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Motivation: conformation dynamics of biomolecules

1.3us MD simulation of dodeca-alanin at T = 300K ‘ v»
(GROMOS96, visualization: Amira@ZIB)



Motivation: conformation dynamics of biomolecules

Given a Markov process (X;)¢>0, discrete or continuous in time ,
we want to estimate probabilities p < 1, such as

p=P(r<T),
with 7 the time to reach the target conformation, or rates
k= (E[-])~

where E[-] is the expectation with respect to P.



Guiding example: bistable system

» Overdamped Langevin equation

dX; = —VV(X;)dt + v2edB;

time (ns)
w
-]
3
3

» Small noise asymptotics for 7 = 7,

lim elog E[7] = AV
e—0

» Hence, for moderate values of T,

pe=P(r<T)

. - . -1
is exponentially small in e.

[Freidlin & Wentzell, 1984],

[Berglund, Markov Processes Relat Fields 2013]




Motivation, cont'd: computational aspects

Given N independent realizations of X; = X{(w), the simplest
way to estimate probabilities, such as

pe=P(r<T)

is by Monte-Carlo:

1 N
Pe =~ N Z 1{7(w,~)<T}
i=1



Motivation, cont'd: computational aspects

Although the naive MC estimator is unbiased with bounded
variance p.(1 — p.)/N, the relative error is not:

standard deviation 1 /p(1 — p)
Orel(€) = mean ~ b N
€

blows up as p. — 0.

This is a common feature when estimating rare events.

[Asmussen et al, Encyclopedia of Operations Research and Management Sciences, 2012]
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Adaptive importance sampling of rare events



Importance sampling of rare events

We can improve our estimate of p. by sampling from an
alternative distribution, under which the event is no longer rare:

P(T < T) = /l{r(w)<T}dP(w)

dP
= /1{T<T}du du
dP
= ]E'u |:1{T<T} dlu:|

Problem: Optimal (zero-variance) distribution depends on p,

1
M:L;T}P:P(-yr< T).



Sampling of rare events based on large deviation asymptotics



Logarithmic asymptotic efficiency

Let Y be any unbiased importance sampling (IS) estimator of p..
Ideally, we would like Y; to have a bounded relative error:

. Var#[ Y]
limsup —— <

5 0
e—0 pe

In practice, however, this is the exception.

Minimum requirement: logarithmic asymptotic efficiency

. log E*[Y2]
[im ———&= =

2.
n—oo  log pe

Note that E#[Y?] > (E#[Y.])? = p?, hence p? does not decay
much faster than the variance of Y, under this assumption.



Logarithmic asymptotic efficiency: large deviations

Often p. satisfies a large deviations principle of the form
lim elog pe = —v
e—0

for some constant v > 0, and log efficient estimators can be based
on an exponentially tilted distribution ;. = pi, such that

lim elog B*[Y?] = —2+
e—0
(Recall that limc_g elogE[7] = AV in our guiding example.)

[Siegmund, Ann Stat, 1976], [Heidelberger, ACM TMCS, 1995], [Glasserman & Kou, AAP, 1997]



Logarithmic asymptotic efficiency: observations

» The large deviations principle says that

Eu[yg] — e~ 2v/eto(1/e) ,

so the quality of the estimator heavily depends on whether
one can control the e°(1/€) prefactor.

» Extension due to Dupuis & Wang: adaptive change of
measure based on underlying dynamic programming equation.

» But: estimators that are asymptotically log efficient may
perform worse than the vanilla MC estimator when ¢ is finite.

[Glasserman & Wang, AAP, 1997], [Dupuis & Wang, Stochastics, 2004], [Dupuis & Wang, Math Oper

Res, 2007], cf. [Vanden-Eijnden & Weare, CPAM, 2012]



Sampling of rare events based on optimal control



Single molecule experiments as paradigm

» Estimation of molecular properties in
thermodynamic equilibrium, e.g.

F=—logE[e "].

(includes rates, statistical weights, etc.)

» Perturbation drives the system out of
equilibrium with likelihood quotient

_dp

Foroe (ph)

» Experimental and numerical realization:
AFM, SMD, TMD, Metadynamics, ...

[Schlitter, J Mol Graph, 1994], [Schulten & Park, JCP, 2004], [H. et al, Proc Comput Sci, 2010]



Variational characterization of free energies

Theorem (Dai Pra et al, 1996)

For any bounded and measurable function W it holds

—logE[e™"] = min {E#[W] + KL(u, P)}

where KL(u, P) > 0 is the KL divergence between 1 and P.

Sketch of proof: Let ¢ = dP/du. Then
—Iog/e_Wsz —Iog/e_W+'°g“"d,u
§/(W—|og¢)du

with equality iff W — log ¢ is constant (u-a.s.).

[Fleming, SIAM J Control, 1978], [Dai Pra et al, Math Control Signals Systems, 1996]



Same same, but different. ..



Set-up: equilibrium diffusion process

Given an “equilibrium” diffusion process X = (X:)t>0 on R”,
dXt = b(Xt)dt + O'(Xt)dBt s Xo =X,
we want to estimate path functionals of the form

h(x) = E[e”VX]

Example: exit time statistics of a set C C R”

Let W = a7c. Then, for sufficiently small o > 0,

—a7 ! log ¢ = E[Tc] S (’)(a:)




Set-up: nonequilibrium diffusion process

Given a “nonequilibrium” (tilted) diffusion process X“ = (X{)¢>o0,
dX{ = (b(X{) 4+ o(X{)ue)dt + o(X{)dBy, X5 = x,
estimate a reweigthed version of :
E[e” "] = E#[emVMp(x )]

with equilibrium /nonequilibrium likelihood ratio ¢ = Z—'Z.

Remark: We allow for W's of the general form

W(X) = /OT f(Xs,s)ds + g(Xz),

for suitable functions f, g and a bounded stopping time 7 < T.



Guiding example, cont'd

» Mean first exit time for small ¢

E[7] < exp(AV /e¢)

time (ns)

» Tilting the potential

U(x, t) = V(x) — urx

decreases the energy barrier.

» Overdamped Langevin equation

dX; = (up — VV(Xy)) dt + V2edB;

with time-dependent forcing u;. TS s ges s



Can we systematically speed up the sampling while controlling
the variance by tilting the energy landscape?



Variational characterization of free energies, cont'd

Theorem (H, 2012)

Technical details aside, let u* be a minimizer of the cost functional

u

J(u) :]E[W(X“)—l—i/OT |u5|2ds]

under the nonequilibrium dynamics X/, with Xj' = x.

The minimizer is unique with J(u*) = —log1(x). Moreover,

[H & Schiitte, JSTAT, 2012], [H et al, Entropy, 2014]




Guiding example, cont'd

» Exit problem: f =a, g =0, 7 =71¢:

* . u 1 Tg 2
J(u*) =minE om'c—i—z |us|* ds
u 0

» Recovering equilibrium statistics by

s 1 05

Elre] = 2| J(w)

a=0

» Optimally tilted potential

time (ns)

U*(x,t) = V(x) — u; x

with stationary feedback u} = c(X").



Some remarks . ..



Duality between estimation and control

The optimal control is a feedback control in gradient form ,
i = ~20(X¢)TVF(XE 1),
with the bias potential being the value function

F(x,t) = min{J(u): X = x}.

(Remark: In many interesting cases, F = F(x) will be stationary.)

NFL Theorem: The bias potential is given by

F = —log1,
i.e., u* depends on the quantity we want to estimate.

[H & Schiitte, JSTAT, 2012], [H et al, Entropy, 2014]; cf. [Fleming, SIAM J Control, 1978]



More on the duality between estimation and control

The Legendre-type variational principle for the free energy furnishes
an equivalence between the dynamic programming equation

F 1
SO min {iF s oe) v eyl 0 4 b
ot ceRk 2

for F and the Feynman-Kac formula for e=F = E[e="]:

0
— — L -F =0
(m > T
with L being the infinitesimal generator of X/=°.

Related work on risk sensitivity and large deviations: Fleming &
Sheu, Whittle, James, Dupuis & Wang, Rubinstein & Kroese,
Asmussen, Spiliopoulos, Vanden-Eijnden & Weare, ...



Optimal controls from cross-entropy minimization



Two key facts about our control problem



The optimal control is a feedback law of the form
o
up = o(X)Y V(X t),
i=1

with coefficients ¢; € R and basis functions ¢; € CH0(R",[0, 00)).



Letting p denote the probability (path) measure on C([0, o))
associated with the tilted dynamics X", it holds that

J(u) = J(u*) = KL(p, p17)
with p* = p(u*) and
du .
. log <> dp if p < p®
o0 otherwise

the Kullback-Leibler divergence between 1 and p*.



Cross-entropy method for diffusions

Idea: seek a minimizer of J among all controls of the form

M
fe = o(X")>_aiVei(XF,t), ¢ € (R"[0,00)).
i=1

and minimize the Kullback-Leibler divergence

5(u) = KL(p, 1*)

over all candidate probability measures of the form pu = p(d).
Remark: unique minimizer is given by du* = ¢y ~te=WdP.

cf. [Oberhofer & Dellago, CPC, 2008], [Aurell et al, PRL, 2011]



Unfortunately, ...



Cross-entropy method for diffusions, cont'd

...that doesn’t work without knowing the normalization factor 1.

Feasible cross-entropy minimization

Minimization of the relaxed functional KL(x*,-) is equivalent to
cross-entropy minimization: minimize

CE(n) = —/logu du”

over all admissible y = (), with dp* oc e=WdP.

Note: KL(u,p*)=0 iff KL(u*, 1) = 0, which holds iff = u*.

[Rubinstein & Kroese, Springer, 2004], [Zhang et al, SISC, 2014], [Badowski, PhD thesis, 2015]



Example | (guiding example)



Computing the mean first passage time (n = 1)

Minimize L e
J(u; ) = E[on' + / |ug|? dt}
4 Jo
with 7¢ = inf{t > 0: X; € [-1.1, —1]} and the dynamics

dX! = (u — VV(XY)) dt + 2712 dB,
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Skew double-well potential V and MFPT of the set S = [—1.1, —1] (FEM reference solution).



Computing the mean first passage time, cont'd

Cross-entropy minimization using a parametric ansatz

10
c(x) = Za;ng);(x), ¢; . equispaced Gaussians
i=1

4

35
3 s
£
- 3
x25 2
5; 15
s 2 g
=
1.5 w*

1

0.5

Biasing potential V + 2F and unbiased estimate of the limiting MFPT.

cf. [H & Schiitte, JSTAT, 2012]



Numerical strategies for high-dimensional problems



The bad news




The good news

Often a “reaction coordinate” or a low-dimensional model is given.

committor probabilities Pyx(75 < T4) a-helical conformation of ADP in water

Cf. [Schiitte et al, Math Prog, 2012], [Sarich et al, Entropy, 2014], [Banisch & H, MCRF, 2015]



Suboptimal controls from averaging

Averaged control problem: minimize

v

I(v) —E[V‘V(gV) - 1/07 ]vs\zds]

subject to the averaged dynamics

d&i = (X(&)ve—B(&7))dt+ (& )dWs

Control approximation strategy

uf ~ c(E(X) t) = VEXT)vi

[H et al, Nonlinearity, submitted]; cf. [Legoll & Leliévre, Nonlinearity, 2010]



Suboptimal controls, cont'd

Uniform bound of the relative error
using “averaged” optimal controls

_ Tfast

5re| < CN_1/2 771/8 ;

Tslow

Issues for highly oscillatory controls:

u"—u A JW) — J(u)

(relative error may be unbounded)

Log efficient estimators based on HJB
subsolutions due to Spiliopoulos et al.

[H et al, J Comp Dyn, 2014],[H et al, submitted], cf. [Spiliopoulos et al, MMS, 2012]



Example Il (suboptimal control)



Conformational transition of butane in water (n =

Probability of making a gauche-trans transition before time T:
. L [7
—logP(r7¢ < T)=minE 2 |ug|* dt —log 1pc(X:) |,
v 0

with 7 = min{7¢, T} and 7¢ denoting the first exit time from the
gauche conformation “C" with smooth boundary 0C

gauche
4 K T [ps| P(r<T) Error Var Accel. T
( /&y 0.1 430x 1075 0.77x107°  3.53 x 1075 425
b\u 1 0.2 1211078 011 x 107 250 x 1074 26.0
4 3 2 0.5 6.85 x 1073 0.38x 1073  2.88x 1073 13.0
ins 1.0 1.74x1072  0.08x 1072  1.21x 1072 7.0

IS of butane in a box of 900 water molecules (SPC/E, GROMOS force field) using cross-entropy minimization

[Zhang et al, SISC, 2014]



Take-home message

» Optimally designed nonequilibrium perturbations can mimic
thermodynamic equilibrium.

» Variational problem: find the optimal perturbation by
cross-entropy minimization.

» Method features short trajectories with minimum variance
estimators of the rare event statistics.

» To do: adaptivity, error analysis, data-driven framework, ...



Thank you for your attention!
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