp. Hessian: ∇2Rn(wm) = 1
n

∑n
k=1∇

2f (wm, zk) + cVnI

4: Update the variable: wn = wm −∇2Rn(wm)−1∇Rn(wm)

5: Backtrack sample size increase α = βα.

until Rn(wn)− Rn(w∗n ) ≤ Vn

I end while
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Numerical results

I LR problem ⇒ Protein homology dataset provided (KDD cup 2004)

I Number of samples N = 145, 751, dimension p = 74

I Parameters ⇒ Vn = 1/n, c = 20, m0 = 124, and α = 2
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I Ada Newton achieves the statistical accuracy of the full training set with
about two passes over the dataset
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Numerical results

I We use A9A and SUSY datasets to train a LR problem

⇒ A9A: N = 32, 561 samples with dimension p = 123

⇒ SUSY: N = 5, 000, 000 samples with dimension p = 18

I The green line shows the iteration at which Ada Newton reached
convergence on the test set
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Figure: Suboptimality vs No. of effective passes. A9A (left) and SUSY (right)

I Ada Newton achieves the accuracy of RN(w)− R∗N < 1/N

⇒ by less than 2.3 passes over the full training set
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Numerical results

I We use A9A and SUSY datasets to train a LR problem

⇒ A9A: N = 32, 561 samples with dimension p = 123

⇒ SUSY: N = 5, 000, 000 samples with dimension p = 18

I The green line shows the iteration at which Ada Newton reached
convergence on the test set
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Figure: Suboptimality vs runtime. A9A (left) and SUSY (right)
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Numerical results

I We use A9A and SUSY datasets to train a LR problem

⇒ A9A: N = 32, 561 samples with dimension p = 123

⇒ SUSY: N = 5, 000, 000 samples with dimension p = 18
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Figure: Test error vs No. of effective passes. A9A (left) and SUSY (right)
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Ada Newton and the challenges for Newton in ERM

I There are four reasons why it is impractical to use Newton’s method in ERM

I It is costly to compute Hessians (and gradients). Order O(Np2) operations

I It is costly to invert Hessians. Order O(p3) operations.

I A line search is needed to moderate stepsize outside of quadratic region

I Quadratic convergence is advantageous close to the optimum but we don’t
want to optimize beyond statistical accuracy

I Ada Newton (mostly) overcomes these four challenges

I Compute Hessians for a subset of samples. Two passes over dataset

I Hessians are inverted in a logarithmic number of steps. But still

I There is no line search

I We enter quadratic regions without going beyond statistical accuracy
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Conclusions

I We studied different approaches to solve large-scale ERM problems

I An incremental quasi-Newton BFGS method (IQN) was presented

I IQN only computes the information of a single function at each step

⇒ Low computation cost

I IQN aggregates variable, gradient, and BFGS approximation

⇒ Reduce the noise ⇒ Superlinear convergence

I Ada Newton resolves the Newton-type methods drawbacks

⇒ Unit stepsize ⇒ No line search

⇒ Not sensitive to initial point ⇒ less Hessian inversions

⇒ Exploits quadratic convergence of Newton’s method at each iteration

I Ada Newton achieves statistical accuracy with about two passes over the data
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Numerical results

I Convergence of S-BFGS, RES, and SGD with constant stepsize εt = 0.1

I Non-regularized stochastic BFGS ⇒ Γ = 0 , δ = 0

I Regularized stochastic BFGS (RES) ⇒ Γ = 10−4 , δ = 10−3
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Stochastic BFGS

Regularized stochastic BFGS

Stochastic gradient descent

I Reach convergence ⇒ small eigenvalue B̂t

I RES limits the size of jumps. RES more stable than non-regularized BFGS
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Making BFGS more efficient

I The BFGS update of approximate Hessian inverse

B−1
t =

(
I− rt−1v

T
t−1

vTt−1rt−1

)T

B−1
t−1

(
I− rt−1v

T
t−1

vTt−1rt−1

)
+

vt−1v
T
t−1

vTt−1rt−1

I Each BFGS iteration has computation complexity of order O(p2)

I BFGS requires storage and propagation of the O(p2) elements of B−1
t

I This motivates alternatives with smaller memory footprints and complexity.

I B−1
t depends on B−1

t−1 and the curvature information pairs {vt−1, rt−1}

I B−1
t depends on B−1

0 and all previous curvature information {vu, ru}t−1
u=0

⇒ The old curvature information pairs should be less related
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Limited memory BFGS (L-BFGS)

I LBFGS uses only the last τ past curvature information pairs {vu, ru}t−1
u=t−τ

I Pick the initial approximate Hessian inverse B−1
t,0 � 0

I Update the approximate Hessian inverse B−1
t,u for u = 0, . . . , τ − 1

B−1
t,u+1 =

(
I− rt−τ+uv

T
t−τ+u

vTt−τ+urt−τ+u

)T

B−1
t,u

(
I− rt−τ+uv

T
t−τ+u

vTt−τ+urt−τ+u

)
+

vt−τ+uv
T
t−τ+u

vTt−τ+urt−τ+u

I The outcome is the Hessian inverse at step t, i.e., B−1
t = B−1

t,τ

I The computation complexity of implementing LBFGS is O(τp)� O(p2)

I Stochastic method ⇒ Substitute gradients with stochastic gradients
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online Limited memory BFGS (oL-BFGS)

I Given the set of curvature information pairs {vu, r̂u}t−1
u=t−τ and variable wt

I Pick the initial approximate Hessian inverse B−1
t,0 � 0

I Update the approximate Hessian inverse B−1
t,u for u = 0, . . . , τ − 1

B̂−1
t,u+1 =

(
I− r̂t−τ+uvt−τ+u

T

vt−τ+u
T r̂t−τ+u

)T

B̂−1
t,u

(
I− r̂t−τ+uvt−τ+u

T

vt−τ+u
T r̂t−τ+u

)
+
vt−τ+uvt−τ+u

T

vt−τ+u
T r̂t−τ+u

I The outcome is the Hessian inverse at step t, i.e., B̂−1
t = B−1

t,τ

I oL-BFGS descent ⇒ wt+1 = wt − εt B̂−1
t ŝ(wt , θ̃t)

I Variable variation ⇒ vt = wt+1 − wt

I Stochastic gradient variation ⇒ r̂t = ŝ(wt+1, θ̃t)− ŝ(wt , θ̃t)

I No regularization is added to the stochastic version!
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Ada Newton

If Rm(wm)− Rm(w∗m) ≤ δ, then w.h.p.

Rn(wm)−Rn(w∗n ) ≤ δ +
2(n −m)

n
(Vn−m + Vm)+2 (Vm − Vn)+

c(Vm − Vn)

2
‖w∗‖2
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RES

I Require Initial variable w0. Hessian approximation B̂0 � δI.

I for t = 0, 1, 2, . . . do

1: Collect L realization of random variable θ̃t = [θt1, . . . ,θtL]

2: Compute stochastic gradient ŝ(wt , θ̃t) = 1
L

∑L
l=1∇f (wt ,θtl)

3: Update the variable wt+1 = wt − εt (B̂−1
t + ΓI) ŝ(wt , θ̃t)

4: Compute variable variation ⇒ vt = wt+1 − wt

5: Compute stochastic gradient ŝ(wt+1, θ̃t) = 1
L

∑L
l=1∇f (wt+1,θtl)

6: Compute modified stochastic gradient variation r̃t

r̃t = r̂t − δvt = ŝ(wt+1, θ̃t)− ŝ(wt , θ̃t)− δvt

7: Hessian approximation ⇒ B̂t+1 = B̂t +
r̃t r̃t

T

vtT r̃t
− B̂tvtvt

T B̂t

vtT B̂tvt
+ δI.
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BFGS quasi-Newton method

I Resolve indeterminacy making Bt+1 closest to previous approximation Bt

Bt+1 = argmin tr(B−1
t Z)− log det(B−1

t Z)− n

s. t. Zvt = rt , Z � 0

I Proximity measured in terms of differential entropy

I Solve to find Hessian approximation update

Bt+1 = Bt +
rtr

T
t

vtT rt
− Btvtvt

TBt

vtTBtvt

I For positive definite B1 � 0 and nonnegative variation vTt rt > 0

⇒ Bt stays positive definite for all iterations t
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Condition

I The difference Rn(wn)− Rn(w∗n ) is not computable

⇒ Replace it with a condition that depends on the gradient norm

Rn(wn)− Rn(w∗n ) ≤ 1

2cVn
‖∇Rn(wn)‖2.

I Instead of Rn(wn)− Rn(w∗n ) ≤ Vn, we check the following condition

‖∇Rn(wn)‖ < (
√

2c)Vn
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Efficient implementation of IQN

I Computation of the sums
∑n

i=1 B
t
i ,
∑n

i=1 B
t
i z

t
i , and

∑n
i=1∇fi (z

t
i )

I Computing the inversion (
∑n

i=1 B
t
i )
−1

I The update of IQN can be written as

wt+1 = (B̃t)−1 (ut − gt) ,
I where B̃t :=

∑n
i=1 B

t
i as the aggregate Hessian approximation,

ut :=
∑n

i=1 B
t
i z

t
i as the aggregate Hessian-variable product, and

gt :=
∑n

i=1∇fi (z
t
i ) as the aggregate gradient.

I The update for these vectors and matrices can be written as

B̃t+1 = B̃t +
(
Bt+1

it − Bt
it

)
ut+1 = ut +

(
Bt+1

it zt+1
it − Bt

it z
t
it

)
gt+1 = gt +

(
∇fit (z

t+1
it )−∇fit (z

t
it )
)

I Thus, only Bt+1
it

and ∇fit (zt+1
it

) are required to be computed at step t.
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Efficient implementation of IQN

I The inversion can be avoided by simplifying the update for B̃t as

B̃t+1 = B̃t +
ytit y

tT
it

ytTi sitt
−

Bt
it s

t
it s

tT
it Bt

it

stTit Bt
it
stit

.

I This is a rank two update.

I Given the matrix (B̃t)−1, by applying the Sherman-Morrison formula twice
to the previous update we can compute (B̃t+1)−1 as

(B̃t+1)−1 = Ut +
Ut(Bt

it s
t
it )(Bt

it s
t
it )

TUt

stit
TBt

it
stit − (Bt

it
stit )

TUt(Bt
it
stit )

,

I where the matrix Ut is evaluated as

Ut = (B̃t)−1 −
(B̃t)−1ytit y

tT
it (B̃t)−1

ytTit stit + ytTit (B̃t)−1ytit
.

I The computational complexity of these updates is on the order of O(p2)

⇒ Rather than the O(p3) cost of computing the inverse directly.

I Therefore, the overall cost of IQN is on the order of O(p2)

⇒ Substantially lower than O(np2) of deter. quasi-Newton methods.
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