Systemic Risk and Central Clearing Counterparty Design

Andreea Minca (joint with Hamed Amini and Damir Filipović)

April 2017

What this paper is about

- Examine effects of central clearing counterparty (CCP) on a financial network from ex post and ex ante (systemic risk measure) perspective
- Propose CCP design with "hybrid" guarantee fund that is netted against liabilities
- Simple enough for exact analysis of trade off between systemic risk reduction and banks' incentive to join CCP
- Sophisticated enough to capture real world orders of magnitude of capital, guarantee funds, and fees (stylised CDS OTC market data BIS 2010)

Main findings

- Ex post: CCP reduces banks' liquidation and shortfall losses, improves aggregate surplus
- Ex ante: find explicit threshold on CCP capital and guarantee fund for systemic risk reduction
- Design of "hybrid" guarantee fund netted against liabilities is superior to ("pure" guarantee) default fund plus margin fund
 - hybrid implies similar systemic risk
 - hybrid gives much larger banks' incentive compatibility

Outline

- 2 Central counterparty clearing
- 8 Ex post effects of central counterpary clearing
- 4 Systemic risk and incentive compatibility

Simulation study

Outline

Financial network

- 2) Central counterparty clearing
- 3 Ex post effects of central counterpary clearing
- 4 Systemic risk and incentive compatibility
- 5 Simulation study

Setup

- Two periods t = 0, 1, 2
- Values at t = 1, 2 are random variables on (Ω, \mathcal{F})
- m interlinked banks $i = 1 \dots m$

Instruments

Bank *i* holds

- Cash γ_i : zero return
- External asset (e.g. long-term investment maturing at t = 2):
 - fundamental value Q_i at t = 1, 2
 - liquidation value $P_i < Q_i$ at t = 1
- Interbank liabilities:
 - formation at t = 0
 - realization/expiration at t = 1: L_{ij}
- No external debt

Example of interbank liabilities: CDS (premiums paid before t = 0. At t = 1 change in credit spreads or defaults)

At t = 1

- Interbank liabilities realize: $L_{ij}(\omega)$
- We compute a network fixed point to obtain the **actual** payments (equilibrium)
- With these equilibrium payments, we derive: assets A_i , nominal cash balance, amount of liquidations Z_i , capital C_i , capital surplus C_i^+ , capital shortfall C_i^- .

Aggregate surplus identity

Lemma: The aggregate surplus depends on interbank liabilities only through implied liquidation losses:

$$\sum_{i=1}^{m} C_{i}^{+} = \sum_{i=1}^{m} \gamma_{i} + \sum_{i=1}^{m} Q_{i} - \sum_{i=1}^{m} Z_{i}(Q_{i} - P_{i}).$$

- $\rightarrow\,$ Forced liquidation of external assets lowers aggregate surplus.
- $\rightarrow\,$ Absent external asset, cash gets only redistributed in network. No dead weight losses.

Outline

2 Central counterparty clearing

- 3 Ex post effects of central counterpary clearing
- 4 Systemic risk and incentive compatibility

5 Simulation study

Central Clearing Counterparty (CCP)

- We label the CCP as i = 0
- All liabilities are cleared through the CCP
- $\rightarrow\,$ star shaped network
 - Proportionality rule: CCP liabilities have equal seniority
- $\rightarrow\,$ interbank clearing equilibrium can be directly computed (no fixed point problem)

Capital structure of CCP

- The CCP is endowed with
 - external equity capital γ_0
 - guarantee fund

 $\sum_{i=1}^{m} \mathbf{g}_{i}$

where $\mathbf{g}_{\mathbf{i}} \leq \gamma_i$ is received from bank *i* at time t = 0

- Guarantee fund is hybrid of margin fund and default fund:
 - GF payment g_i netted against bank liability (margin fund)
 - GF absorbs shortfall losses of defaulting banks (default fund)
- Banks' shares in the guarantee fund have equal seniority

Liabilities

- Bank i's net exposure to CCP Λ_i
- Bank *i*'s nominal liability to the CCP (netting)

$$\widehat{L}_{i0} = \left(\Lambda_i^- - \mathbf{g}_i\right)^+$$

 \rightarrow CCP charges a volume based fee *f* on bank *i*'s receivables

 $\mathbf{f} \times \Lambda_i^+$

Nominal guarantee fund

• Bank *i*'s nominal share in the guarantee fund: guarantee fund contribution after it has absorbed the loss from bank *i*

Aggregate surplus identity with CCP

Lemma: The aggregate surplus with CCP depends on clearing mechanism only through implied liquidation losses:

$$\sum_{i=0}^{m} \widehat{C}_{i}^{+} = \sum_{i=0}^{m} \gamma_{i} + \sum_{i=1}^{m} Q_{i} - \sum_{i=1}^{m} \widehat{Z}_{i}(Q_{i} - P_{i}).$$

Outline

8 Ex post effects of central counterpary clearing

4) Systemic risk and incentive compatibility

5 Simulation study

- Compare financial network with and without CCP
- Convention: For comparison we set

$$C_0 = \gamma_0$$

CCP ex post effects

Theorem:

The CCP reduces

- liquidation losses $\widehat{Z}_i \leq Z_i$
- bank shortfalls (bankruptcy cost) $\widehat{C}^-_i \leq C^-_i$

The CCP improves

- aggregate terminal bank net worth $\sum_{i=1}^{m} \widehat{C}_i \ge \sum_{i=1}^{m} C_i$
- aggregate surplus

$$\sum_{i=0}^{m} \widehat{C}_{i}^{+} = \sum_{i=0}^{m} C_{i}^{+} + \underbrace{(Q_{i} - P_{i}) \sum_{i=1}^{m} (Z_{i} - \widehat{Z}_{i})}_{\geq 0}$$

The CCP imposes shortfall risk $\widehat{C}_0^- \ge 0$

CCP impact on banks' net worth decomposition

Outline

- Central counterparty clearing
- 3 Ex post effects of central counterpary clearing
- 4 Systemic risk and incentive compatibility

5 Simulation study

Systemic risk measure

- Write $\boldsymbol{\mathcal{C}}=(\mathit{C}_0,\ldots,\mathit{C}_m)$ and $\widehat{\boldsymbol{\mathcal{C}}}=(\widehat{\mathit{C}}_0,\ldots,\widehat{\mathit{C}}_m)$
- Generic coherent risk measure $\rho(X)$
- Aggregation function, $\alpha \in [1/2,1]$,

$$A_{\alpha}(\mathbf{C}) = \underbrace{\alpha \sum_{i=0}^{m} C_{i}^{-}}_{\text{bankruptcy cost}} - \underbrace{(1-\alpha) \sum_{i=0}^{m} C_{i}^{+}}_{\text{tax benefits}}$$

• Systemic risk measure (Introduced independently in a working paper version of 2013)

$$\mathcal{R}(\boldsymbol{C}) =
ho\left(\mathcal{A}_{lpha}(\boldsymbol{C})
ight)$$

Systemic risk reduction

Theorem: The CCP reduces systemic risk, $\mathcal{R}(\widehat{C}) < \mathcal{R}(C)$, if¹

shortfall risk of CCP

risk-adjusted value of Δ_lpha

where

$$\Delta_{\alpha} = \alpha \underbrace{\sum_{i=1}^{m} \left(C_{i}^{-} - \widehat{C}_{i}^{-} \right)}_{\text{cost of intermediation}} + (1 - \alpha) \underbrace{\sum_{i=1}^{m} \left(Z_{i} - \widehat{Z}_{i} \right) (Q_{i} - P_{i})}_{\text{mitigation on liquidation losses}} \ge 0$$

cost of internetiation

milligation on inquidation iosses

does not depend on (f, g).

¹ if and only if for $\rho(X) = \mathbb{E}[X]$

Andreea Minca (Cornell)

Acceptable equity, fee, and guarantee fund policies

- CCP and banks are risk neutral
- Utility function = expected surplus $\mathbb{E}\left[C_{i}^{+}\right]$
- Policy (γ_0, f, g) is incentive compatible if

$$\mathbb{E}\left[\widehat{C}_{i}^{+}\right] \geq \mathbb{E}\left[C_{i}^{+}\right] \quad \forall i = 0 \dots m.$$

• Policy $(\gamma_0, f, \boldsymbol{g})$ is acceptable if incentive compatible and

$$\mathcal{R}(\widehat{m{C}}) \leq \mathcal{R}(m{C})$$

Symmetric case

Assumption: $\gamma_i \equiv \gamma$, $g_i \equiv g$, and

$$(Q_i, P_i, \{L_{ij}\}_{j=1...m}, \{L_{ji}\}_{j=1...m}), \quad i = 1...m$$

is exchangeable.

Theorem:

• Policy $(\gamma_0, f, \boldsymbol{g})$ incentive compatible if and only if

$$\gamma_0 \leq \mathbb{E}\left[\widehat{C_0}^+\right] \leq \gamma_0 + \sum_{i=1}^m \mathbb{E}\left[\left(Z_i - \widehat{Z}_i\right)(Q_i - P_i)\right]$$

- Existence theorem for acceptable policies
- Every acceptable policy is Pareto optimal

Outline

- Central counterparty clearing
- 3 Ex post effects of central counterpary clearing
- 4 Systemic risk and incentive compatibility

Simulation study

Parameters

- Symmetric CDS inter dealer network based on BIS 2010 data
- gross market value W = \$1tn
- *m* = 14 banks
- $\gamma_i = \gamma =$ \$30*bn*

•
$$Q_i = Q = \$15bn, P_i = Q_i/3$$

- CCP: $\gamma_0 = \$5bn$, fee f = 2% ($\approx 1bp$ of notional)
- Systemic risk measure $\mathcal{R}(\boldsymbol{C}) = \mathbb{E}\left[A_{0.9}(\boldsymbol{C})\right]$
- Model:

$$\begin{split} \mathcal{W} &= \sum_{i \neq j} \mathbb{E}\left[|X_{ij}| \right], \quad X_{ij} \text{ i.i.d. } \mathcal{N}(0, \sigma) \\ \mathcal{L}_{ij} &= \left(|X_{ij}| - |X_{ji}| \right)^+ \end{split}$$

Systemic risk, banks' and CCP utility as functions of g

There exists acceptable and incentive compatible policies:

 $g_{\rm reg}, g_{
m comp} < g_{
m mon}$

Incentive compatible utility indifference curves and systemic risk zero line in (f, g)

Systemic risk as functions of g for m = 14 vs. 10 banks

 $g_{\rm reg}$ doubles: concentration risk matters!

Systemic risk, banks' and CCP utility as functions of g, γ_0

Hybrid vs. pure (default) guarantee fund

Pure guarantee fund: not netted agains liabilities, $\overline{L}_{i0} = \Lambda_i^-$.

Assets remaining with bank *i*, $\gamma_i - g_i + P_i$, form margin fund.

Systemic risk improvement is limited, while banks have no incentivecompatibility: $g_{mon} < g_{reg}$.Andreea Minca (Cornell)Systemic Risk and CCP DesignApril 2017

31 / 32

Conclusion

- General financial network setup with and without CCP
- CCP improves aggregate surplus due to lower liquidation losses
- CCP reduces banks' bankruptcy cost
- CCP introduces tail risk, and may increase systemic risk
- Find exact condition for systemic risk reduction
- Simulation study illustrates range of acceptable CCP equity, fee, and guarantee fund policies
- Hybrid guarantee fund design greatly improves banks incentives to join CCP