Enabling Predictive Simulations for Design and Decision Making under a Limited Budget

Ilias Bilionis School of Mechanical Engineering Purdue University predictivesciencelab.org

Talk Objectives

- Focus is on the following UQ tasks: uncertainty propagation, model calibration, and optimization.
- Quantify epistemic uncertainty on any UQ task induced by restrictions on the number of simulations: "the small-n problem".
- Suggest new simulations that are "maximally informative/valuable" for a desired task.

This is collage of:

- Bilionis, I. and N. Zabaras (2012). "Multi-output local Gaussian process regression: Applications to uncertainty quantification." Journal of Computational Physics **231**(17): 5718-5746.
- Bilionis, I. and N. Zabaras (2012). "Multidimensional adaptive relevance vector machines for uncertainty quantification." <u>SIAM Journal on Scientific Computing</u> **34**(6): B881-B908.
- Bilionis, I., et al. (2013). "Multi-output separable Gaussian process: Towards an efficient, fully Bayesian paradigm for uncertainty quantification." Journal of Computational Physics **241**: 212-239
- Bilionis, I. and N. Zabaras (2014). "Solution of inverse problems with limited forward solver evaluations: a Bayesian perspective." Inverse Problems 30(1).
- Kristensen, J., Bilionis, I. and N. Zabaras (2016). "Adaptive Simulation Selection for the Discovery of the Ground State Line of Binary Alloys with a Limited Computational Budget." <u>Journal of Computational</u> <u>Physics</u> (under review).
- Bilionis, I. and N. Zabaras (2016 (?)). Bayesian uncertainty propagation using Gaussian processes. <u>Handbook of Uncertainty Quantification</u>. R. Ghanem, D. Higdon and H. Owhadi, Springer.
- Pandita P. and Bilionis I., Extended Expected Improvement for Design Optimization Under Uncertainty (to be submitted in 2016).

Motivation

We'll think about it as a mathematical function:

 $y = f(\mathbf{x})$

Some of the Problems of Uncertainty Quantification

• Uncertainty propagation:

$$p(x) \xrightarrow{f} p(y)$$

• Model calibration:

$$y \xrightarrow{f} p(x \mid y)$$

• (Multi-objective) optimization under uncertainty:

$$\max_{x} \mathbf{E}[f_{i}(x)], i = 1, ..., m$$

Why are these problems difficult?

- High computational cost of models.
- High-dimensionality of inputs/outputs.
- Fusion of information from multiple sources.
- Quantification of model-form uncertainties.
- Heteroscedastic (input-dependent) noise.

The Surrogate Idea

- Do a finite number of simulations.
- Replace model with an approximation:

$$y \approx \hat{f}(\mathbf{x})$$

- The surrogate is usually cheap to evaluate.
- Solve the UQ problem with the surrogate.

Classic Approach to Surrogates

• Usually

$$\hat{f}(\mathbf{x}) = \sum_{j=1}^{M} w_j \phi_j(\mathbf{x})$$

• with weights by looking at :

$$\mathcal{D} = \left\{ \left(x^{(n)}, f(x^{(n)}) \right) \right\}_{n=1}^{N}$$

• using either a quadrature rule (orthogonal basis), least squares, or machine learning techniques.

PREDICTIVE SCIENCE LABORATORY

Examples of Surrogates

- generalized polynomial chaos
- Fourrier expansions
- splines
- wavelets
- neural networks
- support vector machines
- compressive sensing

Issues of (Classic) Surrogates

- inability to quantify epistemic uncertainties due to limited number of observations
- high-dimensionality
- rare events

The Bayesian Approach

- Put prior on functions.
- Evaluate model output on a finite set of inputs.
- Compute the posterior on functions.
- Use posterior to quantify epistemic uncertainty on anything.

"Most people, even Bayesians, think that this sounds crazy when they first hear about it". -Persi Diaconis (1988)

Some History

- (Poincaré, 1912): interpolating a real function, first Gaussian process.
- (O'Hagan, 1987; Diaconis, 1988): integration.
- (O'Hagan, 1991; Kennedy et al., 1996; Kennedy, 1996; Minka, 2000): Bayesian quadrature.
- (Haylock et al., 1996; O'Hagan et al., 1999; Oakley et al., 2002): Uncertainty propagation.
- Bilionis and Zabaras (4 pubs in 2012-2014): **General uncertainty propagation**. Summary soon in springer chapter on "Bayesian Uncertainty Propagation".
- Probabilistic numerics (Hennig et al, 2015), general principle. Applications:
 - Sensitivity analysis (Oakley et al., 2004; Becker et al., 2012; Daneshkhah et al., 2013).
 - Model calibration (Bilionis et al. 2014).
 - Linear algebra (Hennig, 2015).
 - Ordinary differential equations (Skilling, 1992; Graepel, 2003; Calderhead et al., 2009; Chkrebtii et al. 2013; Korostil et al., 2013; Barber, 2014; Hennig et al., 2014; Schober et al., 2014, ...)
 - **Optimization** (Hennig et al., 2012; Hennig, 2013)

Prior on functions =~ Gaussian process

A Gaussian process needs two ingredients:

- a mean function
- a covariance function

It uses them to define a probability measure on the space of functions.

We write:
$$f(\cdot) \sim p(f(\cdot)) = GP(f(\cdot) | m(\cdot), k(\cdot, \cdot))$$

SCIENCE LABORATORY

• We write:

$f(\cdot) \sim p(f(\cdot)) \sim \mathsf{GP}\big(f(\cdot) \mid m(\cdot), k(\cdot, \cdot)\big)$

- and we interpret:
 - m(x): What do I think f(x) could be?
 - k(x, x): How sure am I about my expectation of f(x)?
 - k(x, x'): How similar are f(x) and f(x')?

Changing the length scale

17

SCIENCE LABORATORY

The samples are as smooth as the covariance

Infinitely smooth SE covariance

SCIENCE LABORATORY

PREDICTIVE

The samples are as smooth as the covariance

Matern 2-3, 2 times differentiable

SCIENCE LABORATORY

PREDICTIVE

The samples are as smooth as the covariance

Exponential, continuous, nowhere differentiable

SCIENCE LABORATORY

PREDICTIVE

Invariances may be builtinto covariance functions Periodic Exponential, period = 0.1

PREDICTIVE SCIENCE LABORATORY

What about known physics?

 $\mathcal{L}[f](\mathbf{x}) = g(\mathbf{x})$

 $\mathcal{B}_i[f](\mathbf{x}) = g_i(\mathbf{x}), i = 1, \dots, m$

If all operators are linear (even if stochastic), then it is possible to constrain the GP prior to approximately satisfy them.

(unpublished, let's talk offline)

Gaussian process regression

• Assume that we have observed:

$$\mathcal{D} = \left\{ \left(x^{(n)}, f(x^{(n)}) \right) \right\}_{n=1}^{N}$$

• and that we want to construct the posterior probability measure in the space of models:

 $f(\cdot) \mid \mathcal{D} \thicksim p(f(\cdot) \mid \mathcal{D})$

The posterior Gaussian process

• The posterior measure is also a Gaussian process: $f(\cdot) \mid \mathcal{D} \sim \operatorname{GP}(f(\cdot) \mid \tilde{m}(\cdot), \tilde{k}(\cdot, \cdot)),$

 $\widetilde{m}(\mathbf{x}) = m(\mathbf{x}) + \mathbf{K}(\mathbf{x}, \mathbf{X})\mathbf{K}^{-1}(\mathbf{f} - \mathbf{m}),$

 $\tilde{k}(\mathbf{X},\mathbf{X}') = k(\mathbf{X},\mathbf{X}') - \mathbf{K}(\mathbf{X},\mathbf{X})\mathbf{K}^{-1}\mathbf{K}(\mathbf{X},\mathbf{X}')$

- This encodes are beliefs about the model output after seeing the data.
- The **only math challenge** is drawing samples from the posterior that are analytic functions (Bilionis and Zabaras, 2016).

Gaussian process regression

Prior GP

PREDICTIVE

SCIENCE LABORATORY

Posterior GP

Example 1: Bayesian Uncertainty Propagation

- Bilionis, I. and N. Zabaras (2012). "Multi-output local Gaussian process regression: Applications to uncertainty quantification." <u>Journal of Computational Physics</u> 231(17): 5718-5746.
- Bilionis, I. and N. Zabaras (2012). "Multidimensional adaptive relevance vector machines for uncertainty quantification." <u>SIAM Journal on Scientific Computing</u> **34**(6): B881-B908.
- Bilionis, I., et al. (2013). "Multi-output separable Gaussian process: Towards an efficient, fully Bayesian paradigm for uncertainty quantification." Journal of Computational Physics **241**: 212-239.
- Bilionis, I. and N. Zabaras (2016 (?)). Bayesian uncertainty propagation using Gaussian processes. <u>Handbook of Uncertainty Quantification</u>. R. Ghanem, D. Higdon and H. Owhadi, Springer.

A *statistic* Q can be thought of as a operator acting on the model f.

For example:

$$Q_{\mu}[f(\cdot)] := \mathbb{E}_{\mathbf{x}}[f(\mathbf{x})] = \int f(\mathbf{x})p(\mathbf{x})d\mathbf{x}$$
$$Q_{\nu}[f(\cdot)] := \mathbb{V}_{\mathbf{x}}[f(\mathbf{x})] = \int (f(\mathbf{x}) - \mathbb{E}_{\mathbf{x}}[f(\cdot)])^2 p(\mathbf{x})d\mathbf{x}$$

. . .

Put prior on models:

 $f(\cdot) \sim p(f(\cdot))$

Observe:

$$\mathcal{D} = \left\{ \left(x^{(n)}, f(x^{(n)}) \right) \right\}_{n=1}^{N}$$

Find posterior on models:

$$f(\cdot) \mid \mathcal{D} \sim p(f(\cdot) \mid \mathcal{D})$$

Find posterior on statistics:

CE LABORATORY

If Q non-linear, only via sampling. See (Bilionis et al., 2016) for details on sampling functions.

$$p(Q \mid D) = \int \delta(Q - Q[f(\cdot)])p(f(\cdot) \mid D)df(\cdot).$$

PREDICTIVE

SCIENCE LABORATORY

PREDICTIVE

SCIENCE LABORATORY

You can even have characterize the uncertainty in the PDF of the output.

 $p(p(y) \mid \mathcal{D})$

References:

 Bilionis, I. and N. Zabaras (2014). "Solution of inverse problems with limited forward solver evaluations: a Bayesian perspective." Inverse Problems 30(1).

What is the best you can say about x?

Part of modeling (GIGO)

Everything is conditional on *non-linear* and *expensive* model (simulator)

The "only" way to characterize it is through sampling.

Example 2: Model Calibration \hat{f} $p(x | y, f) \propto p(y | f(x))p(x)$

 $\mathcal{D} = \left\{ \left(x^{(n)}, f\left(x^{(n)} \right) \right) \right\}_{n=1}^{N}$

Learn surrogate: f(x)

... and do everything with the surrogate

Example: Contaminant Source Identification

What is the best we can say about the solution of the inverse problem given only the simulations we have already made?

$$\mathcal{D} = \left\{ \left(x^{(n)}, f(x^{(n)}) \right) \right\}_{n=1}^{N}$$
$$p(x \mid y, \mathcal{D}) = ?$$

Put prior on models:

Observe:

$$f(\cdot) \sim p(f(\cdot))$$
$$\mathcal{D} = \left\{ (\mathbf{x}_i, \mathbf{y}_i) \right\}_{i=1}^N$$

Find posterior on models:

 $f(\cdot) \mid \mathcal{D} \thicksim p(f(\cdot) \mid \mathcal{D})$

Integrate model response out of the likelihood:

 $p(\mathbf{x} \mid y, \mathcal{D}) \propto \int p(y \mid \mathbf{x}, f(\mathbf{x})) p(f(\mathbf{x}) \mid \mathcal{D}) df(\mathbf{x}) p(\mathbf{x})$

Instead of:

 $p(\mathbf{x} | y, \mathcal{D}) \propto \int p(y | \mathbf{x}, f(\mathbf{x})) p(f(\mathbf{x}) | \mathcal{D}) df(\mathbf{x}) p(\mathbf{x})$

We just sample directly in the joint space:

 $p(\mathbf{x}, f(\mathbf{x}) | y, \mathcal{D}) \propto p(y | \mathbf{x}, f(\mathbf{x})) p(f(\mathbf{x}) | \mathcal{D}) p(\mathbf{x})$

Example 3: Optimization

References:

 Pandita P. and Bilionis I., Extended Expected Improvement for Design Optimization Under Uncertainty (to be submitted in 2016).

Example 3: Optimization

$\mathbf{x}^* = \operatorname{argmin}_{\mathbf{x}} \mathbf{E}[f(\mathbf{x})]$

What can you say about the solution of this problem with 5-10 evaluations of f(x)?

Example 3: Optimization

Put prior on models:

Observe:

$$\mathcal{D} = \left\{ \left(x^{(n)}, f\left(x^{(n)} \right) \right) \right\}_{n=1}^{N}$$

f() = p(f())

Find posterior on models:

 $f(\cdot) \mid \mathcal{D} \thicksim p(f(\cdot) \mid \mathcal{D})$

Find posterior of the location of the maximum, etc.:

$$p(\mathbf{x}^* \mid \mathcal{D}) = \int \delta(\mathbf{x}^* - \operatorname{argmax}_{\mathbf{x}} \mathbf{E}[f(\mathbf{x})]) p(f(\cdot) \mid \mathcal{D}) df(\cdot)$$

$$p(f^* \mid \mathcal{D}) = \int \delta(\mathbf{x}^* - \max_{\mathbf{x}} \mathbf{E}[f(\mathbf{x})]) p(f(\cdot) \mid \mathcal{D}) df(\cdot)$$

PREDICTIVE
SCIENCE LABORATORY

Example 3: Optimization

Example 3: Optimization

Pareto front (1,000 samples)

Information Acquisition Decisions Under a Simulation Budget

Adaptive selection: What is your goal?

PREDICTIVE Demo: selecting observations with maximum predictive uncertainty science LABORATORY

Adaptive selection: What is your goal?

Equivalent to maximizing the **expected information gain** in the posterior of the hyper-parameters of the GP, if the posterior is well-approximated by a Gaussian (MacKay, 1991)

But that's not always what we want to do...

Information Acquisition Decisions

Given

$f(\cdot) \mid \mathcal{D}_n \thicksim p(f(\cdot) \mid \mathcal{D}_n)$

What should our next observation be?

Depends on what we want to do...

Information Acquisition Decisions for Optimization of a Value Function

Assume that what we want to do is to solve

 $\mathbf{x}^* = \operatorname{argmax}_{\mathbf{x}} \mathbf{E}[f(\mathbf{x})]$

where f(x) may be noisy. Bold **E** is expectation over this noise.

The current expected optimal value is:

 $\begin{aligned} \mathcal{V}_n &= \mathbb{E}[\max_{\mathbf{x}} \mathbf{E}[f(\mathbf{x})] \mid \mathcal{D}_n], \\ \text{The pro-forma optimal value is:} \\ \mathcal{V}_{n+1}(\tilde{\mathbf{x}}) &= \mathbb{E}[\max_{\mathbf{x}} \mathbf{E}[f(\mathbf{x})] \mid \tilde{\mathbf{x}}, \mathcal{D}_n], \end{aligned}$

Idea: Maximize the *marginal value of information*:

$$\mathbf{x}_{n+1} = \operatorname{argmax}_{\tilde{\mathbf{x}}} \{ \mathcal{V}_{n+1}(\tilde{\mathbf{x}}) - \mathcal{V}_n \}$$

For special choices of approximating Vol...

- Expected Improvement (Jones, 1998)
- Knowledge Gradient (Frazier et al., 2008)

Example: Multi-Objective Optimization

Example: Phase Diagrams of Binary Alloys The problem is: $\sigma^{*}(\omega) = \arg\min_{\sigma} G(\sigma, \omega)$ Alloy

potential

How?

- Put prior on G.
- Gather data.
- Compute posterior over G.
- Propose the simulation that maximizes expected improvement in G.

PREDICTIVE SCIENCE LABORATORY

Kristensen, Bilionis, and Zabaras, 2016 (submitted to JCP)

configuration

Example: Phase Diagrams of Binary Alloys

Example: Phase Diagrams^{×10-3}

Example: Phase Diagrams of Binary Alloys Number of structures $\int_{0}^{1} \int_{0}^{1} \int_$

Big cell simulations have more structures and cost more to simulate...

Unit cell size

 $\mathrm{EI}_{\lambda}(\tilde{\boldsymbol{\sigma}},\omega) \equiv \lambda \mathrm{EI}(\tilde{\boldsymbol{\sigma}},\tilde{\omega}) - (1-\lambda)\mathrm{C}(\tilde{\boldsymbol{\sigma}},\tilde{\omega})$

Open Questions

- Can you find information acquisition functions that are good for:
 - uncertainty propagation
 - model calibration
- Yes, if you can pose these problems as optimization problems? Possible, but another talk.

Thank you!

