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Image Compression

Modern imaging applications: 10s of millions to billions of pixels

Compression algorithms make this huge amount of data manageable
Compression ratio somewhere around 100 : 1

“Turn huge data set into significantly smaller one without losing much

Compressive Sampling avoids the large data set altogether



Transform Coding

e [ransform image into an appropriate domain
— energy compaction
— sparsity/compressibility

— accurate low-order approximations
e Quantize the important coefficients

o Effectiveness closely tied to transform



Classical Image Compression (JPEG)

e Discrete Cosine Transform (DCT)
Basically a real-valued Fourier transform (sinusoids)

e Model: most of the energy is at low frequencies

e Use a fixed quantization map
(keep low frequencies, zero-out high-frequencies)

e Performance = linear approximation in DCT basis



Modern Image Compression

e Based on the wavelet transform

e Locations of important wavelet coefficients vary

e Coder observes which wavelets are significant and keeps them
(and codes their location)



Modern Image Compression

e Based on the wavelet transform
e [ocations of important wavelet coefficients vary

e Coder observes which wavelets are significant and keeps them
(and codes their location)

e Adaptation to edges is what gives wavelets the advantage

e Performance = nonlinear approximation in wavelet basis



Coded Imaging

Use transform in the acquisition process

Instead of samples, measure against codes or test vectors

Y1 = <f9¢1>7 Y2 = <f7¢2>9 cee sy Ym = <f7¢m>

y=2of
Examples:
- MRI, the ¢, are sinusoids, measuring Fourier coefficints
- Tomography, the ¢, are ridge functions, measuring line integrals
— Digital camera, the ¢, are small indicator functions, measuring pixels

Sometimes we are stuck with what we can measure,
we will broaden are perspective here and see what we should measure

General coded imaging devices are being built
Single-pixel camera at Rice

Hyperspectral imager at Yale

Analog imager at Georgia Tech



DCT Imaging

e How should we choose the measurements?

e |dea 1: Match the measurements to image structure
Inspiration: JPEG

e Most of the energy is at low frequencies, so we start there

image DCT acquisition order
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Stylized Performance
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e We get a “rough sketch” very quickly
e =~ 95% of the energy in 1000 terms

e The details come in much more slowly
(we are after =~ 99.95% of the energy)



Wavelet Imaging?

e Want to measure wavelets, but which ones?




The Big Question

Can we get adaptive approximation performance from a fixed set of
measurements?

e Surprisingly: yes.
e More surprising: measurements should not match image structure at all

e he measurements should look like random noise



Representation vs. Measurements

e Image structure: local, coherent
Good basis functions:

e Measurements: global, incoherent
Good test functions:




Motivation: Sampling a Sparse Vector

concentrated vector incoherent measurements
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Signal is local, measurements are global
Each measurement picks up a little information about each component
Triangulate significant components from measurements

Formalization: Relies on uncertainty principles between sparsity basis and
measurement system



The Uniform Uncertainty Principle

e ® obeys a UUP for sets of size S if

m m
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for every S-sparse vector x

e Examples: ® obeys UUP for S < m/logn when
- ¢ = random Gaussian
— ¢, = random binary
— ¢, = randomly selected Fourier samples
(extra log factors apply)

e We call these types of measurements incoherent



UUP and Sparse Recovery

e UUP = there can be only one sparse explanation for measurements
(more or less automatic)

e Say xq is S-sparse, and we measure y = ®xg
If we search for the sparsest vector that explains y, we will find xq:

min #{t: x(t) # 0} subjectto Pz =1y

e This is nice, but impossible (combinatorial)

e But, we can use the £; norm as a proxy for sparsity



Sparse Recovery via £; Minimization

Say xq is S-sparse,  obeys UUP for sets of size 45
Measure y = Pxq

Then solving
min ||x|l¢, sSubjectto Px =1y

will recover xq exactly

We can recover xg from
m 2> S-logn

iIncoherent measurements by solving a tractable program

Number of measurements =~ number of active components



Transform Domain Recovery

e Sparsity basis ¢ (e.g. wavelets)

e Reconstruct by solving

min ||a|le, Subjectto PVYa =y

e Need measurement to be incoherent in the ¥ domain
- Random Gaussian: still incoherent (exactly the same)
— Random binary: still incoherent

— General rule: just make ® unstructured wrt ¥



General Recovery

e Sparsity basis ¢  (orthonormal, ¥*W¥ = TI)
(signal/image model)

e Measurement basis M  (orthogonal, M*M = nl)
(acquisition system)

e Select measurements by sampling at random in M domain:
¢ = Mg, €2=sampleindex set

e Recover solving
min ||al|le, subjectto P'a =y, &’ = PP
e Exact recovery when
m > p?(®,¥)-S - logn

for vast majority of signals and sample sets

e Recovery conditions based on different weak uncertainty principles



e Mutual coherence

p(®, )

e Rows of &’;

What is pu(P, ¥)?

m > p?(®,¥)-S-logn

= Vi max|(gr, ¥5)| = V- max (M)
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e Maximum value in M (not relationship between columns)



Motivation for Structured Measurements

e Properties of system: W fixed by image model, M fixed by physics

e Algorithmic:

- solving min £; requires solving (large) systems of equations
MU, "MLz = w

iterative methods need fast implicit algorithms for ¥, M



Fast Measurements

e Say we want to take 20, 000 measurements of a 512 x 512 image
(n = 262, 144)

e If ® is Gaussian, with each entry a float, it would take more than an entire
DVD just to hold ®

e Need fast, implicit, noise-like measurement systems to make recovery
feasible

e Noiselet system (Coifman,Geshwind,Meyer ’'01)
— perfectly incoherent with Haar system

- performs the same as Gaussian (in numerical experiments) for
recovering spikes, sparse wavelets, sparse Fourier signals

- O(nlogn)



Large Scale Example

n = 10242 =~ 10%, m = 100, 000
Perfectly sparse image (in wavelet domain), S = 25, 000

Recovered to 4 digits in 50 iterations
(5 digits in 52 iterations, 6 digits in 54 iterations,. . .)

Recovery time =~ 30 minutes on a desktop (Matlab code)

~ 5000-10, 000 applications of &’



Stability

e Real images are not exactly sparse

e For ®’ obeying UUP for sets of size 48, and general a,

recovery obeys
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e Compressible: if transform coefficients decay
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e Recovery error ~ adaptive approximation error



Stability
e What if the measurements are noisy?

y =P ap + e, lellz < €

e Relax the recovery program; solve

min [lall, subjectto [[®'a—yl2<e

e The recovery error obeys

n | — g, s]|e,
ap— |z S 4/ € + :
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measurement error + approximation error




Total-variation Recovery

e Recover by solving

min TV(z) suchthat ||®x — yll2 <€

where

TV(z) = ) _ \/(iL’i+1,j — %i,5)% + (@ijr1 — xi5)°
i,

(sum of the magnitude of the gradient at each pixel)
¢ Alternate image model, popularized by Rudin-Osher-Fatemi (1992)
e Find an image with sparse gradient that matches observations
e Second-order cone program (= linear program)

e Exact recovery from clean measurements on piecewise-constant images




Back to our imaging simulation ...



DCT Imaging

e How should we choose the measurements?

e |dea 1: Match the measurements to image structure
Inspiration: JPEG

e Most of the energy is at low frequencies, so we start there

image DCT acquisition order

low frequencies
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Stylized Performance
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e We get a “rough sketch” very quickly
e =~ 95% of the energy in 1000 terms

e The details come in much more slowly
(we are after =~ 99.95% of the energy)



Compressive Imaging

e Idea 2: Take first 1000 DCT coefficients,
then switch to random measurements, recover using TV minimization

image measurements




Compressive Imaging: Stylized Performance

Blue = DCT, Green = Cl
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e Not only is Compressive Imaging better, it is getting better faster!

e Clis much better at “filling in the details”



Compressive Imaging: Example

linear, 21k meas UL Cl, 21k meas




Compressive Imaging: Stylized Performance

e Is the performance gain just coming from the modeling?
e Take low frequency DCT measurement, recover using TV

Blue = DCT, Green = Cl, Red = DCT+TV
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e Random measurements are really helping!



Examples of Immediate Applications
Fast MRl
Fast Tomography
Low-power Sensing

High-speed analog-to-digital conversion (ADC)



