ETH Eidgenössische Technische Hachschule Zärich Swiss Federal Institute of Technology Zurich

Deformation Computation via Statistical Models

PD Dr. Matthias Harders Virtual Reality in Medicine Group Computer Vision Lab, ETH Zurich

Principal Component Analysis

§ Orthogonal transformation into new basis

JUNE IS IS

- § Principal components ordered by variance
- § Minimization of correlation
- § Possibility of dimensionality reduction

ETH **Statistical Model** S Average uterus shape $\overline{\mathbf{p}} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{p}_i$ § Instance-specific difference vectors $\Delta \mathbf{p}_i = \mathbf{p}_i - \overline{\mathbf{p}}$ $\Delta \mathbf{P} = \left[\Delta \mathbf{p}_1, \dots, \Delta \mathbf{p}_N\right]$ § Covariance matrix $\boldsymbol{\Sigma} = \frac{1}{N-1} \Delta \mathbf{P} \Delta \mathbf{P}^{T} = \frac{1}{N-1} \sum_{i=1}^{N} \Delta \mathbf{p}_{i} \Delta \mathbf{p}_{i}^{T}$

Instance Derivation via Medical Metrics

§ Constrained optimization $d_{q}(\tilde{\mathbf{p}}) = \|\tilde{p}_{s_{q}} - \tilde{p}_{t_{q}}\| = \xi_{q}$

$$d_{q}(\mathbf{\tilde{p}}) = \left\| \widetilde{p}_{s_{q}} - \widetilde{p}_{i_{q}} \right\| = \xi_{q} \qquad q = 1, \dots, 7$$
$$D_{m}(\mathbf{\tilde{b}}) = \sqrt{\mathbf{\tilde{b}}^{T} \mathbf{\Lambda}^{-1} \mathbf{\tilde{b}}}$$
$$L(\mathbf{\tilde{b}}, \mathbf{l}) = \sqrt{\mathbf{\tilde{b}}^{T} \mathbf{\Lambda}^{-1} \mathbf{\tilde{b}}} - \mathbf{l}^{T} \left[d_{q} \left(\mathbf{\overline{p}} + \mathbf{U} \mathbf{\tilde{b}} \right) - \xi_{q} \right]$$

