
1

Implementation of a GPU
Based Surgical Simulator for

Open Heart Surgery

Thomas Sangild Sørensen
Associate Professor
Dept. Computer Science and Institute of Clinical Medicine
University of Aarhus, Denmark

On behalf of

Technical staff

� Thomas Sangild
Sørensen

� Jesper Mosegaard
� Allan Rasmusson
� Dagur Ballisager
� Bo Carstensen

Clinical staff

� Ole Kromann Hansen
� Vibeke Hjortdal
� Gerald Greil
� Ludger Sieverding
� Conal Austin
� and others…

University of Aarhus, Denmark
University of Tübingen, Germany
King’s College London School of Medicine, United Kingdom

2

Congenital heart disease

� Intracardiac
surgery on
infants and
small children

� Complex
individual
morpholgy

� Surgical
outcome will
influence an
entire life-time

Preoperative planning essential

� Gold standard – 2D imaging
� Echocardiography
� Catheterization
� MRI / CT

� But surgery is 3D
� Can we use “virtual cardiotomy” to

evaluate surgical strategies?

3

Virtual cardiotomy

Virtual cardiotomy

3D MRI

Training and education

Virtual cardiotomy

2 months old boy

Double outlet right ventricle
VSD / septum deviates to the right

Biventricular repair possible? Switch or intracardiac repair?

4

The movie

Sørensen et al. Circulation. 2007.

VSD closure

� Evaluation study in 40+ patients
� One hour of segmentation needed

Work in review.

5

Teaching surgical scenarios

� 3D MRI of a volunteer
� Septal defect (VSD, circle) added manually

� How can we best access the VSD?
� Trans-ventricular or trans-atrial incision?

Sørensen et al. Interact Cardiovasc Thorac Surg. 2006.

“Configurable” septal defects

6

Movie example

Sørensen & Mosegaard. ACM SIGGRAPH 2006.

An older model – playing around

7

Challenge

� How to model and compute tissue elasticity
sufficiently fast in a very complex organ such
as the heart?
� Real-time interaction is essential
� Can we simulate say 50000 nodes?

� (Our) Answer
� Implement the simulation engine on the GPU

� Deformable model
� Visualization
� Haptic feedback

Virtual Surgery – Surgical Simulation

Setup
� State of the art pc with

high-end graphics card
� One or two Phantom

Omnis for force
feedback

8

Motivation

Floating point operations per second (FLOPS)

Nvidia CUDA Programming Guide.

GPU vs CPU

� The GPU utilizes parallel
computation
� Execution on many elements

concurrently
� Single Instruction – Multiple

Data (SIMD) architecture,
i.e. limited flow control
requirements

� Memory latency hidden by
computation, i.e. limited
cache requirements

Nvidia CUDA Programming Guide.

9

Hardware
implementation

� A Set of SIMD
multiprocessors
with on-chip
shared memory

Nvidia CUDA Programming Guide.

CUDA API

� Standard C/C++
� Templates
� Classes
� Overloading

� Only a few language extensions to define
the interface to the GPU

� High-level libraries
� BLAS
� FFT

� Emulation mode for debugging

10

Language extensions

� Roughly speaking only four additions to
standard C
� Function type qualifiers to specify whether a

function executes on the host or on the device
� Variable type qualifiers to specify the memory

location on the device
� A new directive to specify how a kernel is executed

on the device
� Four built-in variables that specify the grid and

block dimensions and the block and thread indices

Deformable model

11

� Spring-mass model with damping
� Second order ordinary differential equation
� The acceleration of a particle is determined by

spring forces and damping forces

� is proportianal to the velocities

� With explicit time integration
� Verlet integration updates particle positions from

� Positions of the two previous iterations
� Force/acceleration vector

Deformable model

��� � ������� � ���	����

���	����

� �
������ �

�

�
������

������������ � ����
����

��������

Mapping to the GPU

� OpenGL
� Rendering computer graphics off-screen
� The “graphics” is then the desired

computation

� CUDA
� New programming platform for Nvidia

GPUs
� “Compute Unified Device Architecture”
� Simple extension of C/C++

12

OpenGL
Parallel computation
� One processor pr pixel (conceptually)
� Image (rgb) corresponds to positions (xyz)
� Kernel invoked on all pixels (at the same time)

Performance

� Geforce 6800 Ultra

� The GPU is up to 30
times faster as the CPU

� We are now several GPU
generations further on…

� Geforce 8800 GTX:
� 30.000 particles /

18 neighbours each

� >4000 iterations/sec

Mosegaard et al. IEEE Virtual Reality 2005.

13

CUDA

� Different programming model on the
same hardware
� How fast can the spring-mass system be

simulated?
� Does it compare to the OpenGL

performance?
� General memory model for read/write to

global memory plus fast on-chip shared
memory
� Which is the better implementation?

CUDA

� Does performance compare to the
OpenGL performance?
� Yes!

14

Visualization

Visualization

� Decoupled from the physical simulation
� Visualisation is most often desirable at a higher

resolution as what can be simulated in real time.

15

Decoupling of simulation and visualisation

� Smooth geometry
� Circle (left) / high resolution mesh (right)

� Represented by
� A “tangent space” offset from the simulation nodes

Example

� Deformation of a detailed surface
model based on a very low resolution
volumetric mesh.

Mosegaard et al. Eurographics Virtual Environments 2005.

16

Texturing

� Details do not have
to be modelled
geometrically
� Normal maps for

� Coronaries
� Muscle structure

Force Feedback

17

Force feedback

� Compute forces on the GPU
� Read back result to the CPU (device)
� Minimize the required bus bandwidth

� Two gestures
� Grab (easy)
� Probe (tricky)

Grabbing

Force array

Array of particle positions (recompute spring forces)
or summed spring forces per particle (from last simulation step)

16 particles are grabbed

� Only limited sized array is read back

18

Probing

� The list of particles underlying the
force feedback changes in each frame
� Assuming this list was known we could

proceed as in the case of grabbing
� The challenge is then to determine which

particles are touched by the instrument

Picking for probing

� Render the “simulation surface” from the tip of the
instrument
� Shading indicates the particle “coordinates” of the nearest

particle in GPU memory
� Update rate << simulation rate

Sørensen et al. MMVR 2006.

19

Picking buffer movie

Putting it all together

Geforce 7900 GTX
� Visualisation

� 80.000 faces
� Updated at 25 Hz

� Simulation
� 30.000 nodes / 18 springs
� 20 simulation steps for

each visualization step
� Updated at 500 Hz

� Force feedback
� After each simulation step
� Picking buffer updated

after each visualization

� Using the settings from the movie…

Geforce 8800 GTX
� Visualisation

� 80.000 faces
� Updated at 75 Hz

� Simulation
� 30.000 nodes / 18 springs
� 20 simulation steps for

each visualization step
� Updated at 1500 Hz

� Force feedback
� Turned off

20

Summary

� We have shown that GPU based surgical
simulators are indeed feasible
� Deformable model
� Visualization
� Force feedback

� The CUDA framework makes GPU
programming much easier
� C/C++ programming with minor language

extension to define the CPU/GPU interface
� Templates / classes / overloading

