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Stochastic Volatility

— {Sy;t €0, T)}: Stock Price Process

dSt = ,UStdt + U(Xf,) St th,

o(+) is a deterministic function and X} is a stochastic process.

— Assumption: X is modeled by a diffusion driven by noise other than
w.

— Log-Normal: dX; = c¢1 X¢ dt + c2 X dZy,
— Mean Reverting OU: dX; = o (m — Xy) dt + 8 dZ,

— Feller/Cox—Ingersoll-Ross (CIR): dX; =k (v — X¢) dt + v/ X dZ;.
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Stylized Fact: Volatility Persistence

-0.06

—0.08

. L . s L L
1888 1930 1992 1934 1996 1988 2000 2002 2004 2006

Industrial and EHTEIU”SE S\'STEFIIS EﬂEinEEring UNIVERSITY OF ILLINDIS AT URBANA-CHAMPAIGN




ACF of S&P 500 Returns?

Huaries preliarss=d

. 1]

LT

_|""u"‘|||‘U‘I|I"|U[II|!!|||||||||||m||n!|un.

L&

. Industrial and Emg“msg STS?EIHS EWIHN”HE UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

=] 5 = = E DA

o



Stochastic Process with Long Memory

Long-memory

If {X;}ien is a stationary process and there exists H € (1,1) such that

Corr(Xy, X1)

t—o0 ct2—2H

=1

then {X;} has long memory (long-range dependence).
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Stochastic Process with Long Memory

Long-memory
If {X;}ien is a stationary process and there exists H € (1,1) such that

Corr(X, X1)

c{2—2H =1

t—o0

then {X;} has long memory (long-range dependence).

Equivalently,

Long Memory: > .=, Corr(X;, X1) = oo, when H > 1/2
Antipersistence: Y .2, Corr(X;, X1) < co, when H < 1/2
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Fractional Stochastic Volatility Model

Log-Returns: {Y;,t € [0,T]}
0't2
dY; = (T — 7) dt+0t th

where oy = 0(X}) and X} is described by:

dX; =a (m— X;) dt + B dB
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Fractional Stochastic Volatility Model

Log-Returns: {Y;,t € [0,7]}
O'tz
dY; = (T - 2) dt+0’t th

where oy = 0(X}) and X} is described by:
dX; =a (m— X;) dt + B dB

— B! is a fractional Brownian motion with Hurst parameter
H e (0,1).
— X, is a fractional Ornstein-Uhlenbeck process (fOU).
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Fractional Brownian Motion

Definition
A centered Gaussian process B = {BH t > 0} is called fractional
Brownian motion (fBm) with selfsimilarity parameter H € (0, 1), if it has

the following covariance function
1
B (B BI) = 3 {7+ — |- s},

and a.s. continuous paths.
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Fractional Brownian Motion

Definition
A centered Gaussian process B = {BH t > 0} is called fractional
Brownian motion (fBm) with selfsimilarity parameter H € (0, 1), if it has

the following covariance function
1
B (B BI) = 3 {7+ — |- s},

and a.s. continuous paths.

— When H = 1, B is a standard Brownian motion.
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Properties of FBM

The increments of fBm, {B,, — B,_1}nen, are
— stationary, i.e. E[(By, — Bn-1) (Bnth — Brnin—1)] = v(h).
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Properties of FBM

The increments of fBm, {B,, — B,_1}nen, are
— stationary, i.e. E[(By, — Bn-1) (Bnth — Brnin—1)] = v(h).

— H-selfsimilar, i.e. ¢ (B, — By_1) ~P (Ben — Ben-1))
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Properties of FBM

The increments of fBm, {B,, — B,_1}nen, are
— stationary, i.e. E[(By, — Bn-1) (Bnth — Brnin—1)] = v(h).

— H-selfsimilar, i.e. ¢ (B, — By_1) ~P (Ben — Ben-1))

— dependent
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Properties of FBM

The increments of fBm, {B,, — B,_1}nen, are
— stationary, i.e. E[(By, — Bn-1) (Bnth — Brnin—1)] = v(h).

— H-selfsimilar, i.e. ¢ (B, — B,_1) ~P (Bey — Be(n-1))

— dependent

— When H > % the increments exhibit long-memory, i.e.

> E[Bi By — By1)] = +0.
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Properties of FBM

The increments of fBm, {B,, — B,_1}nen, are
— stationary, i.e. E[(B, — Bn—1) (Bnth — Brin—1)] = v(h).

— H-selfsimilar, i.e. ¢ (B, — B,_1) ~P (Bey — Be(n-1))

— dependent

— When H > % the increments exhibit long-memory, i.e.
> E[Bi By — By1)] = +0.
— When H < % the increments exhibit antipersistence, i.e.

ZIE [By (Bn — Bn_1)] < 400.
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Properties of FBM

— It has a.s. Hélder-continuous sample paths of any order v < H.
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Properties of FBM

— It has a.s. Hélder-continuous sample paths of any order v < H.

— Its +-variation on [0, ] is finite. In particular, fBm has an infinite
quadratic variation for H < 1/2.
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Properties of FBM

— It has a.s. Hélder-continuous sample paths of any order v < H.

— Its +-variation on [0, ] is finite. In particular, fBm has an infinite
quadratic variation for H < 1/2.

— When H # % BtH is not a semimartingale.
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Stochastic Integral wrt fBm

— Pathwise Riemann-Stieltjes integral, when H > 1/2. (Lin; Dai and
Heyde).

— Stochastic calculus of variations with respect to a Gaussian process.
(Decreusefond and Ustiinel; Carmona and Coutin; Alds, Mazet and

Nualart; Duncan, Hu and Pasik-Duncan and Hu and Oksendal).

— Pathwise stochastic integral interpreted in the Young sense, when
H > 1/2 (Young; Gubinelli).

— Rough path-theoretic approach by T. Lyons.

Industrial and EﬂTﬂlDliSE S'I'STEmS [ﬂEinEE”ﬂg UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN




Fractional Stochastic Volatility Model

av, = (r— 259 dt+o(X,) W,
dX, =a(m—X,)dt+BdBH

Some Properties
— Holder continuity: Hoélder continuous of order ~, for all v < H.

— Self-similarity: Self-similar in the sense that

{BE:t e R} ~P {B;t e R}, VeceR

cto

This property is approximately inherited by the fOU, for scales
smaller than 1/a.

E Industrial and EmElﬂ”SE Sj'STEFIlS EnEmEE”ﬁg UNIVERSITY OF ILLINDIS AT URBANA-CHAMPAIGN



Fractional Stochastic Volatility Model

Hurst Index Model

H >1/2  Long-Memory SV: persistence
ACF Decay ~ dt?H—2

H <1/2  Rough Volatility: anti-persistence
ACF Decay ~ dtf

H=1/2  Classical SV
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Long Memory Stochastic Volatility Models

— Comte and Renault (1998)

— Comte, Coutin and Renault (2010)

— C. and Viens (2010, 2012)

— Gulisashvili, Viens and Zhang (2015)

— Guennoun, Jacquier, and Roome (2015)
— Garnier & Solna (2015, 2016)

— Bezborodov, Di Persio & Mishura (20176)

— Fouque & Hu (2017)
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Rough Stochastic Volatility Models

— Gatheral, Jaisson, and Rosenbaum (2014)

Bayer, Friz, and Gatheral (2015)

Forde, Zhang (2015)

— El Euch, Rosenbaum (2016, 2017)
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Related Literature

Willinger, Taqqu, Teverovsky (1999): LRD in the stock market

Bayraktar, Poor, Sircar (2003): Estimation of fractal dimension of S&P
500.

Bjork, Hult (2005): Fractional Black-Scholes market.

Cheriditio (2003): Arbitrage in fractional BS market.

— Guasoni (2006): No arbitral under transaction cost with fBm.
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Research Questions

@ Option Pricing
@ Statistical Inference

© Hedging
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Option Pricing
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Option Pricing

— In practice, we have access to discrete-time observations of historical
stock prices, while the volatility is unobserved.
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Option Pricing
— In practice, we have access to discrete-time observations of historical
stock prices, while the volatility is unobserved.

Two-steps

@ Estimate the empirical stochastic volatility distribution.
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Option Pricing

— In practice, we have access to discrete-time observations of historical
stock prices, while the volatility is unobserved.

Two-steps

@ Estimate the empirical stochastic volatility distribution.

— Through adjusted particle filtering algorithms.
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Option Pricing

— In practice, we have access to discrete-time observations of historical
stock prices, while the volatility is unobserved.

Two-steps

@ Estimate the empirical stochastic volatility distribution.

— Through adjusted particle filtering algorithms.

@ Construct a multinomial recombining tree to compute the option
prices.
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Multinomial Recombining Tree

o = (j+1)a(\f-),} At + drift

=j o(Yi) 'At + drift

= (-1) o(¥D) JAt + drift

= (-2)o(Y) JAt + drift

(i) At each step, a value for the volatility is drawn from the volatility filter.
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Multinomial Recombining Tree

° = (j+1)o(Yi). ‘Al + drift

=i o(YDJAt + drift

= (-1) o(¥D) JAt + drift

- 0-2)0(Yi)J At + drift

(i) At each step, a value for the volatility is drawn from the volatility filter.

(ii) A standard pricing technique using backward induction can be used to compute the option
price.
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Multinomial Recombining Tree

° =(@+1)o(Yi) JAt + drift

=j o(Yi) ‘Al + drift

= (-1) o(¥D) JAt + drift

= (-2)o(Yi) | At + drift

(i) At each step, a value for the volatility is drawn from the volatility filter.

(ii) A standard pricing technique using backward induction can be used to compute the option
price.

(iii) We iterate this procedure by using N repeated volatility samples, constructing a different
tree with each sample and averaging over all prices.
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S&P 500 Data
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Statistical Inference
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Inference for FSV Models

dy; = (N - %) dt + o(X¢) dWr,
dXt :a(m—Xt) dt—f—ﬁng{

— We can also assume that Corr(BH, W;) = p
(leverage effects).

— Parameters to estimate: 0§ = (a, m, 3, 1, p) and H.

Industrial and EHTEIU”SE S\'STEFIIS EﬂEineEfiﬂg UNIVERSITY OF ILLINDIS AT URBANA-CHAMPAIGN




Inference for FSV Models

Remark

— The estimation of H is decoupled from the estimation of the drift
components, but not from the estimation of the “diffusion” terms.

Framework

— Observations:
Historical stock prices — Discrete, even when in high-frequency.

— Unobserved State:
Stochastic Volatility with non-Markovian structure is hidden.

E Industrial and EmElﬂnSE Sj'STEFIlS EnEmBE”ﬁg UNIVERSITY OF ILLINDIS AT URBANA-CHAMPAIGN



Inference for FSV Models

Extension of classical statistical methods

— For H known:

u, m, & and S can be estimated with standard techniques (Fouque,
Papanicolaou and Sircar, 2000) using high-frequency data.
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Inference for FSV Models

Extension of classical statistical methods

— For H known:

u, m, & and S can be estimated with standard techniques (Fouque,
Papanicolaou and Sircar, 2000) using high-frequency data.

— For H unknown:
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Inference for FSV Models

Extension of classical statistical methods

— For H known:

u, m, & and S can be estimated with standard techniques (Fouque,
Papanicolaou and Sircar, 2000) using high-frequency data.

— For H unknown:

e Traditional volatility proxies: Squared returns, logarithm of squared
returns.
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Inference for FSV Models

Extension of classical statistical methods
— For H known:

u, m, & and S can be estimated with standard techniques (Fouque,
Papanicolaou and Sircar, 2000) using high-frequency data.

— For H unknown:

e Traditional volatility proxies: Squared returns, logarithm of squared
returns.

o Use a non-parametric method to estimate H through the squared
returns and then go back to classical techniques and estimate the
remaining parameters.
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Inference for FSV Models

Simulation Based Methods

— Employ a Sequential Monte Carlo (SMC) method to estimate the
unobserved state along with the unknown parameters.
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Inference for FSV Models

Simulation Based Methods

— Employ a Sequential Monte Carlo (SMC) method to estimate the
unobserved state along with the unknown parameters.

— Denote 0 the vector of all parameters, except for H.

H Industrial and EmElﬂnSE Sj'STEFIlS EnEmBE”ﬁg UNIVERSITY OF ILLINDIS AT URBANA-CHAMPAIGN



Inference for FSV Models

Simulation Based Methods

— Employ a Sequential Monte Carlo (SMC) method to estimate the
unobserved state along with the unknown parameters.

— Denote 0 the vector of all parameters, except for H.

— Observation equation: f(Y;|Xy;0)
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Inference for FSV Models

Simulation Based Methods

— Employ a Sequential Monte Carlo (SMC) method to estimate the
unobserved state along with the unknown parameters.

— Denote 0 the vector of all parameters, except for H.

— Observation equation: f(Y;|Xy;0)
— State equation: f(X¢|X¢—1,...,X1;6)
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Inference for FSV Models

Simulation Based Methods

— Employ a Sequential Monte Carlo (SMC) method to estimate the
unobserved state along with the unknown parameters.

— Denote 0 the vector of all parameters, except for H.
— Observation equation: f(Y;|Xy;0)
— State equation: f(X¢|X¢—1,...,X1;6)
— Key Idea: Sequentially compute
(X1 01Y1:0) o f(X0) - f(X2]X050) - oo f(Xn|Xnoa, oo, X013 0)

t

1 rilxs0)- feve),

i=1
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Learning 6 sequentially

Filtering for states and parameter(s): Learning X; and 6 sequentially.
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Learning 6 sequentially

Filtering for states and parameter(s): Learning X; and 6 sequentially.

Posterior at ¢t : f(X:|6,Y:) f(0]Y)
4
Prior at £+ 1 f(X,e1[0, ¥3) £(0]Y7)

¥
Posterior at t + 1 : f(X¢410, Yig1) f(0]Yis1)
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Learning 6 sequentially

Filtering for states and parameter(s): Learning X; and 6 sequentially.

Posterior at ¢t : f(X:|6,Y:) f(0]Y)
4
Prior at £+ 1 f(X,e1[0, ¥3) £(0]Y7)

¥
Posterior at t + 1 : f(X¢410, Yig1) f(0]Yis1)

Advantages
@ Sequential updates of f(0|Y:), f(X.|Y:) and f(6, X,|Y2).
@ Sequential h-step ahead forecasts f(Y;14|Y:)
@ Sequential approximations for f(Y;|Y;_1).
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Artificial Evolution of 6

@ Draw 6 from a mixture of Normals:
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Artificial Evolution of 6

@ Draw 6 from a mixture of Normals:
— Vt update f(0]Y;)
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Artificial Evolution of 6

@ Draw 6 from a mixture of Normals:
— Vt update f(0|Y:)

— Compute a Monte Carlo approximation of f(6|Y:), by using samples

ng) and weights wij).
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Artificial Evolution of 6

@ Draw 6 from a mixture of Normals:
— Vt update f(0|Y:)

— Compute a Monte Carlo approximation of f(6|Y:), by using samples
60 and weights w”).

— Smooth kernel density approximation

£(0]Y2) ZW(J)N 0|m(1) h2Vt)

Jj=1
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Filter convergence

Let ¢ : X — R be an appropriate test function and assume that we want
estimate

Q_St :/¢t($1:t)p($1;t,9(t)|Y1:t)d=T1:td9(t)-

The SISR algorithm provides us with the estimator
fZ’iv:/fbt(xl:t (dw1:4) ZWt%t( Lit— 1,t—1 t(t))

CLT for the filter (C. and Spiliopoulos)
\/N (q?)iv — d_)t> = N(0,0’z(d)t))

as N — oo.
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Convergence of the Parameter

N, N, N
(t)—ZWt()GEt) ). where Hét) 9 N(m§_1)|h2V£1)

; N N.i N N N N,i N 2
with m, = a0l") + (1= )0 ), VY = w5 300 (we el )

CLT for the parameter

Assuming that E W) > < oo
\/N (98\)[) — é(t)) = N (0,0’2(9(15))) , as N — o0 (1)

Moreover, if the model Py is identifiable, then the posterior mean 9_(,5)
consistently estimates the true parameter value 6, as t — oo.

v
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S& P 500: Volatility Particle Filter
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S& P 500: Parameter Estimators

o
23 4 s 6 1

(a) Estimator of p (b) Estimator of «

(c) Estimator of m (d) Estimator of 8
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Model Validation: 1-Step Ahead Prediction
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Model Validation: Residuals

ACF Error

T T
10 15

Index

(a) Residuals
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(b) ACF of Residuals
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Hedging
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Hedging

— Conditionally on the past and the entire volatility path
InSt/St ~ N (r —(1/2) ftT o2ds, ftT o’?ds) .
So,
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Hedging

— Conditionally on the past and the entire volatility path
InS7p /St ~ N (r —(1/2) ftT o2ds, ftT o’ﬁds) .
So,

Vi T Vi
— EQ | [ Ft LT )| _ ommp@ | (2t BT
on=s B [o (G + )| -emme o (- 5]}

where 2, = In (e 775y /K) and V; r = (ftT U?ds) 1/2.
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Hedging

— Conditionally on the past and the entire volatility path
InS7p /St ~ N (r —(1/2) ftT o2ds, ftT o’ﬁds) .
So,

Vi T
C. =S, !ER | Tt t,T _emER | [ 2t 6T
=i {m o (G 55 - o (5

where 2, = In (e 775y /K) and V; r = (ftT aﬁds) 1/2.

— Imperfect Delta-Sigma hedging strategy

x Vi
At(xt,at) = EQ |:¢) (V.:T + ;T):l
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Hedging

Two notions of Implied Volatility

@ Black-Scholes Implied Volatility:
The unique solution to

Ct(x70) = CtBS($70j<$vU>)’

i.e. the volatility parameter that equates the BS price to the HW.

v
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Hedging

Two notions of Implied Volatility

@ Black-Scholes Implied Volatility:
The unique solution to

Ci(z,0) = CtBS(m,Ui(x,a)),

i.e. the volatility parameter that equates the BS price to the HW.

@ Hedging Volatility:
The unique solution to

Ai(z,0) = APS (z,0"(x,0))

i.e. the volatility parameter that equates the BS hedge ratio against
the underlying asset variations to the HW one.

v
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Hedging

Hedging Bias (Definition)
The difference between the BS implied volatility-based hedging ratio and

the HW one:
Bias = AP%(z,0'(x,0)) — Ay(z,0)
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Hedging

Theorem

(a) Sign of Hedging Bias:

o' (~z,0) < o'(~x,0) = o'(z,0) < o"(z,0)
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Hedging

Theorem
(a) Sign of Hedging Bias:

o'(~x,0) < o'(—x,0) = o' (x,0) < o"(z,0)
(b) Accuracy of approximation of partial hedging ratio by the BS
implicit volatility-based hedging ratio:

APS(z,0) < Az, 0)
ABS(—z,0) > A(~x,0)
ABS(0,0) = A(0,0)

4
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Thank you!
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