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Image Compression

• Modern imaging applications: 10s of millions to billions of pixels

• Compression algorithms make this huge amount of data manageable
Compression ratio somewhere around 100 : 1

• “Turn huge data set into significantly smaller one without losing much”

• Compressive Sampling avoids the large data set altogether



Transform Coding

• Transform image into an appropriate domain

– energy compaction

– sparsity/compressibility

– accurate low-order approximations

• Quantize the important coefficients

• Effectiveness closely tied to transform



Classical Image Compression (JPEG)

• Discrete Cosine Transform (DCT)
Basically a real-valued Fourier transform (sinusoids)

• Model: most of the energy is at low frequencies

• Use a fixed quantization map
(keep low frequencies, zero-out high-frequencies)

• Performance ≈ linear approximation in DCT basis



Modern Image Compression

• Based on the wavelet transform

• Locations of important wavelet coefficients vary

• Coder observes which wavelets are significant and keeps them
(and codes their location)



Modern Image Compression

• Based on the wavelet transform

• Locations of important wavelet coefficients vary

• Coder observes which wavelets are significant and keeps them
(and codes their location)

• Adaptation to edges is what gives wavelets the advantage

• Performance ≈ nonlinear approximation in wavelet basis



Coded Imaging
• Use transform in the acquisition process

• Instead of samples, measure against codes or test vectors

y1 = 〈f, φ1〉, y2 = 〈f, φ2〉, . . . , ym = 〈f, φm〉

y = Φf

• Examples:

– MRI, the φk are sinusoids, measuring Fourier coefficints

– Tomography, the φk are ridge functions, measuring line integrals

– Digital camera, the φk are small indicator functions, measuring pixels

• Sometimes we are stuck with what we can measure,
we will broaden are perspective here and see what we should measure

• General coded imaging devices are being built
Single-pixel camera at Rice
Hyperspectral imager at Yale
Analog imager at Georgia Tech



DCT Imaging

• How should we choose the measurements?

• Idea 1: Match the measurements to image structure
Inspiration: JPEG

• Most of the energy is at low frequencies, so we start there

image DCT acquisition order
low frequencies

high frequencies



Stylized Performance
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• We get a “rough sketch” very quickly

• ≈ 95% of the energy in 1000 terms

• The details come in much more slowly
(we are after ≈ 99.95% of the energy)



Wavelet Imaging?

• Want to measure wavelets, but which ones?



The Big Question
Can we get adaptive approximation performance from a fixed set of
measurements?

• Surprisingly: yes.

• More surprising: measurements should not match image structure at all

• The measurements should look like random noise



Representation vs. Measurements
• Image structure: local, coherent

Good basis functions:
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• Measurements: global, incoherent
Good test functions:



Motivation: Sampling a Sparse Vector

concentrated vector incoherent measurements

• Signal is local, measurements are global

• Each measurement picks up a little information about each component

• Triangulate significant components from measurements

• Formalization: Relies on uncertainty principles between sparsity basis and
measurement system



The Uniform Uncertainty Principle

• Φ obeys a UUP for sets of size S if
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for every S-sparse vector x

• Examples: Φ obeys UUP for S . m/ logn when

– φk = random Gaussian

– φk = random binary

– φk = randomly selected Fourier samples
(extra log factors apply)

• We call these types of measurements incoherent



UUP and Sparse Recovery

• UUP ⇒ there can be only one sparse explanation for measurements
(more or less automatic)

• Say x0 is S-sparse, and we measure y = Φx0

If we search for the sparsest vector that explains y, we will find x0:

min
x

#{t : x(t) 6= 0} subject to Φx = y

• This is nice, but impossible (combinatorial)

• But, we can use the `1 norm as a proxy for sparsity



Sparse Recovery via `1 Minimization

• Say x0 is S-sparse, Φ obeys UUP for sets of size 4S

• Measure y = Φx0

• Then solving
min

x
‖x‖`1 subject to Φx = y

will recover x0 exactly

• We can recover x0 from
m & S · logn

incoherent measurements by solving a tractable program

• Number of measurements ≈ number of active components



Transform Domain Recovery

• Sparsity basis Ψ (e.g. wavelets)

• Reconstruct by solving

min
α

‖α‖`1 subject to ΦΨα = y

• Need measurement to be incoherent in the Ψ domain

– Random Gaussian: still incoherent (exactly the same)

– Random binary: still incoherent

– General rule: just make Φ unstructured wrt Ψ



General Recovery

• Sparsity basis Ψ (orthonormal, Ψ∗Ψ = I)
(signal/image model)

• Measurement basis M (orthogonal, M∗M = nI)
(acquisition system)

• Select measurements by sampling at random in M domain:
Φ = MΩ, Ω = sample index set

• Recover solving

min ‖α‖`1 subject to Φ′α = y, Φ′ = ΦΨ

• Exact recovery when

m & µ2(Φ,Ψ) · S · logn

for vast majority of signals and sample sets

• Recovery conditions based on different weak uncertainty principles



What is µ(Φ,Ψ)?

m & µ2(Φ,Ψ) · S · logn

• Mutual coherence

µ(Φ,Ψ) =
√
n · max

j,k
|〈φk, ψj〉| =

√
n · max

j,k
|(MΨ)j,k|

• Rows of Φ′:

µ =
√
n µ = 1 µ ≈

√
n/2

1

• Maximum value in M (not relationship between columns)



Motivation for Structured Measurements

• Properties of system: Ψ fixed by image model, M fixed by physics

• Algorithmic:

– solving min `1 requires solving (large) systems of equations

MΩΨΣiΨTMT
Ωz = w

iterative methods need fast implicit algorithms for Ψ,M



Fast Measurements

• Say we want to take 20, 000 measurements of a 512 × 512 image
(n = 262, 144)

• If Φ is Gaussian, with each entry a float, it would take more than an entire
DVD just to hold Φ

• Need fast, implicit, noise-like measurement systems to make recovery
feasible

• Noiselet system (Coifman,Geshwind,Meyer ’01)

– perfectly incoherent with Haar system

– performs the same as Gaussian (in numerical experiments) for
recovering spikes, sparse wavelets, sparse Fourier signals

– O(n logn)



Large Scale Example

• n = 10242 ≈ 106, m = 100, 000

• Perfectly sparse image (in wavelet domain), S = 25, 000

• Recovered to 4 digits in 50 iterations
(5 digits in 52 iterations, 6 digits in 54 iterations,. . .)

• Recovery time ≈ 30 minutes on a desktop (Matlab code)

• ≈ 5000–10, 000 applications of Φ′



Stability

• Real images are not exactly sparse

• For Φ′ obeying UUP for sets of size 4S, and general α,
recovery obeys

‖α0 − α∗‖2 .
‖α0 − α0,S‖

√
S

α0,S = best S-term approximation

• Compressible: if transform coefficients decay

|α|0(k) . k−r, r > 1

|α|0(k) = kth largest coefficient, then

‖α0 − α0,S‖2 . S−r+1/2

‖α0 − α∗‖2 . S−r+1/2

• Recovery error ∼ adaptive approximation error



Stability

• What if the measurements are noisy?

y = Φ′α0 + e, ‖e‖2 ≤ ε

• Relax the recovery program; solve

min
α

‖α‖`1 subject to ‖Φ′α− y‖2 ≤ ε

• The recovery error obeys

‖α0 − α∗‖2 .

√
n

m
· ε +

‖α0 − α0,S‖`1√
S

measurement error + approximation error



Total-variation Recovery
• Recover by solving

min TV(x) such that ‖Φx− y‖2 ≤ ε

where

TV(x) =
∑
i,j

√
(xi+1,j − xi,j)2 + (xi,j+1 − xi,j)2

(sum of the magnitude of the gradient at each pixel)

• Alternate image model, popularized by Rudin-Osher-Fatemi (1992)

• Find an image with sparse gradient that matches observations

• Second-order cone program (≈ linear program)

• Exact recovery from clean measurements on piecewise-constant images



Back to our imaging simulation . . .



DCT Imaging

• How should we choose the measurements?

• Idea 1: Match the measurements to image structure
Inspiration: JPEG

• Most of the energy is at low frequencies, so we start there

image DCT acquisition order
low frequencies

high frequencies



Stylized Performance
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• We get a “rough sketch” very quickly

• ≈ 95% of the energy in 1000 terms

• The details come in much more slowly
(we are after ≈ 99.95% of the energy)



Compressive Imaging

• Idea 2: Take first 1000 DCT coefficients,
then switch to random measurements, recover using TV minimization

image measurements

y1 = 〈
,

〉
y2 = 〈

,

〉
y3 = 〈

,

〉
...

ym = 〈
,

〉



Compressive Imaging: Stylized Performance
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• Not only is Compressive Imaging better, it is getting better faster!

• CI is much better at “filling in the details”



Compressive Imaging: Example

linear, 21k meas CI, 21k meas



Compressive Imaging: Stylized Performance

• Is the performance gain just coming from the modeling?

• Take low frequency DCT measurement, recover using TV
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• Random measurements are really helping!



Examples of Immediate Applications

• Fast MRI

• Fast Tomography

• Low-power Sensing

• High-speed analog-to-digital conversion (ADC)


