
Agenda

• Lecture 1: Sparse representations and what they are good for

• Lecture 2: Overview of Compressive Imaging

• Lecture 3: Proof of uncertainty principle ⇒ stable recovery via `1
(elementary/nontrivial as RV said . . .)

• We will discuss many things in the context of imaging to keep things
concrete



Sparsity in Compression, Denoising,
and Inverse Problems

(Thanks to Emmanuel Candes for some of the slides)



Applied and Computational Harmonic Analysis

• Signal/image f(t) in the time/spatial domain

• Decompose f as a superposition of atoms

f(t) =
∑

i

αiψi(t)

ψi = basis functions

αi = expansion coefficients in ψ-domain

• Classical example: Fourier series

ψi = complex sinusoids

αi = Fourier coefficients

• Modern example: wavelets

ψi = “little waves”

αi = wavelet coefficients

• Cutting-edge example: curvelets (more later)



ACHA

• ACHA Mission: construct “good representations” for ”signals/images” of
interest

• Examples of “signals/images” of interest

– Classical: signal/image is “bandlimited” or “low-pass”

– Modern: smooth between isolated singularities (e.g. 1D piecewise poly)

– Cutting-edge: 2D image is smooth between smooth edge contours

• Properties of “good representations”

– sparsifies signals/images of interest

– can be computed using fast algorithms
(O(N) or O(N logN) — think of the FFT)



Sparse Representations

f(t) =
∑

i

αiψi(t)

• Perfect S-sparsity: only S of the αi are nonzero
⇒ f is only S dimensional (in some sense)

• Approximate sparsity (compressibility): α obey a power-law:

|α|(n) . n−r r > 1

|α|(n) = coefficients sorted by magnitude

• Sparsity/compressibility ⇒ accurate low-order approximations

‖f − fS‖2
2 . S−2r+1

fS = best S-term approximation of f

• Sparsity ⇒ f is much simpler in the ψ-domain than in the time/spatial
domain
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Wavelets
f(t) =

∑
j,k

αj,kψj,k(t)

• Multiscale: indexed by scale j and location k

• Local: ψj,k analyzes/represents an interval of size ∼ 2−j

• Vanishing moments: in regions where f is polynomial, αj,k = 0

ψj,k piecewise poly f

j

↓

... wavelet coeffs αj,k



2D wavelet transform

• Important wavelets cluster along edges



Wavelets and Images
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Wavelet Approximation
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The ACHA Paradigm

Sparse representations yield algorithms for (among other things)

1. compression,

2. estimation in the presence of noise (“denoising”),

3. inverse problems (e.g. tomography),

4. acquisition (compressed sensing)

that are

• fast,

• relatively simple,

• and produce (nearly) optimal results



Compression



Transform-Domain Image Coding

• Sparse representation = good compression
Why? Because there are fewer things to code

• Canonical image coder

1. Transform image into sparse basis

2. Quantize
Most of the xform coefficients are ≈ 0
⇒ they require very few bits to encode

3. Decoder: simply apply inverse transform to quantized coeffs



Image Compression

• Classical example: JPEG (1980s)

– standard implemented on every digital camera

– representation = Local Fourier
discrete cosine transform on each 8 × 8 block

• Modern example: JPEG2000 (1990s)

– representation = wavelets
Wavelets are much sparser for images with edges

– about a factor of 2 better than JPEG in practice
half the space for the same quality image



Image Compression

• Key distinction:
JPEG forms DCT approximation in a fixed way for all images
JPEG2k adapts the wavelet approximation to the image



JPEG vs. JPEG2000
Visual comparison at 0.25 bits per pixel (≈ 100:1 compression)

JPEG JPEG2000

27 March, 200327 March, 2003 © David Taubman, UNSW© David Taubman, UNSW

JPEG2000 vs. JPEG:JPEG2000 vs. JPEG:

Blocking ArtefactsBlocking Artefacts

JPEG2000 @ 0.25 bits/pixelJPEG2000 @ 0.25 bits/pixel JPEG @ 0.25 bits/pixelJPEG @ 0.25 bits/pixel
27 March, 200327 March, 2003 © David Taubman, UNSW© David Taubman, UNSW

JPEG2000 vs. JPEG:JPEG2000 vs. JPEG:

Blocking ArtefactsBlocking Artefacts

JPEG2000 @ 0.25 bits/pixelJPEG2000 @ 0.25 bits/pixel JPEG @ 0.25 bits/pixelJPEG @ 0.25 bits/pixel

(Images from David Taubman, University of New South Wales)



Sparse Transform Coding is Asymptotically Optimal
Donoho, Cohen, Daubechies, DeVore, Vetterli, and others . . .

• The statement “transform coding in a sparse basis is a smart thing to do”
can be made mathematically precise

• Class of images C

• Representation {ψi} (orthobasis) such that

|α|(n) . n−r

for all f ∈ C (|α|(n) is the nth largest transform coefficient)

• Simple transform coding: transform, quantize (throwing most coeffs away)

• `(ε) = length of code (# bits) that guarantees the error < ε for all f ∈ C
(worst case)

• To within log factors

`(ε) � ε−1/γ , γ = r − 1/2

• For piecewise smooth signals and {ψi} = wavelets,
no coder can do fundamentally better



Statistical Estimation



Statistical Estimation Setup

y(t) = f(t) + σz(t)

• y: data

• f : object we wish to recover

• z: stochastic error; assume zt i.i.d. N(0, 1)

• σ: noise level

• The quality of an estimate f̃ is given by its risk
(expected mean-square-error)

MSE(f̃ , f) = E‖f̃ − f‖2
2



Transform Domain Model

y = f + σz

Orthobasis {ψi}:

〈y, ψi〉 = 〈f, ψi〉 + 〈z, ψi〉
ỹi = αi + zi

• zi Gaussian white noise sequence

• σ noise level

• αi = 〈f, ψi〉 coordinates of f



Classical Estimation Example

• Classical model: signal of interest f is lowpass

time domain Fourier domain
f(t)

t
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• Observable frequencies: 0 ≤ ω ≤ Ω

• f̂(ω) is nonzero only for ω ≤ B



Classical Estimation Example

• Add noise: y = f + z

time domain Fourier domain
y(t)

t
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Observation error: E‖y − f‖2
2 = E‖ŷ − f̂‖2

2 = Ω · σ2

• Noise is spread out over entire spectrum



Classical Estimation Example

• Optimal recovery algorithm: lowpass filter (“kill” all ŷ(ω) for ω > B)
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Original error Recovered error

E‖ŷ − f̂‖2
2 = Ω · σ2 E‖ ˜̂

f − f̂‖2
2 = B · σ2

• Only the lowpass noise affects the estimate, a savings of (B/Ω)2



Modern Estimation Example

• Model: signal is piecewise smooth

• Signal is sparse in the wavelet domain

time domain f(t) wavelet domain αj,k

t −→ j, k −→

• Again, the αj,k are concentrated on a small set

• BUT, this set is signal dependent (and unknown a priori)
⇒ we don’t know where to “filter”



Ideal Estimation

yi = αi + σzi, y ∼ Normal(α, σ2I)

• Suppose an “oracle” tells us which coefficients are above the noise level

• Form the oracle estimate

α̃i
orc =

yi, if |αi| > σ

0, if |αi| ≤ σ

keep the observed coefficients above the noise level, ignore the rest

• Oracle Risk:
E‖α̃i

orc − α‖2
2 =

∑
i

min(α2
i , σ

2)



Ideal Estimation

• Transform coefficients α

– Total length N = 64

– # nonzero components = 10

– # components above the noise level S = 6

original coeffs α noisy coeffs y oracle estimate α̃orc
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E‖y − α‖2
2 = N · σ2 E‖α̃orc − f‖2

2 = S · σ2



Interpretation

MSE(α̃orc, α) =
∑

i

min(α2
i , σ

2)

• Rearrange the coefficients in decreasing order
|α|2(1) ≥ |α|2(2) ≥ . . . ≥ |α|2(n)

• S(σ) : number of those αi’s s.t. α2
i ≥ σ2

MSE(α̃orc, α) =
∑
i>N

|α|2(i) + S · σ2

= ‖α− αS‖2
2 + S · σ2

= Approx Error + Number of terms × noise level

= Bias2 + Variance

• The sparser the signal,

– the better the approximation error (lower bias), and

– the fewer # terms above the noise level (lower variance)

• Can we estimate as well without the oracle?



Denoising by Thresholding

• Hard-thresholding (“keep or kill”)

α̃i =

yi, |yi| ≥ λ

0, |yi| < λ

• Soft-thresholding (“shrinkage”)

α̃i =


yi − λ, yi ≥ λ

0, −λ < yi < λ

yi + λ, yi ≤ −λ

• Take λ a little bigger than σ

• Working assumption: whatever is above λ is signal, whatever is below is
noise



Denoising by Thresholding

• Thresholding performs (almost) as well as the oracle estimator!

• Donoho and Johnstone:
Form estimate α̃t using threshold λ = σ

√
2 logN ,

MSE(α̃t, α) := E‖α̃t − α‖2
2 ≤ (2 logN + 1) · (σ2 +

∑
i

min(α2
i , σ

2))

• Thresholding comes within a log factor of the oracle performance

• The (2 logN + 1) factor is the price we pay for not knowing the locations
of the important coeffs

• Thresholding is simple and effective

• Sparsity ⇒ good estimation



Recall: Modern Estimation Example
• Signal is piecewise smooth, and sparse in the wavelet domain

time domain f(t) wavelet domain αj,k

t −→ j, k −→

noisy signal y(t) noisy wavelet coeffs

t −→ j, k −→



Thresholding Wavelets
• Denoise (estimate) by soft thresholding

noisy signal noisy wavelet coeffs

t −→ j, k −→

recovered signal recovered wavelet coeffs

t −→ j, k −→



Denoinsing the Phantom

noisy lowpass filtered wavelet thresholding, λ = 3σ

Error = 25.0 Error = 42.6 Error = 11.0

(Sneak preview: later we will see that we can do even better using curvelet thresholding)



Inverse Problems



Linear Inverse Problems

y(u) = (Kf)(u) + z(u), u = measurement variable/index

• f(t) object of interest

• K linear operator, indirect measurements

(Kf)(u) =
∫
k(u, t)f(t) dt

Examples:

– Convolution (“blurring”)

– Radon (Tomography)

– Abel

• z = noise

• Ill-posed: f = K−1y not well defined



Solving Inverse Problems using the SVD

K = UΛV T

U = col(u1, . . . , un), Λ = diag(λ1, . . . , λn), V = col(v1, . . . , vn)

• U = orthobasis for the measurement space,
V = orthobasis for the signal space

• Rewrite action of operator in terms of these bases:

y(ν) = (Kf)(ν) ⇔ 〈uν , y〉 = λν〈vν , f〉

• The inverse operator is also natural:

〈vν , f〉 = λ−1
ν 〈uν , y〉, f = V


λ−1

1 〈u1, y〉
λ−1

2 〈u2, y〉
...


• But in general, λv → 0, making this unstable



Deconvolution

• Measure y = Kf + σz, where K is a convolution operator

signal f(t) convolution kernel observed y(t)

~ + noise =

• Singular basis: U = V = Fourier transform

{ 〈eν , f〉 } { λν } { 〈hν , y〉 }

× + noise =



Regularization
• Reproducing formula

f =
∑

ν

λ−1
ν 〈uν ,Kf〉vν

• Noisy observations

y = Kf + σz ⇔ 〈uν , y〉 = 〈uν ,Kf〉 + σẑν

• Multiply by damping factors wν to reconstruct from observations y

f̃ =
∑

ν

wνλ
−1
ν 〈uν , y〉vν

want wν ≈ 0 when λ−1
ν is large (to keep the noise from exploding)

• If spectral density θ2
ν = |〈f, vν〉|2 is known, the MSE optimal weights are

wν =
θ2

ν

θ2
ν + σ2

=
signal power

signal power + noise power

This is the Wiener Filter



Ideal Damping

• In the SVD domain:
yν = θν + σνzν

yν = 〈uν , y〉, θν = 〈f, vν〉, σν = σ/λν , zν ∼ iid Gaussian

• Again, suppose an oracle tells us which of the θν are above the noise level

• Oracle “keep or kill” window (minimizes MSE)

wν =

1 |θν | > σν

0 otherwise

Take θ̃ν = wνyν (thresholding)

• Since V is an isometry, oracle risk is

E‖f − f̃‖2
2 = E‖θ − θ̃‖2

2 =
∑

ν

min(θ2
ν , σ

2
ν)



Interpretation

MSE =
∑

ν

min(θ2
ν , σ

2
ν)

=
∑

ν:|θν |λν≤σ

θ2
ν +

∑
ν:|θν |λν>σ

σ2

λ2

= Bias2 + Variance

• Again, concentration of the θν := 〈f, vν〉 on a small set is critical for good
performance

• But the vν are determined only by the operator K !



Typical Situation

• Convolutions, Radon inversion (tomography)

• (vν) ∼ sinusoids

• f has discontinuities (earth, brain, ...)

• SVD basis is not a good representation for our signal

• Fortunately, we can find a representation that is simultaneously

– almost an SVD

– A sparse decomposition for object we are interested in



Example: Power-law convolution operators

• K = convolution operator with Fourier spectrum ∼ ω−1
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• Wavelets have dyadic (in scale j) support in Fourier domain

! 

"

! 

ˆ " j,k (#)

j=4j=3
j=2

j=1

• Spectrum of K is almost constant (within a factor of 2) over each subband



The Wavelet-Vaguelette Decomposition (WVD)
Donoho, 1995

• Wavelet basis {ψj,k} sparsifies piecewise smooth signals

• Vaguelette dual basis uj,k satisfies

〈f, ψj,k〉 = 2j/2〈uj,k,Kf〉

(basis for the measurement space)

• For power-law K, vaguelettes ≈ orthogonal, and ≈ wavelets
wavelet vaguelette

• Wavelet-Vaguelette decomposition is almost an SVD for Fourier power-law
operators



Deconvolution using the WVD

• Observe y = Kf + σz,
K = 1/|ω| power-law operator, z = iid Gaussian noise

• Expand y in vaguelette basis

vj,k = 〈uj,k, y〉

almost orthonormal, so noise in new basis is ≈ independent

• Soft-threshold

ṽj,k =

vj,k − γ sign(vj,k) |vj,k| > γ

0 |vj,k| ≤ γ

for γj ∼ 2j/2σ

• Weighted reconstruction in the wavelet basis

f̃(t) =
∑
j,k

2j/2ṽj,kψj,k(t)



Deconvolution Example

• Measure y = Kf + σz, where K is 1/|ω|

signal f(t) convolution kernel observed y(t)

~ + noise =

WVD recovery Wiener Filter recovery



Curvelets



Wavelets and Geometry

• Wavelet basis functions are isotropic
⇒ they cannot adapt to geometrical structure

• Curvelets offer a more refined scaling concept...



Curvelets
Candes and Donoho, 1999–2004

New multiscale pyramid:

• Multiscale

• Multi-orientations

• Parabolic (anisotropy) scaling

width ≈ length2



Curvelets in the Spatial Domain

    Parabolic 
         Scaling

2
-j

2-j/2

2
-j/2

2
-j

Rotate Translate1

Curvelets parameterized by scale, location, and orientation



Example Curvelets
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Curvelet Tiling in the Frequency Domain

wavelet curvelet
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Piecewise-smooth Approximation

• Image fragment: C2 smooth regions separated by C2 contours

• Fourier approximation

‖f − fS‖2
2 . S−1/2

• Wavelet approximation
‖f − fS‖2

2 . S−1

• Curvelet approximation

‖f − fS‖2
2 . S−2 log3 n

(within log factor of optimal)



Application: Curvelet Denoising I

Zoom-in on piece of phantom

noisy wavelet thresholding curvelet thresholding



Application: Curvelet Denoising II

Zoom-in on piece of Lena

wavelet thresholding curvelet thresholding



Summary (of Part I)

• Having a sparse representation plays a fundamental role in how well we
can

– compress

– denoise

– restore

images

• The above were accomplished with relatively simple algorithms
(in practice, we use similar ideas + a bag a tricks)

• Better representation (e.g. curvelets) −→ better results


