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Stochastic Volatility

– {St; t ∈ [0, T ]}: Stock Price Process

dSt = µStdt+ σ(Xt) St dWt,

σ(·) is a deterministic function and Xt is a stochastic process.

– Assumption: Xt is modeled by a diffusion driven by noise other than
W .

– Log-Normal : dXt = c1 Xt dt+ c2 Xt dZt,

– Mean Reverting OU: dXt = α (m−Xt) dt+ β dZt,

– Feller/Cox–Ingersoll–Ross (CIR): dXt = k (ν −Xt) dt+ v
√
Xt dZt.



Stylized Fact: Volatility Persistence
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Stochastic Process with Long Memory

Long-memory
If {Xt}t∈N is a stationary process and there exists H ∈ ( 1

2 , 1) such that

lim
t→∞

Corr(Xt, X1)
c t2−2H = 1

then {Xt} has long memory (long-range dependence).

Equivalently,{
Long Memory:

∑∞
t=1 Corr(Xt, X1) =∞, when H > 1/2

Antipersistence:
∑∞
t=1 Corr(Xt, X1) <∞, when H < 1/2



Stochastic Process with Long Memory

Long-memory
If {Xt}t∈N is a stationary process and there exists H ∈ ( 1

2 , 1) such that

lim
t→∞

Corr(Xt, X1)
c t2−2H = 1

then {Xt} has long memory (long-range dependence).

Equivalently,{
Long Memory:

∑∞
t=1 Corr(Xt, X1) =∞, when H > 1/2

Antipersistence:
∑∞
t=1 Corr(Xt, X1) <∞, when H < 1/2



Fractional Stochastic Volatility Model

Log-Returns: {Yt, t ∈ [0, T ]}

dYt =
(
r − σt

2

2

)
dt+ σt dWt.

where σt = σ(Xt) and Xt is described by:

dXt = α (m−Xt) dt+ β dBHt

– BH
t is a fractional Brownian motion with Hurst parameter

H ∈ (0, 1).
– Xt is a fractional Ornstein-Uhlenbeck process (fOU).
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Fractional Brownian Motion

Definition
A centered Gaussian process BH = {BHt , t ≥ 0} is called fractional
Brownian motion (fBm) with selfsimilarity parameter H ∈ (0, 1), if it has
the following covariance function

E
(
BHt B

H
s

)
= 1

2

{
t2H + s2H − |t− s|2H

}
.

and a.s. continuous paths.

– When H = 1
2 , BH is a standard Brownian motion.
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Properties of FBM

The increments of fBm, {Bn −Bn−1}n∈N, are
– stationary , i.e. E[(Bn −Bn−1) (Bn+h −Bn+h−1)] = γ(h).

– H–selfsimilar , i.e. c−H (Bn −Bn−1) ∼D (Bc n −Bc(n−1))

– dependent
– When H > 1

2 , the increments exhibit long-memory , i.e.∑
E [B1 (Bn −Bn−1)] = +∞.

– When H < 1
2 , the increments exhibit antipersistence, i.e.∑

E [B1 (Bn −Bn−1)] < +∞.
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Properties of FBM

– It has a.s. Hölder-continuous sample paths of any order γ < H.

– Its 1
H -variation on [0, t] is finite. In particular, fBm has an infinite

quadratic variation for H < 1/2.

– When H 6= 1
2 , BHt is not a semimartingale.
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Stochastic Integral wrt fBm

– Pathwise Riemann-Stieltjes integral, when H > 1/2. (Lin; Dai and
Heyde).

– Stochastic calculus of variations with respect to a Gaussian process.
(Decreusefond and Üstünel; Carmona and Coutin; Alòs, Mazet and
Nualart; Duncan, Hu and Pasik-Duncan and Hu and Oksendal).

– Pathwise stochastic integral interpreted in the Young sense, when
H > 1/2 (Young; Gubinelli).

– Rough path-theoretic approach by T. Lyons.



Fractional Stochastic Volatility Model

{
dYt =

(
r − σ2(Xt)

2

)
dt+ σ(Xt) dWt,

dXt = α (m−Xt) dt+ β dBHt

Some Properties
– Hölder continuity : Hölder continuous of order γ, for all γ < H.

– Self-similarity : Self-similar in the sense that

{BHct ; t ∈ R} ∼D {cHBHt ; t ∈ R}, ∀c ∈ R

This property is approximately inherited by the fOU, for scales
smaller than 1/α.



Fractional Stochastic Volatility Model

Hurst Index Model

H > 1/2 Long-Memory SV: persistence

ACF Decay ∼ dt2H−2

H < 1/2 Rough Volatility: anti-persistence

ACF Decay ∼ dtH

H = 1/2 Classical SV



Long Memory Stochastic Volatility Models

– Comte and Renault (1998)

– Comte, Coutin and Renault (2010)

– C. and Viens (2010, 2012)

– Gulisashvili, Viens and Zhang (2015)

– Guennoun, Jacquier, and Roome (2015)

– Garnier & Solna (2015, 2016)

– Bezborodov, Di Persio & Mishura (20176)

– Fouque & Hu (2017)



Rough Stochastic Volatility Models

– Gatheral, Jaisson, and Rosenbaum (2014)

– Bayer, Friz, and Gatheral (2015)

– Forde, Zhang (2015)

– El Euch, Rosenbaum (2016, 2017)



Related Literature

– Willinger, Taqqu, Teverovsky (1999): LRD in the stock market

– Bayraktar, Poor, Sircar (2003): Estimation of fractal dimension of S&P
500.

– Björk, Hult (2005): Fractional Black-Scholes market.

– Cheriditio (2003): Arbitrage in fractional BS market.

– Guasoni (2006): No arbitral under transaction cost with fBm.



Research Questions

1 Option Pricing

2 Statistical Inference

3 Hedging



Option Pricing



Option Pricing

– In practice, we have access to discrete-time observations of historical
stock prices, while the volatility is unobserved.

Two-steps
1 Estimate the empirical stochastic volatility distribution.

– Through adjusted particle filtering algorithms.

2 Construct a multinomial recombining tree to compute the option
prices.
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Multinomial Recombining Tree

(i) At each step, a value for the volatility is drawn from the volatility filter.
(ii) A standard pricing technique using backward induction can be used to compute the option

price.
(iii) We iterate this procedure by using N repeated volatility samples, constructing a different

tree with each sample and averaging over all prices.
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Statistical Inference



Inference for FSV Models

{
dYt =

(
µ− σ2(Xt)

2

)
dt+ σ(Xt) dWt,

dXt = α (m−Xt) dt+ β dBHt

– We can also assume that Corr(BHt ,Wt) = ρ

(leverage effects).

– Parameters to estimate: θ = (α,m, β, µ, ρ) and H.



Inference for FSV Models

Remark
– The estimation of H is decoupled from the estimation of the drift

components, but not from the estimation of the “diffusion” terms.

Framework
– Observations:

Historical stock prices → Discrete, even when in high-frequency.

– Unobserved State:
Stochastic Volatility with non-Markovian structure is hidden.



Inference for FSV Models

Extension of classical statistical methods
– For H known:

µ, m, α and β can be estimated with standard techniques (Fouque,
Papanicolaou and Sircar, 2000) using high-frequency data.

– For H unknown:

Traditional volatility proxies: Squared returns, logarithm of squared
returns.

Use a non-parametric method to estimate H through the squared
returns and then go back to classical techniques and estimate the
remaining parameters.
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Inference for FSV Models

Simulation Based Methods
– Employ a Sequential Monte Carlo (SMC) method to estimate the

unobserved state along with the unknown parameters.
– Denote θ the vector of all parameters, except for H.

– Observation equation: f(Yt|Xt; θ)
– State equation: f(Xt|Xt−1, . . . , X1; θ)

– Key Idea: Sequentially compute

f(X1:t; θ|Y1:t) ∝ f(X1) · f(X2|X1; θ) · . . . · f(Xn|Xn−1, . . . , X1; θ)

·
t∏

i=1

f(Yi|Xi; θ) · f(θ|Yt),



Inference for FSV Models

Simulation Based Methods
– Employ a Sequential Monte Carlo (SMC) method to estimate the

unobserved state along with the unknown parameters.
– Denote θ the vector of all parameters, except for H.

– Observation equation: f(Yt|Xt; θ)
– State equation: f(Xt|Xt−1, . . . , X1; θ)

– Key Idea: Sequentially compute

f(X1:t; θ|Y1:t) ∝ f(X1) · f(X2|X1; θ) · . . . · f(Xn|Xn−1, . . . , X1; θ)

·
t∏

i=1

f(Yi|Xi; θ) · f(θ|Yt),



Inference for FSV Models

Simulation Based Methods
– Employ a Sequential Monte Carlo (SMC) method to estimate the

unobserved state along with the unknown parameters.
– Denote θ the vector of all parameters, except for H.

– Observation equation: f(Yt|Xt; θ)
– State equation: f(Xt|Xt−1, . . . , X1; θ)

– Key Idea: Sequentially compute

f(X1:t; θ|Y1:t) ∝ f(X1) · f(X2|X1; θ) · . . . · f(Xn|Xn−1, . . . , X1; θ)

·
t∏

i=1

f(Yi|Xi; θ) · f(θ|Yt),



Inference for FSV Models

Simulation Based Methods
– Employ a Sequential Monte Carlo (SMC) method to estimate the

unobserved state along with the unknown parameters.
– Denote θ the vector of all parameters, except for H.

– Observation equation: f(Yt|Xt; θ)
– State equation: f(Xt|Xt−1, . . . , X1; θ)

– Key Idea: Sequentially compute

f(X1:t; θ|Y1:t) ∝ f(X1) · f(X2|X1; θ) · . . . · f(Xn|Xn−1, . . . , X1; θ)

·
t∏

i=1

f(Yi|Xi; θ) · f(θ|Yt),



Inference for FSV Models

Simulation Based Methods
– Employ a Sequential Monte Carlo (SMC) method to estimate the

unobserved state along with the unknown parameters.
– Denote θ the vector of all parameters, except for H.

– Observation equation: f(Yt|Xt; θ)
– State equation: f(Xt|Xt−1, . . . , X1; θ)

– Key Idea: Sequentially compute

f(X1:t; θ|Y1:t) ∝ f(X1) · f(X2|X1; θ) · . . . · f(Xn|Xn−1, . . . , X1; θ)

·
t∏

i=1

f(Yi|Xi; θ) · f(θ|Yt),



Learning θ sequentially

Filtering for states and parameter(s): Learning Xt and θ sequentially.

Posterior at t : f(Xt|θ, Yt) f(θ|Yt)
⇓

Prior at t+ 1 : f(Xt+1|θ, Yt) f(θ|Yt)
⇓

Posterior at t+ 1 : f(Xt+1|θ, Yt+1) f(θ|Yt+1)

Advantages
1 Sequential updates of f(θ|Yt), f(Xt|Yt) and f(θ,Xt|Yt).
2 Sequential h-step ahead forecasts f(Yt+h|Yt)
3 Sequential approximations for f(Yt|Yt−1).
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Artificial Evolution of θ

Draw θ from a mixture of Normals:
– ∀t update f(θ|Yt)

– Compute a Monte Carlo approximation of f(θ|Yt), by using samples
θ

(j)
t and weights w(j)

t .

– Smooth kernel density approximation

f(θ|Yt) ≈
N∑

j=1

ω
(j)
t N (θ|m(j)

t , h2Vt)
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Filter convergence

Let φ : X 7→ R be an appropriate test function and assume that we want
estimate

φ̄t =
∫
φt(x1:t)p(x1:t, θ(t)|Y1:t)dx1:tdθ(t).

The SISR algorithm provides us with the estimator

φ̂Nt =
∫
φt(x1:t)πN (dx1:t) =

N∑
i=1

W i
tφt

(
X

(i)
1:t−1,t−1, X̃

(i)
t,t

)

CLT for the filter (C. and Spiliopoulos)
√
N
(
φ̂Nt − φ̄t

)
⇒ N

(
0, σ2(φt)

)
as N →∞.



Convergence of the Parameter

θ̄N(t) =
N∑
i=1

W
(i)
t θ

(N,i)
(t) , where θ

(N,i)
(t) ∼ N (m(N,i)

t−1 |h2V Nt−1)

with mNt−1 = αθ
(N,i)
(t−1) + (1− α)θ̄N(t−1), V Nt−1 = 1

N−1

∑N

i=1

(
W

(i)
t−1θ

(N,i)
(t−1) − θ̄

N
(t−1)

)2
.

CLT for the parameter
Assuming that Eπθt ‖Wt‖2+δ

<∞:

√
N
(
θ̄

(N)
(t) − θ̄(t)

)
⇒ N

(
0, σ2(θ(t))

)
, as N →∞ (1)

Moreover, if the model Pθ is identifiable, then the posterior mean θ̄(t)
consistently estimates the true parameter value θ, as t→∞.



S& P 500: Volatility Particle Filter
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S& P 500: Parameter Estimators
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Model Validation: 1-Step Ahead Prediction



Model Validation: Residuals

(a) Residuals (b) ACF of Residuals
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Hedging

– Conditionally on the past and the entire volatility path
lnST /St ∼ N

(
r − (1/2)

∫ T
t
σ2
sds,

∫ T
t
σ2
sds
)
.

So,

Ct = St

{
EQ
[
Φ
(
xt
Vt,T

+ Vt,T
2

)]
− e−xtEQ

[
Φ
(
xt
Vt,T

− Vt,T
2

)]}
,

where xt = ln
(
e−rTSt/K

)
and Vt,T =

(∫ T
t
σ2
sds
)1/2

.

– Imperfect Delta-Sigma hedging strategy

∆t(xt, σt) = EQ
[
Φ
(
xt
Vt,T

+ Vt,T
2

)]
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Hedging

Two notions of Implied Volatility
1 Black-Scholes Implied Volatility:

The unique solution to

Ct(x, σ) = CBSt (x, σi(x, σ)),

i.e. the volatility parameter that equates the BS price to the HW.

2 Hedging Volatility:
The unique solution to

∆t(x, σ) = ∆BS
t (x, σh(x, σ))

i.e. the volatility parameter that equates the BS hedge ratio against
the underlying asset variations to the HW one.
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Hedging

Hedging Bias (Definition)
The difference between the BS implied volatility-based hedging ratio and
the HW one:

Bias = ∆BS
t (x, σi(x, σ))−∆t(x, σ)



Hedging

Theorem
(a) Sign of Hedging Bias:

σh(−x, σ) ≤ σi(−x, σ) = σi(x, σ) ≤ σh(x, σ)

(b) Accuracy of approximation of partial hedging ratio by the BS
implicit volatility-based hedging ratio:

∆BS(x, σ) ≤ ∆(x, σ)
∆BS(−x, σ) ≥ ∆(−x, σ)
∆BS(0, σ) = ∆(0, σ)
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Thank you!
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