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Talk Objectives

* Focus is on the following UQ tasks: uncertainty
propagation, model calibration, and optimization.

* Quantify epistemic uncertainty on any UQ task
iInduced by restrictions on the number of
simulations: “the small-n problem".

e Suggest new simulations that are “maximally
informative/valuable” for a desired task.
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This Is collage of:

* Bilionis, |. and N. Zabaras (2012). "Multi-output local Gaussian process regression: Applications to
uncertainty quantification." Journal of Computational Physics 231(17): 5718-5746.

 Bilionis, |. and N. Zabaras (2012). "Multidimensional adaptive relevance vector machines for uncertainty
quantification.”" SIAM Journal on Scientific Computing 34(6): B881-B908.

* Bilionis, I., et al. (2013). "Multi-output separable Gaussian process: Towards an efficient, fully Bayesian
paradigm for uncertainty quantification." Journal of Computational Physics 241: 212-239

 Bilionis, |. and N. Zabaras (2014). "Solution of inverse problems with limited forward solver evaluations: a
Bayesian perspective." Inverse Problems 30(1).

» Kristensen, J., Bilionis, |. and N. Zabaras (2016). “Adaptive Simulation Selection for the Discovery of the
Ground State Line of Binary Alloys with a Limited Computational Budget.” Journal of Computational
Physics (under review).

* Bilionis, |. and N. Zabaras (2016 (?)). Bayesian uncertainty propagation using Gaussian processes.
Handbook of Uncertainty Quantification. R. Ghanem, D. Higdon and H. Owhadi, Springer.

e Pandita P. and Bilionis |., Extended Expected Improvement for Design Optimization Under Uncertainty (to
be submitted in 2016).
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Votivation

Input Physical Quantities of

Parameters INnterest

X f Yy

We’'ll think about It as a mathematical function:
y = f(x)
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Some of the Problems of
Uncertainty Quantification

* Uncertainty propagation:

f

p(x)— p(y)

* Model calibration;
f
y—>pxly)

e (Multi-objective) optimization under uncertainty:

max, E[f(x)],/ =1,...,m
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Why are these problems
-+ High computational cost of models.

-
S TR— = S——— - =  —— s — =

* High-dimensionality of inputs/outputs.

* Fusion of information from multiple sources.
e Quantification of model-form uncertainties.

* Heteroscedastic (input-dependent) noise.
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The Surrogate ldea

e Do a finite number of simulations.

('_Wmodel with antion o
y =~ f(x)

\\\,7 ——

—

* [he surrogate is usually cheap to evaluate.

e Solve the UQ problem with the surrogate.
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Classic Approach to
Surrogates

 Usually

* with weights by looking at :

S

* using either a quadrature rule (orthogonal basis),
least squares, or machine learning techniques.
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Examples of Surrogates

e generalized polynomial chaos
e Fourrier expansions

e splines

e wavelets

* neural networks

e support vector machines

e compressive sensing
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|ssues of (Classic)
Surrogates

— E————

* |nability to quantify epistemic uncertainties due to
[imited number of observations

T — = = ———

* high-dimensionality

* rare events
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Ihe Bayesian Approach

e Put prior on functions.
» Evaluate model output on a finite set of inputs.
 Compute the posterior on functions.

« Use posterior to quantify epistemic uncertainty on anything.

"Most people, even Bayesians, think that this sounds crazy

when they ftirst hear about it”.
-Persi Diaconis (1988)
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Some History

(Poincaré, 1912): interpolating a real function, first Gaussian process.

(O’Hagan, 1987; Diaconis, 1988): integration.

(O’'Hagan, 1991; Kennedy et al., 1996; Kennedy, 1996; Minka, 2000). Bayesian quadrature.
(Haylock et al., 1996; O’'Hagan et al., 1999; Oakley et al., 2002): Uncertainty propagation.

Bilionis and Zabaras (4 pubs in 2012-2014): General uncertainty propagation. Summary soon in springer chapter
on “Bayesian Uncertainty Propagation”.

Probabilistic numerics (Hennig et al, 2015), general principle. Applications:
» Sensitivity analysis (Oakley et al., 2004; Becker et al., 2012; Daneshkhah et al., 2013).
* Model calibration (Bilionis et al. 2014).
» Linear algebra (Hennig, 2015).

« Ordinary differential equations (Skilling, 1992; Graepel, 2003; Calderhead et al., 2009; Chkrebtii et al. 2013;
Korostil et al., 2013; Barber, 2014; Hennig et al., 2014; Schober et al., 2014, ...)

« Optimization (Hennig et al., 2012; Hennig, 2013)
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Priors on Functions

Prior on functions =~ Gaussian process
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Priors on Functions

A (Gaussian process needs two ingredients:

e a mean function

e a covariance function

It uses them to define a probability measure on the space of
functions.

We write: f(-) ~ p(f(-)) = GP(f(-)| m(-),k(-"))
o0
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Priors on Functions

—— Mean prediction
----- 9% and 95% quantiles

00 0.2 04 06 0.8 1.0
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Priors on Functions

* \We write:

f() ~ p(f()) ~ GP(f()I m(-),k(-"))

* and we interpret:

e m(x). What do | think 7(x) could be”
e k(x, X). How sure am | about my expectation of 7(x)?
e kK(x, x’). How similar are f(x) and f(x’)?
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Changing the length scale

. £=0.05

F\— Mean prediction
..-\- 5% and 95% quantiles /A
; :

|

0.0 02 04 06 08 10
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Ihe samples are as smooth
as the covariance

Infinitely smooth SE covariance

3
—— Mean prediction
----- 9% and 95% quantiles
- ~ ‘ ~ : -

00 0.2 04 06 0.8 1.0
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Ihe samples are as smooth
as the covariance

Matern 2-3, 2 times differentiable

—— Mean prediction
- 5% and 95% quantiles
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Ihe samples are as smooth
as the covariance

Exponential, continuous, nowhere differentiable

= M,ean prediction
, S 5%.and 95% quantiles
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Invariances may be built-
INto covariance functions

Periodic Exponential, period = 0.1

0.10
—— Mean prediction

----- 5% and 95% quantiles :

0.05 Ry

-0.05

-0.10
0.0 0.2 04 06 0.8 1.0
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What about known physics?

L[F](x) = g(x)
Glf1(x) = g;(X),/ =1,...,m

It all operators are linear (even if stochastic), then it is possible
to constrain the GP prior to approximately satisty them.

(unpublished, let’s talk offline)
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(Gaussian pProcess
regression

e Assume that we have observeq:

D = {(x(”) ,f(x(’”’)))}n:1

* and that we want to construct the posterior
porobability measure in the space of models:

F()I'D ~ p(f()I D)

N
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The posterior Gaussian
DrOCESS

* The posterior measure is also a Gaussian process:

~

f()ID ~ GP(f()I M),k (")),
m(x) = m(x)+K(x,X)K™'(f —m),
k(x,x") = k(x,x") — K%, X)K'K(X,x’)

* This encodes are beliefs about the model output after seeing
the data.

* The only math challenge is drawing samples from the posterior
that are analytic functions (Bilionis and Zabaras, 2016).
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(Gaussian process
regression

—— Mean prediction X Observations
----- 5% and 95% quantiles —— Mean prediction
Sample functi ----- 5% and 95% quantiles
L - - Sample function
Sspriniindiaaze B Lo, Ll St i + sl ey s W

02 0.4 06 0.8 1.0 00 02 04 06

£

Prior GP Posterior GP
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Example 1: Bayesian
Uncertainty Propagation

References:

e Bilionis, I. and N. Zabaras (2012). "Multi-output local Gaussian process regression: Applications to
uncertainty quantification." Journal of Computational Physics 231(17): 5718-5746.

* Bilionis, |. and N. Zabaras (2012). "Multidimensional adaptive relevance vector machines for uncertainty
quantification." SIAM Journal on Scientific Computing 34(6): B881-B908.

* Bilionis, |., et al. (2013). "Multi-output separable Gaussian process: Towards an efficient, fully Bayesian
paradigm for uncertainty quantification." Journal of Computational Physics 241: 212-239.

« Bilionis, I. and N. Zabaras (2016 (?)). Bayesian uncertainty propagation using Gaussian processes.
Handbook of Uncertainty Quantification. R. Ghanem, D. Higdon and H. Owhadi, Springer.
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Example 1: Uncertainty
Propagation

A statistic Q can be thought of as a operator acting on the
model f.

For example:

Q,[f()]:=E,[f(x)] = [ f(x)p(x)ax

Q,[F()]= V,If(x)] = [ (F(x) = B, [f()])* p(x)dx
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Example 1: Uncertainty
Propagation

Put prior on models:

F(:) ~ p(f())

Observe:

Find posterior on models:

D = {(x("),f(x(”)))}j_l

F()I'D ~ p(t()I D)

Find posterior on statistics:

PREDICTIVE
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It Q non-linear, only via sampling.
See (Bilionis et al., 2016) for details on
sampling functions.

p(QID)= Js (Q—-QIF()p(f() I D)af(:).



Example 1: Uncertainty
Propagation

0.0

0.2 0.4 0.6 0.8 1.0 0875 0.2 0.4 0.6

f()I D ~ p(f(-)| D)

PREDICTIVE
SCIENCE LABORATORY

29




Example 1: Uncertainty
Propagation

p(E[f(x)]I D)

0.43 044 045 046 047 048 049 050 051
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Example 1: Uncertainty
Propagation
p(V[f(x)]I D)

81 02 03 04 05 06 07

Uf(z)]
PREDICTIVE
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Example 1: Uncertainty
Propagation
p(p(y)| D)

You can even have characterize the
uncertainty in the PDF of the output. 0.4}

0.2}

0.0
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Example 2: Model
Calibration

References:

e Bilionis, |. and N. Zabaras (2014). "Solution of inverse
oroblems with limited forward solver evaluations: a
Bayesian perspective.’ Inverse Problems 30(1).

PREDICTIVE
@ SCIENCE LABORATORY

33



Example 2: Model
Calibration

f

X ————— )

D={(x" f(x))}

What is the best you can say about x7

N

n=1

EEEEEEEEEE

34



Example 2: Model
Calibration

p(x1y[f)e< p(ylf(x)p(x)

Posterior Likelihood Prior
(knowledge) (measurement) (knowledge)

Part of modeling (GIGO)

Everything Is conditional on non-linear
and expensive model (simulator)

The “only” way to characterize it Is through sampling.
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p(xlyf

EEEEEEEEEE

Example 2: Model
(;,Ca\ibration .

4 (x))p(x)

N

D = {(x(”),f(x(”)))}

Learn surrogate: ]}(X)

n=1

... and do everything with the surrogate
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Example 2: Model
Calibration

M _ s S.in[0.1]
ot

Viu-n=0,0n9[0,1]

What Is the location x
of the contamination
source?

Experimental =
observations y - £(x)

800 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
t
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Example 2: Model
Calibration

Example: Contaminant Source Identification

10*

10°

*e

=N WD

< I 1 N
-] | I -]
0.0 0.1 0.2 0.3 0.4 10 &0 01 0.2 03 0410
oo lTUepoOSterior PoSterior using a surrogate
@ @  SCIENCE LABORATORY based on 40 simulations
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Example 2: Model
Calibration

What is the best we can say about the solution of the inverse
problem given only the simulations we have already made?

D = {(x("),f(x(”)))}

p(xly,D)="7

N

n=1
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Example 2: Model
Calibration

Put prior on models:
f(-) ~ p(f())
D= {(x,,y,)}f.\;
Find posterior on models:
f()I'D ~ p(f()1 D)
Integrate model response out of the likelihood:

p(x1y,D) = [ p(y | x,F(x))p(f(x)| D)af (x)p(x)

Observe:
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Example 2: Model
Calibration

Instead of:

p(x1y, D) [ p(y | x,F(x))p(f(x)| D)af (x)p(x)

We just sample directly in the joint space:

pX,f(x)1y,D) e p(y | x,1(X))p(f(x)| D)p(X)
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Example 2: Model
Calibration

Using 40 forward model
evaluations:

: - ~ -]
5.0 0.1 0.2 0.3 0.4109.0 0.1 0.2 0.3 0.4 10

, Limited data
surrogéte formulation

Ditference is epistemic uncertainty due to limited data
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Example 2: Model
Calibration

Using 80 forward model
evaluations:

.
.
.
.
.l NN

0001020304107 000102030410" 00010203 0410%

True posterior Replace by Limited data
surrogate formulation
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Example 2: Model
Calibration

Using 160 forward model

evaluations:
10* 0.4

0.3
0
10° o2

,. 0.183
<

=N WD

-] -10 -10
0.0 0.1 0.2 0.3 0.410° 0.0 0.1 0.2 0.3 0410 0.0 0.1 0.2 0.3 0.4 10

True posterior Replace by Limited data
surrogate formulation
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Example 3:
Optimization

References:

 Pandita P. and Bilionis |., Extended Expected
Improvement for Design Optimization Under Uncertainty
(to be submitted in 2016).
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Example 3: Optimization

X =argmin, E[f(X)]

What can you say about the solution of this problem with 5-10
evaluations of f(x)?
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Example 3:
Optimization

Put prior on models:
Observe:

Find posterior on models:
f()ID ~p(f()I D)

Find posterior of the location of the maximum, etc.:

p(X 1 D) = J[ 5(x' —argmax, E[f(x)))p(F()] D)d()
p(f’ 1 D)= | (x’ —max, ELf(x))p(f()| D)a()

PREDICTIVE
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Example 3: Optimization

Uncertainty about >/\//\
best design

2

* pearsonr = -0.18; p = 2.5e-66
p(x | D)
0 .
£ Uncertainty about
best value of

- objective
) p(f 1 D)

e PREDICTIVE 0 : . 3 4 . 6
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Example 3: Optimization

Multi-objective
optimization:

min, E
min, E

Pareto Front

£ (X)]
5 (X)]

19.0

(set of non-dominated pts)

Pareto front samples!™ o o

PREDICTIVE

Qo
@  SCIENCE LABORATORY

Pareto front (1,000 samples)

Observed Outputs

Objective 1



Information Acquisition
Decisions Under a
Simulation Budget

EEEEEEEEEE
CCCCCCCCCCCCCCCCC
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Adaptive selection: What Is
your goal?

3 Prior GP, no observations

— ~ " Mean prediction
-+--- 8% and 95% quantiles

00 02 04 06 08 10
£I

PREDICTIVE Demo: selecting observations with maximum predictive uncertainty
SCIENCE LABORATORY
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Adaptive selection: What Is
your goal?

Prior GP, no observations Equivalen‘t 'tO maXimiZing the

—I,L\ Mean prediction
) iishzis 5% and 95% quantiles

| expected information gain in the
posterior of the hyper-parameters of
the GP, if the posterior is well-
"0 approximated by a Gaussian

~ . (MacKay, 1991)

But that's not always what we want to do...
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Given

Information Acquisition
Decisions

f()I D, ~ p(f()1 D,)

What should our next observation be?

Depends on what we want to do...
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Information Acquisition Decisions
for Optimization of a Value Function

Assume that what we want to do Is to solve
x =argmax, E[f(x)]
where f(x) may be noisy. Bold E is expectation over this noise.
he current expected optimal value is:
V, = E[max, E[f(x)]| D,],
The pro-forma optimal value is: ~
V,.1(X) = E[max, E[f(x)]1 x,D,],
Idea: Maximize the marginal value of information:
X, = argmax, {Vnﬂ(i) -V}
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For special choices of
approximating Vol...

 Expected Improvement (Jones, 1998)

 Knowledge Gradient (Frazier et al., 2008)
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Example: 1D robust
optimization

of Information

rue expectation to maximize
Noisy |
measuremen@\ ~. Marginal value

p(f()I D) . 1 : 3 C ;

PREDICTIVE (Pandita and Bilionis, 2016)
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Example: Multi-Objective
Optimization

We are selecting simulations
to Increase the expected

-/ S . hyper-volume enclosed by
- ' empirical Pareto front

PREDICTIVE (Pandita anth-i'Iionis, 20106)
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Example: Phase Diagrams
of Binary Alloys

Thermodynamic
parameters

= arg mm@(@@a/

Thermodynamm
How? potential

The problem is:

Alloy
configuration

e Put prior on G.

* (Gather data.

 Compute posterior over G.

* Propose the simulation that maximizes expected improvement in G.

®e PREDICTIVE Kristensen, Bilionis, and Zabaras, 2016 (submitted to JCP)
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Example: Phase Diagrams
of Binary Alloys

True ground state line

Mean predicted ground state line

% AN TIAL N\
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Example: Phase Diagrams
of Binary Alloys

meV /atom

% Al'In TIA % Al'In TIA
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Example: Phase Diagrams
of Binary Alloys

0 20 40 60 &0
% Al'In TIA
.‘ PREDICTIVE
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Example: Phase Diagrams
of Blnary Alloys

fce
Number of .- IIII
--lllIIII

3
structures  &°
— 1
0
Unlt CeII S|ze

Big cell simulations have more structures
and cost more to simulate...

EL(6,w) = AEI(&,0) — (1 — \)C(6,0)
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Example: Phase Diagrams
Of Blnary AHoys

El\(o,w) = \El(o,©)

100 ® Asml
(b) * —Arnd
10 A Ay
\4 AEIA—O
X v AEI}\—O.25
N——" 1
T v AEIA:O.5O
) A
S ¥ AEL—0.75
= 0.1 v Apr,_.
—
N
O
0.01
TiAl (fcc)
).001
o0 0 20 40 60 80 100
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Open Questions

e Can you find information acquisition functions that
are good for:

* uncertainty propagation
* model calibration

* Yes, If you can pose these problems as
optimization problems? Possible, but another talk.
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