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Lecture 1. The sparse reconstruction problem and random
matrices

Some of this material can be found in my unedited lecture notes [25].

The sparse reconstruction problem. The ever-growing literature on the
sparse reconstruction problem is documented at the Compressed Sensing web-
page at Rice:

http://www.dsp.ece.rice.edu/cs/

The restricted isometry condition. The proof that the Restricted Isom-
etry Condition is sufficient for sparse recovery using convex programming is
due to Candes and Tao [2]. A simpler proof, also due to Candes and Tao, is
in [4].

Applications of restricted isometries to vector quantization and democratic
coding are found in [10], and applications to computing the condition number
of random matrices are found in [18].

Asymptotic and non-asymptotic theory of random matrices. The sur-
vey [23] contains references to asymptotic (size→∞) and non-asymptotic (size
fixed) estimates on the singular values of random matrices.

Lecture 2. Upper and lower bounds for subgaussian matrices

Most of this material can be found in my unedited lecture notes [25]. See
also the survey [5] of non-asymptotic results on random matrices. The theory
is most developed for gaussian matrices, for which very precise upper and lower
bounds are known [6].

Sums of independent random variables. The book [13] has a wealth of
deviation inequalities. Bernstein’s inequality for subexponential random vari-
ables mentioned in the lecture can be found e.g. in [24].
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Reconstruction from subgaussian matrices. A proof of the fact that sub-
gaussian matrices are restricted isometries can be found in [12]. A more general
result is in [11].

Dudley’s inequality. The standard proof of Dudley’s inequality is found
in the expository paper [19] and in the first pages of the book [21]. The
monograph [9] contains a more general version of Dudley’s inequality (Section
11.1).

Sharp bounds for subgaussian matrices. The theorem that the singular
numbers of subgaussian matrices with aspect ratio y lie within [1− C

√
y, 1 +

C
√

y] can be derived from more general results: ([8] Theorem 1.4) with con-
stant probability, and ([11] Theorem D) with exponentially large probability.

Lecture 3. Random Fourier measurements

Reconstruction from Fourier measurements. The non-uniform result is
due to [1]. It states that, for a given n-sparse signal f , the random set of
N ∼ n log d frequencies is good with high probability: f can be reconstructed
correctly from these frequencies using a convex program. The dependence of
N on n is optimal.

The uniform result states that, with high probability, a random set of N ∼
n log4 d frequencies is good for every f (in the above sense). This estimate is
proved in [16, 17]; a weaker estimate N ∼ n log6 d is in [3].

The uniform result is deduced (via Candes-Tao’s Restricted Isometry Con-
dition) from the theorem that random N rows of the d × d Discrete Fourier
Transform matrix form a restricted isometry (for sparsity level n). Proving
this for N below n log log d should be hard because of the rlations with the
Λ1 conjecture [20] (selecting a proportion of characters that spans a Euclidean
subspace of L1). This connection is explained in [7].

Khinchine’s inequality for scalars and operators. An exposition of the
classical Khinchine’s inequality can be found in Section 4.1 of [9]. The non-
commutative version (for linear operators) is covered in the book [14]; see also
the paper [15].

Rudelson’s Selection Theorem. This was proved in [15] using the non-
commutative Khinchine inequality. The result is restated in the language of
frames in [22].
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