Implementation of a GPU

- Based Surgical Simulator for
Open Heart Surgery

Thomas Sangild Serensen

Associate Professor

Dept. Computer Science and Institute of Clinical Medicine
University of Aarhus, Denmark

On behalf of
Technical staff Clinical staff
= Thomas Sangild = Ole Kromann Hansen
Sgrensen = Vibeke Hjortdal
» Jesper Mosegaard = Gerald Greil
= Allan Rasmusson = Ludger Sieverding
» Dagur Ballisager = Conal Austin
= Bo Carstensen = and others...

University of Aarhus, Denmark
University of TUbingen, Germany
King’s College London School of Medicine, United Kingdom

= Intracardiac
surgery on
infants and
small children

= Complex
individual
morpholgy

= Surgical
outcome will
influence an
entire life-time

Preoperative planning essential

= Gold standard — 2D imaging
o Echocardiography
o Catheterization
o MRI/CT

= But surgery is 3D

o Can we use “virtual cardiotomy” to
evaluate surgical strategies?

Training and education

Virtual cardiotomy

2 months old boy

Double outlet right ventricle
VSD / septum deviates to the right

Biventricular repair possible? Switch or intracardiac repair?

1 .y The movie

Serensen et al. Circulation. 2007.

VSD closure

= Evaluation study in 40+ patients
o One hour of segmentation needed

Work in review.

= 3D MRI of a volunteer

o Septal defect (VSD, circle) added manually
= How can we best access the VSD?

o Trans-ventricular or trans-atrial incision?

Serensen et al. Interact Cardiovasc Thorac Surg. 2006.

Movie example

Serensen & Mosegaard. ACM SIGGRAPH 2006.

Challenge

= How to model and compute tissue elasticity
sufficiently fast in a very complex organ such
as the heart?
o Real-time interaction is essential
o Can we simulate say 50000 nodes?

w (Our) Answer

o Implement the simulation engine on the GPU
u Deformable model
= Visualization
n Haptic feedback

Setup

= State of the art pc with
high-end graphics card

= One or two Phantom

Omnis for force
feedback

Motivation

Floating point operations per

GFLOPS
. | ©806L = Quadro 5600 Fx

300 1 G80 = GeForce 8800 GTX

_E G71 = GeForce 7900 GTX

G70 = GeForce 7800 GTX
200 _ NV40 = GeForce 6800 Ultra G70

1 NV35 = GeForce FX 5950 Ultra

NV30 = GeForce FX 5800
1004

1 Nvas NV4

0] A —o—

second (FLOPS)

G80GL
G80

G71

3.0 GHz

sz Duo

Alpr
2004

Jan Jun

2003 2

M'ay Nov Mar Nov

005 2006

Nvidia CUDA Programming Guide.

GPU vs CPU

= The GPU utilizes parallel

computation

o Execution on many elements
concurrently

Single Instruction — Multiple

Data (SIMD) architecture,

i.e. limited flow control

requirements

Memory latency hidden by
computation, i.e. limited
cache requirements

Control

Nvidia CUDA Programming Guide.

Device

Hardware ltprcesert
implementation

Multiprocessor 2

Multiprocessor 1

= A Set of SIMD
multiprocessors
with on-chip
shared memory

Nvidia CUDA Programming Guide.

CUDA API

= Standard C/C++
o Templates
o Classes
o Overloading
= Only a few language extensions to define
the interface to the GPU
= High-level libraries
o BLAS
o FFT

= Emulation mode for debugging

‘Language extensions

= Roughly speaking only four additions to
standard C
o Function type qualifiers to specify whether a
function executes on the host or on the device

o Variable type qualifiers to specify the memory
location on the device

o A new directive to specify how a kernel is executed
on the device

o Four built-in variables that specify the grid and
block dimensions and the block and thread indices

Deformable model

10

Deformable model

= Spring-mass model with damping
o Second order ordinary differential equation

o The acceleration of a particle is determined by
spring forces and damping forces

Miu = fspring + fdamping

0 fdampmg is proportianal to the velocities

PiP;
spr'mg Z kl.? | |p’Lp.7 | |) | | pj | |
PiP;

neighbors
= With explicit time integration

o Verlet integration updates particle positions from
O Positions of the two previous iterations
O Force/acceleration vector

Mapping to the GPU

= OpenGL

o Rendering computer graphics off-screen

o The “graphics” is then the desired
computation

= CUDA

o New programming platform for Nvidia
GPUs

o “Compute Unified Device Architecture”
o Simple extension of C/C++

11

OpenGL

Parallel computation

o One processor pr pixel (conceptually)

o Image (rgb) corresponds to positions (xyz)

o Kernel invoked on all pixels (at the same time)

Performance

= Geforce 6800 Ultra

» The GPUis upto 30
times faster as the CPU

GPU/CPU comparison

1400 +*
* GPU implicit

1200 4 + - - - .GPU explicit
; — —CPU

1000 {
3

= We are now several GPU
generations further on...

= Geforce 8800 GTX:

o 30.000 particles / . | ‘ | ‘ ‘ |
18 neighbours each 2500 10000 17500 25000 32500 40000 47500

number of nodes

@ @
S o
S o

IS
S
o

simulation iterations / sec.

N}
=}
S

o >4000 iterations/sec

Mosegaard et al. IEEE Virtual Reality 2005.

12

Different programming model on the
same hardware

o How fast can the spring-mass system be
simulated?

o Does it compare to the OpenGL
performance?

o General memory model for read/write to
global memory plus fast on-chip shared
memory
= Which is the better implementation?

Does performance compare to the
OpenGL performance?
o Yes!

13

Visualization

Visualization

= Decoupled from the physical simulation

o Visualisation is most often desirable at a higher
resolution as what can be simulated in real time.

14

Decoupling of simulation and visualisation

= Smooth geometry
o Circle (left) / high resolution mesh (right)
= Represented by
o A “tangent space” offset from the simulation nodes

= Deformation of a detailed surface
model based on a very low resolution
volumetric mesh.

Mosegaard et al. Eurographics Virtual Environments 2005.

15

» Details do not have
to be modelled
geometrically

o Normal maps for
= Coronaries
= Muscle structure

Force Feedback

16

Force feedback

= Compute forces on the GPU
o Read back result to the CPU (device)
o Minimize the required bus bandwidth

= Two gestures
o Grab (easy)
o Probe (tricky)

Grabbing

= Only limited sized array is read back

Force array

16 particles are grabbed

LN e o]l vollolo] o2 2

VDD DDDD G S 3|9 99|9|9]9|9)

Array of particle positions (recompute spring forces)
or summed spring forces per particle (from last simulation step)

17

Probing

= The list of particles underlying the
force feedback changes in each frame

o Assuming this list was known we could
proceed as in the case of grabbing

o The challenge is then to determine which
particles are touched by the instrument

Picking for probing

= Render the “simulation surface” from the tip of the
instrument

o Shading indicates the particle “coordinates” of the nearest
particle in GPU memory

o Update rate << simulation rate

Serensen et al. MMVR 2006.

18

Putting it all together

Using the settings from the movie...

Geforce 7900 GTX

Visualisation
80.000 faces
Updated at 25 Hz

Simulation
30.000 nodes / 18 springs

20 simulation steps for
each visualization step

Updated at 500 Hz

Force feedback
After each simulation step

Picking buffer updated
after each visualization

Geforce 8800 GTX

Visualisation

80.000 faces

Updated at 75 Hz
Simulation

30.000 nodes / 18 springs

20 simulation steps for
each visualization step

Updated at 1500 Hz

Force feedback
Turned off

19

Summary

= We have shown that GPU based surgical
simulators are indeed feasible
o Deformable model
o Visualization
o Force feedback

= The CUDA framework makes GPU
programming much easier

o C/C++ programming with minor language
extension to define the CPU/GPU interface

o Templates / classes / overloading

20

