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Outline

* Path integral-based Bayesian inference
examples: functional interpolation
source recovery
dielectric reconstruction

* Dynamic Force Spectroscopy: inferring potentials and
diffusivities

* Reconstructing cellular focal adhesions
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Chang, Fok, Chou, Biophys. J., 109, 966, (2015)
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Path integral-based interpolation

inverse problems typically ill-posed: Tikhonov L?-regularization

Example: constructing a nonparametric function ¢(x) from point-wise
measurements p,s at positions {x,, } by seeking minima of

M
1 1 o 12
— 5 Z 52 Xm Spobs(xm + 5 nyoz/u) 90‘ dX

:1m

~~

Hobs[SO] erg[so]
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Yo :regularization strength ‘
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C. Farmer, Algorithms for Approximation (Springer, 2007)
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Path integral-based interpolation

integrate by parts to write H|p] as

M
Z : Spobs(Xm))z—l—%/w(X)P(—A)gp(X)dX,

m=1 Sm

1
2

e selects smooth solutions with smoothness controlled by H, e, (¢; Vo)

e transforms the original inverse problem into a convex optimization
problem that possesses an unique solution

e choice of v, and order of P is related to “prior” knowledge on .
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Probability over reconstructed functions

convert =

2
m=1 Sm

1
2

M
> = (0ltm) = Gomsem))? + 5 [ 00IP(-A)p(x)x,

Hopa[¢] Sl

into a probability over the different reconstructed functions

o(x)

C. Farmer, Algorithms for Approximation (Springer, 2007)
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Probability over reconstructed functions

convert =

M
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Probability over reconstructed functions

convert =
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> = (00tm) = pomaxm))? + 2 [ pGOP(~A)p(x)dx

2
m=1 Sm

1
2

Hopa[¢] Sl

into a probability over the different reconstructed functions
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C. Farmer, Algorithms for Approximation (Springer, 2007)
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Path integral-based Bayesian inference

Bayesian inference on ¢, given ¢, involves construction of a
posterior probability distribution m(p|e.ns) Which obeys

likelihood prior

b = N~ =
Pr(gpobs|g0) Pl“(g[))
Z10]

N~~~

normalization

T(|Pobs) =

e /|0] =integral over all functions (normalization)
e posterior 7 is a density in the space of functions

e mean-field inverse problem maximizes 7 (y|pobs) and finds
most probable ¢(x) subject to prior Pr(y)

e uncertainty is related to variance of posterior from mean-field

|
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Path integral-based inference

interpret Tikhonov regularization as a Gaussian prior and data term as
a likelihood:

ﬂ-(SOlSOObS) B ﬁB_H[ : % et {; Z 3% SOObS(Xm))Q}

m=1 ™M
_J

~~

likelihood (exp{— Hops })

<exp{— [ pP(-A)px)dx]

o 7

prior (exp{ —Heg})

Where Z[O] == IDQOB_H[SO] — ngpe_Hreg[Qo]e_Hobs[go]

choose regularization P(—A) based on prior knowledge of correlations
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Gaussian functional integration

quadratic forms for H|y]:

= probability density is Gaussian in function-space and

2[0] = exp {% / / e A b s bt — %lndet A}.

where A(x,x") = Ay + Aops @nd

/A(X,X/)A_l(X/,X”)dX/ = 0(x —x"")
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Path integral-based inference

e from H,, term, A, (x,x’) = P(—A)d(x — x') encodes a priori spatial
correlation of ¢ through the Green’s function A_1(x,y) = G(x,y)

reg

o from H,s term, Agps(x,x’) = d(x — x') ZM s—26(x' — x,,) and

m=1°“"m

b(x) = oM 5726(% — Xom )oss (Xm ) €NCOdes the data terms

e theory is Gaussian and exactly solvable

What if we wish to recover a function £(x) given measurements of
another coupled function ¢(x,,)?

I
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Path integral recovery of a parameter function

general one-to-one relationship between £(x) and p(x):
Flp(x),6(x) =0 xe€Q)\o0.

F(p(x),£(x)) = 0 constrains ¢ to € via e.g., a PDE

now, regularize £(x) using knowledge of its spatial correlations via the
posterior probability density

2
Sm

(@, €| Pobs) :ﬁ o {_% /mz::l 0(X = Xpn) o dx}
<exp{—3 [ €0PCA)(Ix} 8 (F(v. ),

impose F' = 0 via functional “Donsker’s” j—function

|
Inference in biophysical models —p. 13



Path integral-based inference

exponentiating the d-function, 8 (F(p,£)) = [ DAetJ A F((x),£(x))dx
(where \(x) is the Fourier wavevector function), posterior depends on
three functions ¢, &, A:

1

Tr(@a ‘Sa )‘|900b8) — m exp {_H[Qpa ga A‘onbs]} )

where Z[0] = [[| DEDYDAexp{—H][p,§, A|pos) } and

2
2 50

H[o, &, N @obs] _1 / Z Moz —s2) (p(x) — %bs(x))2dx

1
+ 5 [ €P-)EEIdx + i [ AP (6. dx
is a functional of ¢, £, and the Fourier wave vector \(x).
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Path integral-based inference: extremal solution

maximum a posteriori estimation (MAP) inference: minimize energy
functional wrt p(x), £(x), and A(x). E-L egns:

Flp,6)=0, P(- >5+% / A (i £ —

= )
> 00 = %) () = pornl) + 5 [ AP g)ax -

integrating over A\(x) and ¢(x), effective H [£|pqs] May not be Gaussian

semiclassical perturbation near extremal solution:

HIe] /dx/dx5§ ( e ))5§(x’)—i—0((5§3)

|
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Applications: deterministic models

® interpolating membrane deformations: Canham-Helfrich model
® source recovery: F(p(x),£(x)) = Ap(x) = p(x)

® dielectric recovery: F(p(x),£(x)) = V - (e(x)Vp(x)) = p(x)

|
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Membrane interpolation

Hlplpons) = /Z 220 (o) s ()b [ o) P D)),

Use Canham-Helfrich model P(—A) = 8(kA? — oA) in E-L Eq:

M

dp s2.

m=1

for fluctuations, consider

mexp{ [ 76047 e (x axx

. / z:l Spobs(xm);i 1(X Xm)dx}

o > ) (p(x) — pobs(x)) + P(=A)p(x) = 0.
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Path integral-based inference

through functional differentiation of Z[.J], mean-field solution is

1 62[J]
Z10] 6J(x)

M X —1(x Xm,
<90(X)> _ Z @obs( m)A ( ) )

2
Sm

Y

J=0 m=1

and variance in the solution is

1 627 J]
Z[0] 8J(x)8J(x)

= (p(x) = (9(0)) , p(x') = (p(x)) ) = AL (x, %),

J=0

A Nx,x") = G(x,x') — G (x) (I+ A)_1 G(x'),

where, G;(x) = Sj_QG(X,Xj), Gi(x) = G(x,%;), Nij = 55 °G(x4,%;),
and, in 2D,
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Path integral-based inference

interpolating membrane height fluctuations:

simulated ¢ (x) (p(x)) from 100 points V{(o(x) — {p(x)))?2)

|
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Source recovery: Ap(x) = p(x)

recover the source function p(x) from measurements of p(x;)

d(x — Xm
H[gp, P, )‘lgpobs — / Z ) o @obs(x))zdx

|
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Uncertainty of source recovery

posterior takes the form

1 M (x — xm) 5
m(p(30) = Alpons(36)) =7 exp 4 / Z (() — o (x))%dx

\

X exp 3 ——/Ago Ap(x)dx

“p(x)"! )

~~

Y

S L(x,xm
Z[J] ocexp{%/ AJ(X)A_l(x,x’)A’J(x’)dx’dx—|—/ x)A Z Pobs( );; ( )dx}
m=1

82[J] 52 Z[J]
where first two moments are found from 5J( ) and RECNBICD , €.g.,
J=0 J=0
1 6Z|J] Yobs (Xm) AA L(x,xm) B
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Path integral-based inference
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Dielectric reconstruction

1 e [ 5(x — Xm)
H[SO,E >\|107 SOObS - 5 Z / ‘QO( ) gpobs(x)|2dx
m=1
%/e(x A)e(x)dx +i/)\(x) V- (eVp) — p] dx,
which yields the Euler-Lagrange equations
V- (eVy) = p,
AP(—=A)e = =V -V,
- d(x —x;)
V- (eVA) = = Z 52 : (¢(x) — Pobs(x))
j=1 J

integrating out ¢ and \ = nonquadratic H.|ec|] = perturbation
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Dynamic Force Spectroscopy (DFS)

(@)
i !
(1) Ci(t)
v &(1) Omax
/LSS

e pull on bond using device with intrinsic spring constant K.
e puller position L(t) and deflection d(t), or force f, are measured.

e bond displacement &(t) = L(t) — d(t).

What can we say about the bond from measurements of £(¢)?

I
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DFS: expts & theory

DFS experiments:

D25

Frequency

Loading rata
M)

Farce (pN)

200

0 Straptavidin %
180 & Bdin

i
50 .-‘
_lll

Tip-sampla separation {nm) 9c-:'*"'";:_”"""w e
Loadng rate [ph 577
force—displacement curves rupture force distributi

theory for rupture forces involves parametric bond energy

Evans, Hummer, Szabo, Dudko, 1999+
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DFS: Work/Fluctuation Thms

Cohen, Jarzynski, Crooks
G—AU/I{ZBT — <€—W/kBT>

Implication: One can characterize the free-energy surface by
systematically perturbing system.

Limitations:
® Requires initial equilibrium distribution
®* No natural likelihood function for maximum likelihood inference

® No handle on variable diffusivity

Hummer and Szabo, PNAS, 98, 3658, (2001)

|
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DFS: overdamped limit

e neglect inertia and impose fluctuation-dissipation:

d¢ = A(E, t)dt + /2D (&)AW,

o drift: A(z,t) = D(z)[f(z) + K(L(t) — 2)] + D'(x)

\ - 7
Vo

fa

e associated Fokker-Planck EQ:

oP@,t) 0 (PD(:c)a—(I)> - (D(:c)(?—P> .

ot ox ox ox

(z = L()’

7

e total potential: ®(z,t) = U(x) +
——

bond e
harmonic

K
2
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DFS: inverse problem

e molecular force f(z) = —4Z, bond mobility D(x)
e assume pulling device is moved at constant V': L(t) = Lo + V't
e applied force f,(t) = K [L(t) — d(t)] equivalent to measuring £(t)

e avoid parametric model for U(x) or D(z)

Goal: reconstruct f(z) = —S%, D(z) from trajectories £(¢) measured @
times t¢;

|
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DFS: Bayes formulation

e prior probability density on bond force f(x):

w(1) =27 exod =5 [ FRA-A) W

to enforce D(z) > 0, define log-diffusivity g(y) = In(D(y)/Dy) where
Do > 0 is a uniform background diffusivity

e prior probability density on the log-diffusivity g(y):
1 (©.@)
w(96) = 2; e {5 [ oy (-Dgwy}

0: parameters in R¢, R,.

|
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DFS: Bayes formulation

e prior distributions on f(x) and g(x) enforce Gaussian spatial
auto-correlations on the target functions.

e auto-correlations are determined by the Green'’s functions of R and
R,, which encode magnitude and scale information on the spatial
variability of f and g.

e trajectory is composed of measurements of bond displacements,
£E=(&,8,...,&N), taken attimes ¢4, 1o, ... tn.

|
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DFS: data

forward problem: given f(z) and D(x) = Dye9®) likelihood of the
trajectory So<j<n is (€|, 9) = 11, Pr(§;+11&5. 15 9)-

total likelihood for observing entire ensemble of M trajectories
X = {¢91) (1 < a < M), is the product of individual likelihoods:

(X f, 9) Hw (€11, 9)

62 = &7 — Al 1)e)

B Rl ;
B eXp{ Z [ 4D (£ ot } }H A D §<O‘>)

&,

|
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DFS: posterior distribution

r(X|f, g)m(£|8)n(gl6) _ e~ 9%0
(%) z

where Z is a normalization and H is the information Hamiltonian:

m(f, 91X, 0) =

91%,61 =3 [ FORA-D)1Wdy+ 5 [ 9)Ry(-A)g(w)y

2
) € — A€, 1)0)

o +1
+ = ZlnD 5( ) +Z ( j D(g(a))ét
J

Extremal solution f*(x), g*(x) from E-L egs:

oH

- — — (0
of f=r 0g 9=g

Y
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DFS: E-L equations

Extremal solution f*(z), ¢*(«) from solutions to E-L Eqgs:

SH ) )
5f(y) =R (- 9 Z(S y—&5) [ g(+)1 f; ) A(y,t)&}
o 159 (@) pl@) _ p(e) |
5907) =Ry(=A)g(y) + 5 ; 99 [ ly—eNE f = = A(y,tj)gt)}
. (€89 — &by — A2(y, 1;)(6t)>
= Z(S 5( ) { + T }

D < g and A[f, g]: eqgns are coupled nonlinear PDEs

now choose Ry ,(—A)...

|
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DFS: choose regularization

If Ry = R, =1 Green’s function is j—distribution. Solution is
unregularized piecewise constant recovery of force and diffusivity.
For smoother recoveries, assume f and ¢ are infinitely-differentiable

e_VfA/Q e_VQA/2

— . Ry(-A) = .
Bf\/27‘-’7f g( ) Bg\/Qﬂ'”yg

~v=spatial scale; 1/5=temperature

Rf(—A)

determine 8 = (¢, B4, 7¢,74) Py maximizing marginal likelihood

~(X|0) = / DfDyn(X|f, 9)r(18)m(]6)

with respect to 8. Nonlinear = perturbation...

|
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DFS: Expansion about extremals, f*, g*

expand about extremal points f*, g* to quadratic order

H[f, 91X, 6] ~ H[f*,g*|X, 6] + // 9)' S (2)dydz

difference of functions from their classical solution is defined by

p(x) =

and the semiclassical Hessian X~ matrix is

5°H 6*H
-1 _ | 0f(®)df(z)  F(y)dg(2)
5°H 6*H
| 09(y)df(2)  09(y)dg(z) | px g

|
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DFS: Maximum marginal likelihood for 6

perform Gaussian integrals to evaluate 7(X|6) and maximize wrt 6
equivalent to minimizing

—Inn(X|0) =H|f",¢"|X, 0|+ TrIn>¥ —TrinGs(z,y) — TrInGy(z,y),

1 « (8% (6% «
H(f*, %X, 6] = ZZf*@. ) [663h — €0 — A, vat]

+ 2 Z[ (€§)(E5Th — €67 — A€l 15)00)]

——Z (€6 [ D - g9 - A 1) 00
2D*(£4%))5t

ZlnD (O‘)

(8% (0 (8% 2
3 (£§+)1 — &5 — AL, ¢5)0t)
— 4D~ (£4))at

also depends on @ also through f* and g* = self-consistent calculation
|

|
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Dynamic Force Spectroscopy

Reconstruction Procedure

1. If unknown, estimate the background diffusivity D, and spring
constant K by maximizing probability of observed large distance

trajectory data

2. For each choice of regularization parameters B¢ ,,v¢.4:

(a) Solve for the maximum a posteriori solution *, g*
(b) Compute the semiclassical variance matrix X

3. Choose regularization parameters that maximize In 7 (X|0)

4. repeatedly iterate to find updated f*, g*
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Dynamic Force Spectroscopy

simulated trajectories and event density across time

1
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Dynamic Force Spectroscopy

total bond force f{(x)

constant diffusivity D,

constant diffusivity D

4 6
— - truth ,
i — unregularized 4
7 — regularized

5 10 15 20
spatial position x

5 10

spatial position x

15

mean-field potentials using wrong (constant) diffusivity D
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Dynamic Force Spectroscopy

1 trajectory 10 trajectories 100 trajectories

1000 trajectories

simultaneous reconstruction of f(x) and g(x) works well
yellow: 95% confidence bands
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Cell motion through focal adhesions

cells bind to and move along substrates via “focal adhesions”
(localized sources of surface stress)

single cell stress surface stresses in cell sheets

stresses often measured from deformations on elastic substrate

1
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Inferring adhesion stresses

inverse problem: infer surface stress profiles from displacements of
fiduciary markers (“surface stress recovery”)

(a) g — ) (b) ,,——Fl(rl;F9~)~\
= N -7 - \
/ \ . \ )
l\ ° !? \\ . UX(G_,Z:\G\)\\ .——"’.-_#/
L@ FOT N - :
¢ 1 ,\ ° : :
Joum) / |
{ i d u(r.,z<0)
\\\ Bi‘ ,'_-I

model the (well-characterized) elastic substrate

I
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Green’s function

Green’s function for elastic half-space (d — oo) problem:

Gos = 2mE R, (R, —2) R:j_(RJ__Z)Q

1—|—1/[ (1-v)Ry — 2 [ZRJ_(I/RJ_—Z)—I—Z2]82]
a.. _ 14w (1—1/)_|_z_z |
2mFE R R

where s = x, y are distances from point force and R, = /2?2 + 2.

assume substrate with Young’s modulus E and Poisson ratio v
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Locating focal adhesions

e restrict to surface stresses o, , acting on plane normal to z axis.
e define in-plane stress distribution as o (r ) = 0,2 + o,y + 0Z.

e resulting displacement field

ui(ry,z) = /drldz'st(rL —1'|,2)0,. (1)),

where s = (z,y) and j = (x,vy, 2)

e tangential stresses can lead to normal displacement

I
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Objective function (log likelihood)

(I)data[o'] — Z |udata(rz’) - U—model(rz’)|2-

SiNCe Ugata(r;) is given and upmodel(r;) = [dr/ G(rp — 1/, 2)o (1)),
d4.1a|0] IS @ functional over dimensionless surface stress o (r )

regularization terms with rotational invariance in M, (r ) = 0,0,(r1):
Trace(M) =V, - o(r1) and Det(M)

adding L,-norm regularization terms,

CI)[O']—CI)data[O']—I——/ IV, o rL)|p1er_—|——/ |Det(M|[o])|[P2dr

|
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Force- and torque-free constraints

“overdamped” limit: zero net force and net torque

FL:/U(rL)er:O, T:/era(rL)er:O,
Q Q

to “enforce” these constraints, add |[F, |* and | T

3[o;0) :@data[a]+%/g|m.a(u)|du+%/Q\Det(wamdu

+ Ar|FL|* + M| T)?,

implicit constraint: o(x) = 0 for x € R? \ Q

for compactly supported focal adhesions, try p; = ps = 1?

|
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Preliminary Lo (Tr?) reconstruction

simple annulus, without ) constraint, ~ 15% data points

924\ SIS S S ON
b>< b “ '\ ) : /"":“‘\§

o.(r) ) input o, (r) ) reconstructed

I
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Preliminary Lo (Tr?) reconstruction

simple annulus, without ) constraint, ~ 15% data points

“‘\ RS
SRS SRS,
AR
255N\ |\ 25>
ZN

oy(r1) input o,(r_ ) reconstructed

|
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Optimization

apply a split-Bregman method by defining

s(rpy)=V,- -0, m(ry)=Det[M(ry)],

and minimize in stages the split objective function

H[o vean().6) =aalo + [ Jore)ldes+ 2 [ Jpatrs)ar,
Q Q

Y /Q or(r1) — s(r)PdrL + Am /Q oa(rs) — m(r))Pdr.

+ )\F‘FJ_|2 = AT‘T‘2°

w1(r1) and o (r, ) "replace" s(r,) and m(r, ), while
As Jo lo1(ri) —s(r)|?dry and Ay, [, [@2(r1) —m(r.)|?dr, enforce
p1(ri) =s(ri)and po(ry) = m(ry)

|
Inference in biophysical models — p. 49



Locating focal adhesions

dlo, s; 0] = (I)data[d]—l—%/ \s(rL)\er—l—)\S/ s — Vi -o—b%|dr,
Q Q

+Ar|FL[o]? + Ar|T[o])?,
where the k" iterate of the increment b(*) (r ) is found through
pU+D) — pB) | . (kD) _ kD)

and the determination of o(*t1) and s(**1) are found through the
two-step iteration

o(k+1) — arg min {(I)data[o'] 4+ )\S/ |s(k) —V, -o— b(k)‘erJ_ + )\F‘FJ_[O‘]'Q + )\T‘T[O']P} 3
=4 Q

s(k+1) — argmin{l;/ |s(r )|dr + AS/ s— Vv, -okth _ b(k)‘2du}.
s Q Q

The second optimization step can be implemented using the shrink operator

|
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