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Motivational Example: Let (2, F, P) be a complete probability
space and D = ]_[7:1[0, D;] for D; C Ry be a hypercube domain in
R,

The solution v : D x Q — R here solves almost surely (a.s.) the
following equation:

-V (a(x;w)Vu(x;w)) = f(x;w)  for x € D,
u(x;w) =0 for x € 9D.

Goal: to approximate E[S] € R where S = W(u) for some
sufficiently “smooth” a, f and functional V.
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Motivational Example: Let (2, F, P) be a complete probability
space and D = ]_[7:1[0, D;] for D; C Ry be a hypercube domain in
R,

The solution v : D x Q — R here solves almost surely (a.s.) the
following equation:

-V (a(x;w)Vu(x;w)) = f(x;w)  for x € D,
u(x;w) =0 for x € 9D.

Goal: to approximate E[S] € R where S = W(u) for some
sufficiently “smooth” a, f and functional V.
Later, in our numerical example we use

L 2
S =100 (2%02)2/ exp (—”XXOH2> u(x)dx.

D 20’2

for xo € D and o > 0.
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Numerical Approximation

We assume we have an approximation of u (FEM,
FD, FV, ...) based on discretization parameters
h; for i=1...d. Here

hi = hjo B; %,
with 8; > 1 and the multi-index
a= (04,-):-1:1 e N¢.

Notation: S, is the approximation of S calcu-
lated using a discretization defined by a.
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Monte Carlo complexity analysis
Recall the Monte Carlo method and its error splitting:

E[W(u)] — 7 Xy Y(un(y(wm))) = €¥(h) + £ (M) with
€] = [EV (u(y)) — V(un(y))]] < Ch*

discretization error

1EV] = |E[V (up(y Z V(up(y(wm))| <

. std[¥(up)]
UM

statistical error

The last approximation is motivated by the Central Limit Theorem.
Assume: computational work for each u(y(ws)) is O(h~97).

Total work : W oc MA~9Y

G
Total error:  [EY(R)| + |€ < CLh™ + —=
£ (h)] + €3 () 2
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We want now to choose optimally h and M. Here we minimize the
computational work subject to an accuracy constraint, i.e. we solve

st. Gh*+-&2 < TOL

{minhM M h=d
VM

We can interpret the above as a tolerance splitting into statistical
and space discretization tolerances, TOL = TOLg + TOLy, such
that

TOL

PO 20 /(@)

1
and TOLgs = TOL (1 - (14‘2(1/(‘]7))> .

The resulting complexity (error versus computational work) is then

W o TOL—(2+d7/a)
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Take 8; = 8 and for each £ = 1,2, ... use discretizations with
a=({...,0). Recall the standard MLMC difference operator

~ if £ =
AS, = >0 I 0,
Se1 — 5(g_1).1 if £>0.
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Take 8; = 8 and for each £ = 1,2, ... use discretizations with
a=({...,0). Recall the standard MLMC difference operator

ES@ _ 5(] If l= 0,
Se1 — 5(5_1).1 if £>0.

Observe the telescopic identity

L
E[S] ~E[S.1] =Y E [854.
(=0
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Take B; = 8 and for each £ = 1,2, ... use discretizations with
a=({,...,0). Recall the standard MLMC difference operator

AS, = =0
Se1— Sp-1y1 if£>0.

Observe the telescopic identity

L

E[S]~E[Si1]=Y_E [354.
(=0

Then, using MC to approximate each level independently, the
MLMC estimator can be written as

L

M,

1 _

Amimc = E I E ASy(we,m)-
(=0 m=1
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Variance reduction: MLMC

Recall: With Monte Carlo we have to satisfy
Var[Amc] = —Var[S;] = — Var[S] < TOL”.
My My

Main point: MLMC reduces the variance of the deepest level
using samples on coarser (less expensive) levels!

1
Var[AMme] 7\/&1 [50]

+ Z Var[ASg] < TOLZ. \

Observe: Level 0 in MLMC is usually deter-

mined by both stability and accuracy, i.e.
Var[AS;] << Var[Sp] = Var[S] < occ.
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Classical assumptions for MLMC

For every ¢, we assume the following:

Assumption 1 (Bias): IE[S — S| < B,
Assumption 2 (Variance): Var [354} < B
Assumption 3 (Work): Work(ASy) < B9,

for positive constants v, w and s < 2w.

L L
Work(MLMC) =Y~ M, Work(AS,) <> M, g,
=0 =0

Example: Our smooth linear elliptic PDE example approximated
with Multilinear piecewise continuous FEM:

2w=s=4and 1 <~y <3.
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MLMC Computational Complexity

We choose the number of levels to bound the bias

log(TOL™1) — log(C)
w log(/3) ’
and choose the samples (M;)}_, optimally to bound

Var[Amimc] < TOL?, then the optimal work satisfies (Giles et al.,
2008, 2011):

E[S-S] <p™<CTOL = L>

o (TOL_2)a s> d"}’,
— _ 2
Work(MLMC) = O<TOL ? (log(TOL™)) ) s = dy,
(dy—s)
© <TOL_(2+VW)>7 s < dy.

Recall: Work(MC) (TOL—(W’%)).
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Questions related to MLMC

» How to choose the mesh hierarchy h,? [H-ASNT, 2015]

» How to efficiently and reliably estimate V,? How to find the
correct number of levels, L? [CH-ASNT, 2015]

» Can we do better? Especially for d > 17 [H-ANT, 2015]

[H-ASNT, 2015] A.-L. Haji-Ali, E. von Schwerin, F. Nobile, and R. T. “Optimization of mesh
hierarchies in Multilevel Monte Carlo samplers”. arXiv:1403.2480, Stochastic
Partial Differential Equations: Analysis and Computations, Accepted (2015).
[CH-ASNT, 2015] N. Collier, A.-L. Haji-Ali, E. von Schwerin, F. Nobile, and R. T. “A continuation
multilevel Monte Carlo algorithm”. BIT Numerical Mathematics, 55(2):399-432,
(2015).
[H-ANT, 2015] A.-L. Haji-Ali, F. Nobile, and R. T. “Multi-Index Monte Carlo: When Sparsity
Meets Sampling”. arXiv:1405.3757, Numerische Mathematik, Accepted (2015).

Time adaptivity for MLMC in It SDEs:

P Adaptive Multilevel Monte Carlo Simulation, by H. Hoel, E. von Schwerin, A. Szepessy and
R. T., Numerical Analysis of Multiscale Computations, 82, Lect. Notes Comput. Sci.
Eng., (2011).

P Implementation and Analysis of an Adaptive Multi Level Monte Carlo Algorithm, by H.
Hoel, E. von Schwerin, A. Szepessy and R. T., Monte Carlo Methods and Applications. 20,
(2014).

P Construction of a mean square error adaptive Euler-Maruyama method with applications in
multilevel Monte Carlo, by H. Hoel, J. Happdla, and R. T. To appear in MC and Q-MC
Methods 2014, Springer Verlag, (2016).
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Hybrid MLMC for Stochastic Reaction Networks

P> A. Moraes, R. T., and P. Vilanova. Multilevel hybrid Chernoff tau-leap. BIT Numerical
Mathematics, April 2015.

P> A. Moraes, R. T., and P. Vilanova. A multilevel adaptive reaction-splitting simulation
method for stochastic reaction networks. arXiv:1406.1989. Submitted, (2014).

P> Multilevel drift-implicit tau-leap, by C. Ben Hammouda, A. Moraes and R. T.
arXiv:1512.00721. Submitted (2015).
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Variance reduction: MLMC
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Variance reduction: Further potential

\ /
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L General Framework

MIMC Estimator

For i =1,...,d, define the first order difference operators
AS. — Sa ffoz,-zO,
Sa — Sa—e if ;i >0,

and construct the first order mixed difference

AS, = (®7:1A,-> Sa.
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L General Framework

MIMC Estimator

For i =1,...,d, define the first order difference operators
Sa if i = 07
AiSOL = I “
Sa — Sa—e if ;i >0,

and construct the first order mixed difference
AS, = (@7:1A,-) Sa.

Then the MIMC estimator can be written as

Mo
Amime = > Mi > ASa(wa,m)
m=1

acl @

for some properly chosen index set 7 C N9 and samples (My)acr.
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L General Framework

Example: On mixed differences
Consider d = 2. In this case, let-
ting a = (a1, ), we have
As(al,ag) = A2(A15(a1,a2))

- A2 (Sal,ozz - 5041—1,042)
= (Sahozz - 50&1—17@2)

- (50q,042—1 - 5611—1412—1)'

Notice that in general, AS, re-

quires 29 evaluations of S at dif- \
ferent discretization parameters,

the largest work of which corre-

sponds precisely to the index ap-
pearing in AS,, namely .
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L General Framework

Our objective is to build an estimator A = Amimc where
P(]JA—E[S]|<TOL) >1—¢ (1)

for a given accuracy TOL and a given confidence level determined
by 0 < € < 1. We instead impose the following, more restrictive,
two constraints:

Bias constraint: |E[A-S]| <(1-6)TOL, (2)
Statistical constraint: P (|A—E[A]| <6TOL)>1—e€ (3)

For a given fixed 6 € (0,1). Moreover, motivated by the
asymptotic normality of the estimator, .4, we approximate (3) by

(4)

Var[A] < <9TOL>2.

€

Here, 0 < C is such that ®(C.) =1 — 5, where ® is the
cumulative distribution function of a standard normal random var.
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L General Framework

Assumptions for MIMC

For every a, we assume the following

Assumption 1 (Bias) : E. = |[E[AS,]] S H:il greivi
Assumption 2 (Variance) : Vo = Var[AS,] < H,il s,
Assumption 3 (Work) : W, = Work(ASg) < Hj’ﬂ B,
For positive constants 7;, w;,s; < 2w; and for i =1...d.

Work(MIMC) = 3~ Mo Wo S 3" M <H; qu,-m) .

€l a€cl
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Given variance and work estimates we can already optimize for the
optimal number of samples M}, € R to satisfy the variance
constraint (4)

M, = cfe-%or%/% (Z vV Va Wa> .

acl

Taking M}, < My < M}, + 1 such that M, € N and substituting
in the total work gives

2
Work(Z) < C20~2TOL ™2 (Z vV Va Wa> + Y Wa

acl acl
N——
Min. cost of 7

The work now depends on 7 only.
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An obvious choice of 7 is the Full Tensor
index-set

aq

(L) ={a eN?:0; < L;
forie{1---d}}

for some L € RY.

Q2
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LChoosing the Index Set 7

An obvious choice of 7 is the Full Tensor
index-set

(L) = {a e N :q; < L;
forie{l---d}}

for some L € RY,

It turns out, unsurprisingly, that Full
Tensor (FT) index-sets impose restrictive
conditions on the weak rates w; and yield
sub-optimal complexity rates.

Ly

17/54
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Question: How do we find optimal index set Z for MIMC?
Then the MIMC work depends only on 7 and our goal is to solve

in Work(Z h that Bias = S E, < (1 — 6)TOL,
min, ork(Z) such that Bias a%:za_( )

We assume that the work of MIMC is not dominated by the work
to compute a single sample corresponding to each a. Then,
minimizing equivalently \/Work(Z), the previous optimization
problem can be recast into a knapsack problem with profits defined
for each multi-index a. The corresponding profit is

Bias contribution E.

Po = Work contribution — /V, W,
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Define the total error associated with an index-set 7 as
¢(I)=) Ea
ad¢l

and the corresponding total work estimate as

W)=Y/ VaWa.

acl

Then we can show the following optimality result with respect to
&(Z) and W(Z), namely:

Lemma (Optimal profit sets)

The index-set Z(v) = {a € N9 : P, > v} forZJ = ﬁ is
optimal in the sense that any other index-set, T, with smaller work,

W(T) < W(Z(v)), leads to a larger error, €(1) > &(Z(v)).
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Defining the optimal index-set for MIMC

In particular, under Assumptions 1-3, the optimal index-set can
be written as

d
Ts(l)={aeN":a-6 =) ;6 < L}. (5)
i=1
Here L € R,
| ; ; Ji—Si
5= BBt 5 e,
Cs
d s (6)
and G5 =Y log(B)(w;+ - 5 1)

j=1

Observe that 0 < §; < 1, since s; < 2w; and ~; > 0. Moreover,



R
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L Multi-Index Monte Carlo
|—Choosing the Index Set 7

a1
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MIMC work estimate

. log(Bi)wi i — Si
= mn —————, = maXx
n ie{1---d} o; ¢ ie{t--d} 2w;

Theorem (Work estimate with optimal weights)
Let the total-degree index set Z5(L) be given by (5) and (6), taking

L= % (Iog(TOL_l) +(3—1)log (% Iog(TOL_1)> + C) .

Under Assumptions 1-3, the bias constraint in (2) is satisfied asymptotically
and the total work, W(Zs), of the MIMC estimator, A, subject to the variance
constraint (4) satisfies:

limsup W(Zs)

< 00,
TOLJ0 TOL—2—2max(0,C) (|0g (TOL_l))p o0

where 0 < p < 3d + 2(d — 1)¢ is known and depends on d,~,w,s and 3.
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Powers of the logarithmic term

2w; — s;
= i . d=#{ie{l---d} v = s,
emin b =#{ie{ } i =si}
Yi —Si . Yi — Si
¢ o s=#{ie{l---d} P C}
Cases for p:
A) if (<0and ¢ <,
or(=¢=0 then p = 2d.
B) if(>0and { >0 then p =2(3 — 1)(¢ + 1).

C-D) if¢>0and £ =0 then p=d — 1+ 2(3 — 1)(¢ +1).
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Fully Isotropic Case: Rough noise case

Assume w; = w, s; = s < 2w, 8; = 8 and ~; =~y for all
i€{1l---d}. Then the optimal work is

Work(MC) = O (TOL**"%).

s > dv,
s =dv,

s < dv.

s>,
s =7

O (TOL™?
Work(MLMC) = { © (TOL 'Og (ToL))?),

o (ToL~ 2+ s)))

\

(O (TOL™?)
Work(Mimc) — J © (TOL ('Og (ToL™)*).

O (TOL_(HVW) log (TOL_l)(d_l)WWS>, s <.
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L Comparisons

Fully Isotropic Case: Smooth noise case
Assume w; = w, s; =2w, ;i = [ and y; =~ forall i € {1---d}
and d > 3. Then the optimal work is

Work(MC) = O (TOL—”%).

O (TOL™?), 2w > dv,
Work(MLMC) = { © (TOL "2 (log (TOL1))?), 2w = d,
6] TOL—%), 2w < dr.
O (TOL™?), 2w > 7,
Work(MIMC) = { © (TOL™2 (log (TOL‘l))3(d’”), 2w = -,
O (TOL "% (log (TOL 1)) D)) oy < 5,

Up to a multiplicative logarithmic term, Work(MIMC) is the same as
solving just a one dimensional deterministic problem.
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L Comparisons

MIMC: Case with a single worst direction
Recall ¢ = maxjc(1..q) &, and 3 = #{i € {1---d} : %% = (}.
In the special case when ( > 0 and 3 =1, i.e. when the directions
are dominated by a single “worst” direction with the maximum
difference between the work rate and the rate of variance
convergence. In this case, the value of L becomes

L= 717 (log(TOL™) + log(C))

and MIMC with a TD index-set achieves a better rate for the
computational complexity, namely O (TOLZ_ZC). In other words,
the logarithmic term disappears from the computational
complexity.

Observe: TD-MIMC with a single worst direction has the same
rate of computational complexity as a one-dimensional MLMC
along that single direction.
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Problem description

We test our methods on a three-dimensional, linear elliptic PDE
with variable, smooth, stochastic coefficients. The problem is
isotropic and we have

Yi = 25

w; = 2,
and

si=4

as TOL — 0.
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L Numerical Results

Problem description

-V (a(x;w)Vu(x;w)) =1 for x € (0,1)%,
u(x;w)=0 for x € 8(0,1),

where a(x;w) =1+ exp (2Y1¢121(x) + 2Y2¢‘377(x)).

Here, Y1 and Y2 are i.i.d. uniform random variables in the range [—1,1]. We
also take

ik (x) = ¢i(x1)Bj(x2) Pk (x3),
cos (27rx) i is even,

and $i(x) = {sm (5tmx) iis odd,

Finally, the quantity of interest, S, is

-3 o2
S =100 <271'02) ’ / exp <—%) u(x)dx,
D

and the selected parameters are o = 0.04 and xo = [0.5,0.2,0.6].
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Numerical test: Computational Errors

Error

10° T
101} ) o_ - ]
102} - 1
103} Il . ]
B I
X o o o
REERE R
1075} LI X8 g x ]
x Xy ° ¥ X
105} 5 ]
worl[ -- oL o ]
xxx MIMC TD
10-8}|eoe MIMCFT ]
ooo MLMC
1 -9 i L L
0 104 1073 102 107!

TOL

10°

Several runs
for different
TOL values.
Error is
satisfied in
probability
but not
over-killed.
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Numerical test: Maximum degrees of freedom
107
-- TOL™* )
. TOL 5 Maximum
ol . xxx MIMC TD || number of
. === MIMCFT degrees of
e n'w s =®m eoe MLMC
o freedom of a
=3 L
2 10 sample PDE
E . -.‘-Q‘ [ solve for
ERT different
= o s o TOL values.
xwox This is an
10°} R indication of
x X x _x [ ] .
R required
2 ‘ ‘ L e T memory.
107 1073 102 1071

10°
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Numerical test: Running time, 3D problem

108

105F "~

10*}

103}

107}

Running time

10'}

100}

1071}

TOL?
TOL?

MIMC TD
MIMC FT |4

MLMC

1073 1072 107!
TOL

Recall that
the work
complexity of
MC is
O (TOL_5)
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Numerical test: Running time, 4D problem

Running time

10t ~
103t E
10%¢ E
10
Al TOL 2
0% -~ ToL™ 3
= MIMC TD
¢ MLMC
10—1 i L L
104 1073 102 1071

TOL

10°

A similar
PDE problem
with d=4 .
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Numerical test: QQ-plot
0 , , > Numerical
eee TOL=16x10" 59 verification of
xxx TOL =8 x 10~ 3 asymptotic
o5 ,,x;fh normality of the
7 MIMC
50-6' /if estimator. A
3 f corresponding
E o4l /;"{' statement and
;{»f‘ proof of the
ol ;15‘5’}' normality of an
f MIMC estimator
can be found in
0% 0.2 04 0.6 0.8 1.0 (Haji-Ali et al.
Empirical CDF

2014).
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Conclusions and Extra Points

>

MIMC is a generalization of MLMC and performs better,
especially in higher dimensions.

For optimal rate of computational complexity, MIMC requires
mixed regularity between discretization parameters.

MIMC may have better complexity rates when applied to
non-isotropic problems, for example problems with a single
worst direction.

A different set of regularity assumptions would yield a
different optimal index-set and related complexity results.
A direction does not have to be a spatial dimension. It can
represent any form of discretization parameter!

Example: 1-DIM Stochastic Particle Systems, MIMC brings
complexity down from O(TOL™°) to

O(TOL % log (TOL™1)?)
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Beyond MIMC: Multi-Index Stochastic Collocation

» Can we do even better if additional smoothness is available?

[MISC1, 2015] A.-L. Haji-Ali, F. Nobile, L. Tamellini and R. T.
“Multi-Index Stochastic Collocation for random
PDEs". arXiv:1508.07467. Submitted, August
2015.

[MISC2, 2015] A.-L. Haji-Ali, F. Nobile, L. Tamellini and R. T.
" Multi-Index Stochastic Collocation convergence
rates for random PDEs with parametric regularity”.
arXiv:1511.05393v1. Submitted, November 2015.

Idea: Use sparse quadrature to carry the integration in MIMC!
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Preliminary: Interpolation
Let I C R, P9(T) be the space of polynomials of degree g over I,
and CO(T) the set of real-valued continuous functions over . Given
m interpolation points y1,y>...ym € [ define the one-dimensional
Lagrangian interpolant operator U™ : CO(T') — P™ () as
m

Umul(y) = S u(P)ily),  where vi(y Hy *

=1 Kz T Yk
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Preliminary: Interpolation
Let I C R, P9(T) be the space of polynomials of degree g over I,
and CO(T) the set of real-valued continuous functions over . Given
m interpolation points y1,y>...ym € [ define the one-dimensional
Lagrangian interpolant operator U™ : CO(T') — P™ () as

U[ul(y) = 3" u(y)eily),  where t;(y Hy Ly
j=1

P 7&1 Yk

Then, given a tensor grid ®J”:1{y{,y£ . y,’nJ €y} with
cardinality HJ’-’ZI m;, the n-variate lagrangian interpolant

U™[u] : CO(T) — P™1(T) can be written as
U u](y) = (uml ® - @U™)[ul(y)

_Z Z u(ys . yiny - (i (1) - - i (vn) -

=1 in=1
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Preliminary: Stochastic Collocation
It is also straightforward to deduce a n-variate quadrature rule
from the lagrangian interpolant. In particular, if (I', B(T), p) is a
probability space, where B(I") is the Borel o-algebra and p(y)dy is
a probability measure, the expected value of the tensor interpolant
can be computed as

BUP(] =3 S ulyl - vir) - Bl (1) - i, (vm)].

ih=1 ih=1



MIMC 37/54
L Multi-index Stochastic Collocation (MISC)

Preliminary: Stochastic Collocation
It is also straightforward to deduce a n-variate quadrature rule
from the lagrangian interpolant. In particular, if (I', B(I'), p) is a
probability space, where B(I") is the Borel o-algebra and p(y)dy is
a probability measure, the expected value of the tensor interpolant
can be computed as

BUP(] =3 S ulyl - vir) - Bl (1) - i, (vm)].

ih=1 ih=1

Moreover, if (yi,...,Yyn) are jointly independent then the
probability density function p factorizes, i.e. p(y) = H,’Yzl on(Yn),
and there holds

N
Bl (1) - i, (va)] = [ [ EWin (va)]
n=1
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MISC Main Operator

Assume S is a function of n random variables. Instead of
estimating E[Sq| using Monte Carlo we can use Stochastic
Collocation with 7 € N” points, as follows

E[Sa] = Sar(Y) = Um™)[S,](Y).
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L Multi-index Stochastic Collocation (MISC)

MISC Main Operator

Assume S is a function of n random variables. Instead of
estimating E[S,] using Monte Carlo we can use Stochastic
Collocation with 7 € N” points, as follows

E[Sa] = Sar(Y) = Um=™[S,](Y).

Then we can define the Delta operators along the stochastic and
deterministic dimensions

A75a7T _ {Sa.‘r - Sozfe,-,‘ru if aj >0,

Saﬂ— if ajp = 0,

Sar — Sar—e, if7>0,
AJUSa,T = ’ e . ’
Sa,r if 7, =0,



MIMC 39/54
L Multi-index Stochastic Collocation (MISC)

MISC Estimator

We use these operator to define the following Multi-index
Stochastic Collocation (MISC) estimator of E[S],

Awsc() =E| Y A"(A%Sar)| = > carBlSas]

(o, 7)ET (e, 7)ET

for some index set Z € N9+7,
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MISC Estimator

We use these operator to define the following Multi-index
Stochastic Collocation (MISC) estimator of E[S],

Awsc() =E| Y A"(A%Sar)| = > carBlSas]

(o, 7)ET (e, 7)ET

for some index set Z € N9+7,

Question: Optimal choice for Z7
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MISC Estimator

We use these operator to define the following Multi-index
Stochastic Collocation (MISC) estimator of E[S],

AMISC(V) =E Z A" (Adsa,T) = Z Ca,‘rE[Sa,T])

(6177')651: ((x77-)e§jf

for some index set Z € N9+n,

Question: Optimal choice for Z7

Can be found computationally using the knapsack optimization
theory we outlined.
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MISC Estimator

We use these operator to define the following Multi-index
Stochastic Collocation (MISC) estimator of E[S],

AMISC(V) =E Z A" (Adsa,T) = Z Ca,‘rE[Sa,T])

(o, 7)ET (o, 7)EZL

for some index set Z € N9+n,

Question: Optimal choice for Z7

Can be found computationally using the knapsack optimization
theory we outlined.

Question: Can we say something about the rate of work
complexity using the optimal Z7?
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MISC Assumptions

For some strictly positive constant Qw, gj, wi, Cyork and ~; for
i=1...dandj=1...n, there holds

‘An (Adsow)‘ < Qw ﬁexp(—gﬂ-j) (f[ exp(—w,-a,-)) .
i=1

Jj=1

Work (A" (Adsw)) < Cuork JHITJ (f[l exp(*y,-oz,-)) .

This a simplified presentation that can be easily generalized to
nested points.
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MISC work estimate

Theorem (Work estimate with optimal weights)

[MISC1, 2015] Under (our usual) assumptions on the error and
work convergence there exists an index-set I such that

im Amisc(Z) — Elg]] <1
TOLJ0 TOL
. WOl"k [AMISC(Z)]
and Tgﬂo — T G-DEHD) C(n, d) < oo
TOL™¢ (log (TOL™'))
(7)

wheregzmaxflzl%"j andy=#{i=1,...d : %:C}.
Note that the rate is independent of the number of random

variables n. Moreover, d appears only in the logarithmic power.
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MISC numerical comparison [MISC1, 2015]

Comparison with MIMC and Quasi Optimal (QO) Single &
Multilevel Level Sparse Grid Stochastic Collocation

1072
103 o—o a-prior MISC
~— a-post MISC
10 o SCC
. v -v. MIMC
£10° s SGSC-QO
= >— a-prior MLSC-QO

<< a-post MLSC-QO
-- E=W 2 log(W)°
B =W

10-*

107° - S
10° 10! 10? 10* 10* 10° 10° 107 10%

Work
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MISC (parametric regularity, N = oo) [MISC2, 2015]

We use MISC to compute on a hypercube domain B ¢ R?
—V - (a(x,y)Vu(x,y)) =f(x) in B
u(x,y) =0 on 0B,

where
a(x,y) = "M with k(x,y) = > wi(x)y;.
JEN4

Here, y are iid uniform and the regularity of a (and hence u) is
determined through the decay of the norm of the derivatives of

b € C(B).
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Theorem (MISC convergence theorem)

[MISC2, 2015] Under technical assumptions the profit-based
MISC estimator built using Stochastic Collocation over

Clenshaw-Curtis points and piecewise multilinear finite elements for
solving the deterministic problems, we have

‘E[S] - MI[SH < Cp Work [Mz] ™15,

The rate nyrsc is as follows:

ps }
Case 1 if 1+ M+7 > 15 then rnyisc <

< Ps
Case 2 if —L— rFEMJW <1 then

) B B
R ( B 2> <7Psl’0 N 1)
Po 'FEMPOPs

r'FEM
N !
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|deas for proofs in [MISC2, 2015]

» Given the sequences

bO,j = ||wj||Loo(B) s j>1, (8)
- s, .
b = s DUl P21 ()

we assume that there exist 0 < pg < ps < % such that
{bO,j}j€N+ € (P and {bSJ JEN, € (Ps,

» Shift theorem: From regularity of a and f to regularity of
ue HYS(B) = ue HEI(B), for0<q<s/d

» Extend holomorphically u(-, z) € H**"(B) on polyellipse
z € ¥, (use p, summability of b,) to get stochastic rates and
estimates for A.

> Use weighted summability of knapsack profits to prove

convergence rates.
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Example: log uniform field with parametric regularity

[MISC2, 2015]

Here, the regularity of kK = log(a) is determined through v > 0
)= Ac D ke H (COS( k&))e' <5i" (%’9‘)9‘))1_4,
keNd £e{0,1}4

where the coefficients Ay are taken as

+d/2

Ay= (x/§)2T°(1+ Ik|2)~

We have

> V+1 - d > V_s+l -
Po=\d ™2 and. ps d 2) -
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Application of main theorem [MISC2, 2015]
2.0 De!&——.ﬁ‘"m"“is jicproblem | 2.0
L5 15 D inistic problem
*

Theory
Improved
==+ Square summ.
+ Square summ., improved
**% Observed for d = 1

0.0
0

+ Square summ.
+ Square summ., improved
*%% Observed for d =3

Theory
Improved

0.0
0

Error oc Work™"misc(v:d)

15
v

20 25 30 35

A similar analysis shows the corresponding v-dependent
convergence rates of MIMC but based on ¢? summability of bs and

Fernique type of results.
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MISC numerical results [MISC2, 2015]

10"

10"
107 E N v
10" ~
102
107

100
M M
E 100
St &
£ £
F10° T
= =

107" e—e Simplified Lool| @ Simplified

Loel| 7 a-posteriori ~—+ a-posteriori

40 MIMC 04— MIMC
ool - E=wo 107 e
- weos - weos
00 _ 07 . x
10 10" 10! 10° 10° 10 107 10 107 10° 10 10" 10" 10* 10° 10 10"
W, Winax

Left: d =1,v =2.5. Right: d =3,v =4..

Error oc Work™"misc(v:d)
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MISC numerical results [MISC2, 2015]

10° 10t

“—+ a-posteriori ~— a-posteriori
40 MIMC 40 MIMC
10°
10°
10°
10
10
mlll" 10! 10° 10° 10 107 10 107 10° ml\l" 10 10* 10° 10" 10° 100
Wins Winax

Left: d =1,v =2.5. Right: d =3,v =4..

Error oc Work™"misc(v:d)
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Deterministic runs, numerical results [MISC2, 2015]

These plots shows the non-asymptotic effect of the logarithmic
factor for d > 1 (as discussed in [Thm. 1][MISC1, 2015]) on the
linear convergence fit in log-log scale.

102

oo Simplified
a-posteriori

1074

10t
E 10 ™
& LN
200 \
E “a

107 N

108

0 n
107 07 107 107 10t
Wi

Left: d = 1. Right: d = 3.
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Error Estimation for PDEs with rough stochastic random

coefficients
» E. J. Hall, H. Hoel, M. Sandberg, A. Szepessy and R. T.

" Computable error estimates for finite element approximations of
elliptic partial differential equations with lognormal data”,
Submitted, 2015.

i
i

7




MIMC 52/54
L Multi-index Stochastic Collocation (MISC)

More References: Inverse Probl. and Experimental Design
» H. Hoel, K. J. H. Law, R. T., Multilevel ensemble Kalman filtering.

Submitted, 2015.

» F. Bisetti, D. Kim, O. Knio, Q. Long, and R. T. . Optimal Bayesian
Experimental Design for Priors of Compact Support with
Application to Shock-Tube Experiments for Combustion Kinetics.
Submitted 2015.

» C. Bayer, A. Moraes, R. T., and P. Vilanova, An Efficient
Forward-Reverse Expectation-Maximization Algorithm for Statistical
Inference in Stochastic Reaction Networks. Accepted, Stochastic
Analysis and Applications, 2015.

» A. Beskos, Ajay Jasra, K. Law, R. T. and Y. Zhou, Multilevel
Sequential Monte Carlo Samplers, submitted 2015.

» F. Ruggeri, Z. Sawlan, M. Scavino, R. T., A hierarchical Bayesian
setting for an inverse problem in linear parabolic PDEs with noisy
boundary conditions. Submitted, 2014.
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