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Setting & objectives

M

F

xi = F (ai )

x0 = F (a0)

F (M)

ai = Φti
a0

a0

Ergodic dynamical system (M,M, Φt , µ) observed through a
vector-valued function F : M 7→ Rn

Given time-ordered observations {x0, . . . , xN−1} with xi = F (ai ), we seek
to perform

1 Dimension reduction with timescale separation and invariance under
changes of observation modality

2 Nonparametric forecasting of observables on M with deterministic or
statistical initial data



Outline

1 Representation of Koopman operators in a data-driven orthonormal basis

2 Time-change techniques

3 Modes of organized tropical convection
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State- and observable-centric viewpoints

• State space viewpoint

In data space, we observe the manifold
F (M) and the vector field

V |x =
dx

dt
with x = F (Φta)

• Operator-theoretic viewpoint (Mezić et al. 2004, 2005, 2012, . . . )
Associated with the dynamical system is a group of unitary operators Ut

on L2(M, µ) s.t.
Ut f (a) = f (Φta)

The generator v of {Ut} gives the directional derivative of functions
along the dynamical flow

vf (a) = lim
t→0

f (Φta)− f (a)

t
, V = DF v



Spectral characterization of ergodicity and mixing

A dynamical system (M,M, Φt , µ) is called

• Ergodic if all Φt-invariant sets have either zero or full measure

Spectral characterization: 0 is a simple eigenvalue of v corresponding
to a constant eigenfunction

• Weak-mixing if for all A,B ∈M we have

lim
t→∞

1

t
|µ(Φt(A) ∩ B)− µ(A)µ(B)| = 0

Spectral characterization: 0 is the only eigenvalue of v and this
eigenvalue is simple



Systems with pure point spectra

L2(M, µ) has an orthonormal basis consisting of eigenfunctions of v

v(z) = λz , λ = iω, ω ∈ R, |z | = 1

The eigenvalues and eigenfunctions form a group

v(zz̃) = (λ+ λ̃)zz̃ , v(z̃) = λ̃z̃

• Such systems are metrically isomorphic to translations on compact
Abelian groups equipped with the Haar measure

The canonical phase spaces for diffeomorphisms of smooth manifolds are
tori; constructions on other manifolds are available but have
discontinuous eigenfunctions (Anosov & Katok 1970)



Dimension reduction for systems with pure point spectra

The group of eigenvalues for M = Tm is generated by m rationally
independent frequencies Ωi ∈ R with corresponding eigenfunctions ζi

ωk1···km =
m∑
j=1

kjΩj , zk1···km =
m∏
j=1

ζ
kj
j , kj ∈ Z

Dimension reduction map. π : M 7→ Cm with

π(a) = (π1(a), . . . , πm(a)) = (ζ1(a), . . . ζm(a))

• The πi are independent of observation modality

• v is projectible under πi , and the system evolves as a simple harmonic
oscillator in the image space

dζi (Φta)

dt
= v(ζi )(Φta) = iΩiζi (Φta)



Vector field decomposition

Define the vector fields vi : L2(M, µ) 7→ L2(M, µ) through their action on
the eigenfunctions:

vi (ζ
k1
1 · · · ζ

ki
i · · · ζ

km
m ) = ikiΩiζ

k1
1 · · · ζ

ki
i · · · ζ

km
m

The vi are linearly independent, nowhere vanishing, mutually
commuting vector fields

v =
m∑
i=1

vi , [vi , vj ] = 0

• Due to their vanishing commutator, the vi can be thought of as
dynamically independent components

• These vector fields can be realized in data space through the
pushforward map DF : TM 7→ TRn

Vi = DF (vi ) = vi (F ) =
∑
k

Akv(zk), Ak = 〈zk ,F 〉



Data-driven basis

• Start from a variable-bandwidth kernel (Berry & Harlim 2014),
Kε : M ×M 7→ R+:

Kε(ai , aj) = exp

(
− ‖xi − xj‖2

εσ̂ε(xi )−1/mσ̂ε(xj)−1/m

)
,

m = dimM, xi = F (ai ), σ̂ε(xi ) =
1

N(πε)m/2

N−1∑
j=0

e−‖xi−xj‖
2/ε

• Apply the diffusion maps normalization (Coifman & Lafon 2006, Berry
& Sauer 2015):

q̂ε(ai ) =
1

N

N−1∑
j=0

Kε(ai , aj), K̂ ′ε(ai , aj) =
Kε(ai , aj)

q̂ε(aj)

d̂ε(ai ) =
1

N
K̂ ′ε(ai , aj), p̂ε(ai , aj) =

K ′ε(ai , aj)

d̂ε(ai )



Data-driven basis

• p̂ε induces an averaging operator on L2(M, µ̂) for the sampling measure

µ̂ = N−1
∑N−1

i=0 δai :

P̂εf (b) =

∫
M

p̂ε(b, a)f (a) d µ̂(a) =
1

N

N−1∑
j=0

p̂ε(b, aj)f (aj)

• By ergodicity, as N →∞, P̂εf (b) converges µ-a.s. to Pεf (b), where

Pεf (b) =

∫
M

pε(y , x)f (x)dµ(x)

is an averaging operator on L2(M, µ).



Data-driven basis

Uniformly on M (Coifman & Lafon 2006),

Pεf (a) = f (a) + ε∆f (a) + O(ε2),

where ∆ is the Laplace-Beltrami operator associated with the
Riemannian metric h = σ2/dg

• Effect of variable-bandwidth kernel is a conformal transformation such
that the Riemannian measure is equal to the invariant measure

• The eigenfunctions {φ0, φ1, . . .} of ∆ are orthogonal on L2(M, µ)

• The rescaled eigenfunctions ϕi = φi/η
1/2
i corresponding to eigenvalue

ηi are orthogonal on H1(M, h)∫
M

gradh ϕi · gradh ϕj dµ = δij

• In practice, we approximate (ηi , φi , ϕi ) by solving for

P̂εφ̂i = (1− εη̂i )φ̂i , ϕ̂i = φ̂i/η̂
1/2
i



Eigenvalue problem for the Koopman generator

v(z) = λz

• In dimension m ≥ 2 the eigenvalues form a dense set on the imaginary
line

• We eliminate highly rough eigenfunctions by solving the eigenvalue
problem for Lε = v + ε∆.

Continuous problem. Find z ∈ H1(M, h) and λ ∈ C s.t.

〈ψ, v(z)〉+ ε〈gradh ψ, gradh z〉 = λ〈ψ, z〉, ∀ψ ∈ H1(M, h)

Discrete approximation. Set Ĥl = span{ϕ̂0, . . . , ϕl−1} ⊆ L2(M, µ̂).
Find ẑ ∈ Ĥl and λ̂ ∈ C s.t.

〈ψ, v̂(ẑ)〉µ̂ + 〈ĝradhψ, ĝradhẑ〉µ̂ = λ̂〈ψ, ẑ〉µ̂, ∀ψ ∈ Ĥl .



Eigenvalue problem for the Koopman generator

〈ψ, v̂(ẑ)〉µ̂ + 〈ĝradhψ, ĝradhẑ〉µ̂ = λ̂〈ψ, ẑ〉µ̂,

ẑ =
l−1∑
i=0

ci ϕ̂i , ψ =
l−1∑
i=0

wi ϕ̂i

• v̂ is a finite-difference approximation of v , e.g.,

〈ψ, v̂(ẑ)〉µ̂ =
l−1∑
i,j=0

wicj

∫
M

ϕ̂i v̂(ϕ̂j) d µ̂

=
l−1∑
i,j=0

wicj

[
1

N

N−2∑
k=1

ϕ̂i (ak)
ϕ̂j(ak+1)− ϕ̂j(ak−1)

2 δt

]

• By construction of the {ϕ̂i} basis,

〈ĝradhψ, ĝradhẑ〉µ̂ =
l−1∑
i,j=0

wicjδij

• Scheme remains well-conditioned at large spectral order l



Variable-speed flow on T2
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Results for variable-speed flow on T2



Results for variable-speed flow on T2



Forecasting densities and expectation values

The adjoint U∗t on L2(M, µ) governs the evolution of probability densities
relative to µ

ρ0 =
∑
k

ck(0)zk , ck(0) = 〈zk , ρ0〉, k = (k1, . . . , km)

ρt = U∗t ρ0 =
∑
k

ck(t)zk , ck(t) =
∑
k

e−iωk tck(0)

The time-dependent expectation value of an observable f is

Et f =
∑
k

f̂kc
∗
k (t), f̂k = 〈zk , f 〉

• By computing Et f and Et f
2 the method keeps track of both the

forecast mean and the forecast uncertainty

• The forecast accuracy depends on the bandwidth of f in the {zk} basis



Nonparametric forecasting of the variable-speed system on T2
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Time change and mixing

Given a flow Φt with generator v and a positive function f , construct the
flow Ψt with generator w = f −1v

Ψt has the same orbits as Φt , but evolves at different speed and has
invariant measure ν with dν = f dµ

• For any ergodic Φt there exists a time change s.t. Ψt is mixing
(Kochergin 1973)
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Example on T3 (Fayad 2002). Φt is an
irrational flow, and

f (θ1, θ2, θ3) = 1

+ Re
∞∑
k=1

∑
|l|≤k

e−k

k

(
eikθ

1

+ eikθ
2
)
e ilz



Regularization by time change

Construct an orthonormal basis for L2(M, ν) with dν = ‖v‖ dµ using the
kernel

Kε(ai , aj) = exp

(
−
‖xi − xj‖2‖V |xi‖1/m‖V |xj‖1/m

εσε(xi )−1/mσε(xj)−1/m

)

Solve the eigenvalue problem

w(z) = iωz , w =
v

‖v‖
, z ∈ L2(M, ν)

• In the reduced coordinates π(a) = z(a) ∈ C the system evolves as an
oscillator with variable frequency ω‖v‖

Make the vector field decomposition

v =
m∑
i=1

vi , vi = ‖v‖wi , w =
m∑
i=1

wi , [wi ,wj ] = 0

• In general, the vi are non-commuting vector fields



Flow on T2 with fixed points (Oxtoby 1953)
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Vector field decomposition for the fixed-point system
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Vector field decomposition for the fixed-point system
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Nonparametric forecasting
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Analysis of organized tropical convection

• Brightness temperature, Tb, is the blackbody emission temperature
received from Earth by satellites

• Deep convective clouds become cold, and present as a negative Tb

anomaly against the Earth’s surface

• We analyze Tb data from the CLAUS archive averaged over the latitudes
15◦S–15◦N

• Sampling is 8× daily at 0.5◦ resolution for the period 1983–2006



Delay-coordinate embeddings

• The raw Tb(t) timeseries is highly non-Markovian

• To recover information lost in partial observations, we perform
delay-coordinate mapping (Packard et al. 1980, Sauer et al. 1991)

x(t) = (Tb(t),Tb(t − δt), . . . ,Tb(t − (q − 1) δt))

• This procedure significantly improves the quality of the diffusion
eigenfunction basis (G. & Majda 2012, Berry et al. 2013)

• We use q = 512, equivalent to 64 days (intraseasonal timescale)



Koopman eigenfunctions

Multiple timescales are resolved including:

• (a) The annual cycle.

• (b, c) Intraseasonal oscillations.

• (d, e) Convectively coupled equatorial waves (CCEWs).



Spatiotemporal reconstructions

• (b, f) Annual cycle.

• (c) Madden-Julian oscillation.

• (d,h) Westward-propagating CCEWs.

• (g) Boreal summer intraseasonal oscillation (Indian Monsoon).



Effects of partial observations

• The computed Koopman eigenfunctions have amplitude modulations
which are not consistent with the skew-symmetry of v

• Despite delay-coordinate mapping, it is unrealistic to expect that we have
recovered the full attractor of the climate system

• Instead of the full generator, it is more likely that we are approximating
an operator of the form

ṽ = ΠvΠ,

where Π is a projector to the subspace of the full L2 space on the
attractor spanned by the diffusion eigenfunctions obtained from Tb

• It is plausible that an effective description of ṽ is through a
nonautonomous advection-diffusion process

• Consistent with stochastic oscillator models for the MJO (Chen et al.
2014)



Summary

• The spectral properties of Koopman operators have attractive properties
for dimension reduction and nonparametric forecasting of dynamical
systems

• These operators can be approximated from time-ordered data with no a
priori knowledge of the equations of motion using kernel methods

• In systems with pure point spectra, the eigenfunctions of the Koopman
group lead to a decomposition of the dynamics into a collection of
independent harmonic oscillators

• Time change extends the applicability of Koopman eigendecomposition
techniques to certain classes of mixing systems, which are now
decomposed into coupled oscillators with time-dependent frequencies
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