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Talk Objectives
• Focus is on the following UQ tasks: uncertainty 

propagation, model calibration, and optimization. 

• Quantify epistemic uncertainty on any UQ task 
induced by restrictions on the number of 
simulations: “the small-n problem”. 

• Suggest new simulations that are “maximally 
informative/valuable” for a desired task.



This is collage of:
• Bilionis, I. and N. Zabaras (2012). "Multi-output local Gaussian process regression: Applications to 

uncertainty quantification." Journal of Computational Physics 231(17): 5718-5746. 

• Bilionis, I. and N. Zabaras (2012). "Multidimensional adaptive relevance vector machines for uncertainty 
quantification." SIAM Journal on Scientific Computing 34(6): B881-B908. 

• Bilionis, I., et al. (2013). "Multi-output separable Gaussian process: Towards an efficient, fully Bayesian 
paradigm for uncertainty quantification." Journal of Computational Physics 241: 212-239 

• Bilionis, I. and N. Zabaras (2014). "Solution of inverse problems with limited forward solver evaluations: a 
Bayesian perspective." Inverse Problems 30(1). 

• Kristensen, J., Bilionis, I. and N. Zabaras (2016). “Adaptive Simulation Selection for the Discovery of the 
Ground State Line of Binary Alloys with a Limited Computational Budget.” Journal of Computational 
Physics (under review). 

• Bilionis, I. and N. Zabaras (2016 (?)). Bayesian uncertainty propagation using Gaussian processes. 
Handbook of Uncertainty Quantification. R. Ghanem, D. Higdon and H. Owhadi, Springer. 

• Pandita P. and Bilionis I., Extended Expected Improvement for Design Optimization Under Uncertainty (to 
be submitted in 2016).
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Motivation

Input 
Parameters

Physical 
model

Quantities of 
interest

x f y

y = f (x)
We’ll think about it as a mathematical function:
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Some of the Problems of 
Uncertainty Quantification

• Uncertainty propagation: 

• Model calibration: 

• (Multi-objective) optimization under uncertainty: 

p(x )→
f
p(y )

y→
f
p(x | y )

maxx E[fi (x )],i = 1,…,m
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Why are these problems 
difficult?

• High computational cost of models. 

• High-dimensionality of inputs/outputs. 

• Fusion of information from multiple sources. 

• Quantification of model-form uncertainties. 

• Heteroscedastic (input-dependent) noise. 

• …
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The Surrogate Idea
• Do a finite number of simulations. 

• Replace model with an approximation: 

• The surrogate is usually cheap to evaluate. 

• Solve the UQ problem with the surrogate.

y ≈ f̂ (x)
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Classic Approach to 
Surrogates

• Usually 

• with weights by looking at : 

• using either a quadrature rule (orthogonal basis), 
least squares, or machine learning techniques. 

f̂ (x) = w j
j=1

M

∑ φ j (x)
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D = x(n), f x(n)( )( ){ }
n=1

N



Examples of Surrogates
• generalized polynomial chaos 

• Fourrier expansions 

• splines 

• wavelets 

• neural networks 

• support vector machines 

• compressive sensing 

• …
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Issues of (Classic) 
Surrogates

• inability to quantify epistemic uncertainties due to 
limited number of observations 

• high-dimensionality 

• rare events 

• ….
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The Bayesian Approach
• Put prior on functions. 

• Evaluate model output on a finite set of inputs. 

• Compute the posterior on functions. 

• Use posterior to quantify epistemic uncertainty on anything.
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“Most people, even Bayesians, think that this sounds crazy 
when they first hear about it”. 

-Persi Diaconis (1988)



Some History
• (Poincaré, 1912): interpolating a real function, first Gaussian process. 

•  (O’Hagan, 1987; Diaconis, 1988): integration. 

• (O’Hagan, 1991; Kennedy et al., 1996; Kennedy, 1996; Minka, 2000): Bayesian quadrature. 

• (Haylock et al., 1996; O’Hagan et al., 1999; Oakley et al., 2002): Uncertainty propagation. 

• Bilionis and Zabaras (4 pubs in 2012-2014): General uncertainty propagation. Summary soon in springer chapter 
on “Bayesian Uncertainty Propagation”. 

• Probabilistic numerics (Hennig et al, 2015), general principle. Applications:  

• Sensitivity analysis (Oakley et al., 2004; Becker et al., 2012; Daneshkhah et al., 2013). 

• Model calibration (Bilionis et al. 2014). 

• Linear algebra (Hennig, 2015).

• Ordinary differential equations (Skilling, 1992; Graepel, 2003; Calderhead et al., 2009; Chkrebtii et al. 2013; 
Korostil et al., 2013; Barber, 2014; Hennig et al., 2014; Schober et al., 2014, …)

• Optimization (Hennig et al., 2012; Hennig, 2013) 

• …
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Priors on Functions

13

Prior on functions =~ Gaussian process



Priors on Functions

f (⋅) ~ p(f (⋅)) = GP f (⋅) |m(⋅),k (⋅,⋅)( )
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A Gaussian process needs two ingredients: 

• a mean function 

• a covariance function 

It uses them to define a probability measure on the space of 
functions. 

We write: 



Priors on Functions
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Priors on Functions
• We write: 

• and we interpret: 

• m(x): What do I think f(x) could be? 

• k(x, x): How sure am I about my expectation of f(x)? 

• k(x, x’): How similar are f(x) and f(x’)?  

f (⋅) ~ p(f (⋅)) ~ GP f (⋅) |m(⋅),k (⋅,⋅)( )
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Changing the length scale
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The samples are as smooth 
as the covariance

18

Infinitely smooth SE covariance



The samples are as smooth 
as the covariance
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Matern 2-3, 2 times differentiable



The samples are as smooth 
as the covariance
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Exponential, continuous, nowhere differentiable



Invariances may be built-
into covariance functions

21

Periodic Exponential, period = 0.1



What about known physics?
L[f ](x) = g(x)

Bi [f ](x) = gi (x),i = 1,…,m

If all operators are linear (even if stochastic), then it is possible 
to constrain the GP prior to approximately satisfy them.

(unpublished, let’s talk offline)
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Gaussian process 
regression

• Assume that we have observed: 

• and that we want to construct the posterior 
probability measure in the space of models: 

23

f (⋅) |D ~ p(f (⋅) |D)

D = x(n), f x(n)( )( ){ }
n=1

N



The posterior Gaussian 
process

• The posterior measure is also a Gaussian process: 

• This encodes are beliefs about the model output after seeing 
the data. 

• The only math challenge is drawing samples from the posterior 
that are analytic functions (Bilionis and Zabaras, 2016). 

24

f (⋅) |D ~ GP f (⋅) | !m(⋅),!k (⋅,⋅)( ),
!m(x) =m(x)+K(x,X)K−1(f −m),
!k (x,x′) = k (x,x′)−K(x,X)K−1K(X,x′)



Gaussian process 
regression

25

Prior GP Posterior GP

Bayes rule



Example 1: Bayesian 
Uncertainty Propagation

References:

• Bilionis, I. and N. Zabaras (2012). "Multi-output local Gaussian process regression: Applications to 
uncertainty quantification." Journal of Computational Physics 231(17): 5718-5746. 

• Bilionis, I. and N. Zabaras (2012). "Multidimensional adaptive relevance vector machines for uncertainty 
quantification." SIAM Journal on Scientific Computing 34(6): B881-B908. 

• Bilionis, I., et al. (2013). "Multi-output separable Gaussian process: Towards an efficient, fully Bayesian 
paradigm for uncertainty quantification." Journal of Computational Physics 241: 212-239. 

• Bilionis, I. and N. Zabaras (2016 (?)). Bayesian uncertainty propagation using Gaussian processes. 
Handbook of Uncertainty Quantification. R. Ghanem, D. Higdon and H. Owhadi, Springer.
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Example 1: Uncertainty 
Propagation

A statistic Q can be thought of as a operator acting on the 
model f.  

For example:
Qµ [f (⋅)] := Ex[f (x)] = f∫ (x)p(x)dx

Qv [f (⋅)] := Vx[f (x)] = (f∫ (x)− Ex[f (⋅)])2p(x)dx

…
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Example 1: Uncertainty 
Propagation

Observe:

Find posterior on models:

Put prior on models:
f (⋅) ~ p(f (⋅))

f (⋅) |D ~ p(f (⋅) |D)

Find posterior on statistics:

p(Q |D) = ∫δ (Q −Q[f (⋅)])p(f (⋅) |D)df (⋅).

If Q non-linear, only via sampling. 
See (Bilionis et al., 2016) for details on 

sampling functions.

D = x(n), f x(n)( )( ){ }
n=1

N
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Example 1: Uncertainty 
Propagation 33

(a) (b)

(c) (d)

(e) (f)

Fig. 1. Synthetic: Subfigure (a) shows the observed data (cross symbols), the mean (dashed blue

line), the 95% predictive intervals (shaded grey area), and 3 samples (solid black lines) from the

posterior Gaussian process conditioned on the observed data. The green line of subfigure (b) shows

the probability density function imposed on the input x. The three lines in subfigure (c) correspond to

the first three eigenfunctions used in the KLE of the posterior GP. Subfigures (d) and (e) depict the

predictive distribution conditioned on the observations of the mean and the variance statistic of f(x),

respectively. Subfigure (f) shows the mean predicted probability density of y = f(x) (blue dashed line)

with 95% predictive intervals (shaded grey area), and 3 samples (solid black lines) from the posterior

predictive probability measure on the space of probability densities.

f (⋅) |D ~ p(f (⋅) |D) p(x)
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Example 1: Uncertainty 
Propagation

33
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f (⋅) |D ~ p(f (⋅) |D) p(x)
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(a) (b)

(c) (d)

(e) (f)

Fig. 1. Synthetic: Subfigure (a) shows the observed data (cross symbols), the mean (dashed blue

line), the 95% predictive intervals (shaded grey area), and 3 samples (solid black lines) from the

posterior Gaussian process conditioned on the observed data. The green line of subfigure (b) shows

the probability density function imposed on the input x. The three lines in subfigure (c) correspond to

the first three eigenfunctions used in the KLE of the posterior GP. Subfigures (d) and (e) depict the

predictive distribution conditioned on the observations of the mean and the variance statistic of f(x),

respectively. Subfigure (f) shows the mean predicted probability density of y = f(x) (blue dashed line)
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p(E[f (x)] |D)
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Example 1: Uncertainty 
Propagation

33
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f (⋅) |D ~ p(f (⋅) |D) p(x)

p(V[f (x)] |D)
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Example 1: Uncertainty 
Propagation

33
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(e) (f)

Fig. 1. Synthetic: Subfigure (a) shows the observed data (cross symbols), the mean (dashed blue
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f (⋅) |D ~ p(f (⋅) |D) p(x)

p(p(y ) |D)

33

(a) (b)

(c) (d)

(e) (f)

Fig. 1. Synthetic: Subfigure (a) shows the observed data (cross symbols), the mean (dashed blue

line), the 95% predictive intervals (shaded grey area), and 3 samples (solid black lines) from the

posterior Gaussian process conditioned on the observed data. The green line of subfigure (b) shows

the probability density function imposed on the input x. The three lines in subfigure (c) correspond to

the first three eigenfunctions used in the KLE of the posterior GP. Subfigures (d) and (e) depict the

predictive distribution conditioned on the observations of the mean and the variance statistic of f(x),

respectively. Subfigure (f) shows the mean predicted probability density of y = f(x) (blue dashed line)

with 95% predictive intervals (shaded grey area), and 3 samples (solid black lines) from the posterior

predictive probability measure on the space of probability densities.

You can even have characterize the 
uncertainty in the PDF of the output.
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Example 2: Model 
Calibration

References:

• Bilionis, I. and N. Zabaras (2014). "Solution of inverse 
problems with limited forward solver evaluations: a 
Bayesian perspective." Inverse Problems 30(1).
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Example 2: Model 
Calibration

x yf

D = x(n), f x(n)( )( ){ }
n=1

N

What is the best you can say about x?
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Example 2: Model 
Calibration

p(x | y, f )∝ p(y | f (x))p(x)
Prior

(knowledge)
Likelihood

(measurement)
Posterior

(knowledge)

Everything is conditional on non-linear 
and expensive model (simulator)

Part of modeling (GIGO)

The “only” way to characterize it is through sampling.
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Example 2: Model 
Calibration

p(x | y, f )∝ p(y | f (x))p(x)

D = x(n), f x(n)( )( ){ }
n=1

N

f̂ (x)Learn surrogate:

f̂ f̂

… and do everything with the surrogate
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Example 2: Model 
Calibration

∂u
∂t

= ∇u + S, in [0,1]2

∇u ⋅n = 0, on ∂[0,1]2

What is the location x 
of the contamination 
source?

Experimental 
observations y f (x)
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Example 2: Model 
Calibration

Example: Contaminant Source Identification

True posterior Posterior using a surrogate 
based  on 40 simulations
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Example 2: Model 
Calibration

D = x(n), f x(n)( )( ){ }
n=1

N

p(x | y,D) = ?

What is the best we can say about the solution of the inverse 
problem given only the simulations we have already made?
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Example 2: Model 
Calibration

Observe:
D = (xi ,yi ){ }i=1

N

Find posterior on models:

Put prior on models:
f (⋅) ~ p(f (⋅))

f (⋅) |D ~ p(f (⋅) |D)

Integrate model response out of the likelihood:
p(x | y,D)∝ p∫ (y | x,f (x))p(f (x) |D)df (x)p(x)
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Example 2: Model 
Calibration

We just sample directly in the joint space:

Instead of:

p(x | y,D)∝ p∫ (y | x,f (x))p(f (x) |D)df (x)p(x)

p(x,f (x) | y,D)∝ p(y | x,f (x))p(f (x) |D)p(x)

41



Example 2: Model 
Calibration

Using 40 forward model 
evaluations:

True posterior Replace by  
surrogate

Limited data 
formulation

Difference is epistemic uncertainty due to limited data



Example 2: Model 
Calibration

Using 80 forward model 
evaluations:

True posterior Replace by  
surrogate

Limited data 
formulation



Example 2: Model 
Calibration

True posterior Replace by  
surrogate

Limited data 
formulation

Using 160 forward model 
evaluations:



Example 3: 
Optimization

References:

• Pandita P. and Bilionis I., Extended Expected 
Improvement for Design Optimization Under Uncertainty 
(to be submitted in 2016).



Example 3: Optimization

46

x* = argminx E[f (x)]

What can you say about the solution of this problem with 5-10 
evaluations of f(x)?



Example 3: 
Optimization

Observe:

Find posterior on models:

Put prior on models:
f (⋅) ~ p(f (⋅))

f (⋅) |D ~ p(f (⋅) |D)
Find posterior of the location of the maximum, etc.:

p(x* |D) = ∫δ (x* − argmaxxE[f (x)])p(f (⋅) |D)df (⋅)

D = x(n), f x(n)( )( ){ }
n=1

N

p(f * |D) = ∫δ (x* −maxxE[f (x)])p(f (⋅) |D)df (⋅)



Example 3: Optimization

48

Uncertainty about 
best design
p(x* |D)

Uncertainty about 
best value of 

objective
p(f * |D)



Example 3: Optimization

49

minxE[f1(x)]
minxE[f2(x)]

Multi-objective 
optimization:

Pareto front samples!

Pareto Front 
(set of non-dominated pts)

Pareto front (1,000 samples)

Observed Outputs



Information Acquisition 
Decisions Under a 
Simulation Budget
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Adaptive selection: What is 
your goal?

51

Demo: selecting observations with maximum predictive uncertainty



Adaptive selection: What is 
your goal?

52

Equivalent to maximizing the 
expected information gain in the 
posterior of the hyper-parameters of 
the GP, if the posterior is well-
approximated by a Gaussian 
(MacKay, 1991)

But that’s not always what we want to do…



Information Acquisition 
Decisions

f (⋅) |Dn ~ p(f (⋅) |Dn )

Given

What should our next observation be?

Depends on what we want to do…
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Information Acquisition Decisions 
for Optimization of a Value Function

x* = argmaxxE[f (x)]
Assume that what we want to do is to solve

where f(x) may be noisy. Bold E is expectation over this noise.
The current expected optimal value is:

Vn = E[maxxE[f (x)] |Dn ],
The pro-forma optimal value is:

Vn+1(x!) = E[maxxE[f (x)] | x!,Dn ],
Idea: Maximize the marginal value of information:

xn+1 = argmaxx! {Vn+1(x!)− Vn }
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For special choices of 
approximating VoI…

• Expected Improvement (Jones, 1998) 

• Knowledge Gradient (Frazier et al., 2008)
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Example: 1D robust 
optimization

56

True expectation to maximize
Marginal value 
of information

Noisy 
measurements

(Pandita and Bilionis, 2016)
p(f (⋅) |Dn )



Example: Multi-Objective 
Optimization

57

(Pandita and Bilionis, 2016)

We are selecting simulations 
to increase the expected 

hyper-volume  enclosed by 
empirical Pareto front



Example: Phase Diagrams 
of Binary Alloys

58

e↵ect of alloy structure costs in Section 2.4.2 and in Section 2.5 we present other structure
acquisition algorithms in order to compare our proposed framework. At this point, we
present results in Section 3 by first describing our validation setup in Section 3.1. This is
followed by a comparison of our framework with the other acquisition strategies in Section 3.2
onwards until we conclude in Section 4.

2. Methodology

We will study alloy compounds and consider data acquisition strategies which maximize
our knowledge about QoIs of such systems. Among possible QoIs are the ground state line,
phase diagrams, particular phase transition temperatures, largest-band-gap structures, etc.

The binary NiAl and TiAl alloy compounds will be specifically considered. NiAl was
chosen because it plays a central technological role in, e.g., aircraft and rocket engines,
power generation turbines, nuclear-power generation, due to its high-temperature strength,
toughness, and degradation resistance in oxidizing environments among other useful prop-
erties [57]. While other elements can be added to NiAl such as Ti [60], Fe [65, 61], Cr [71],
Ta, and Nb [70, 45] to engineer specific properties, we restrict our attention to pure NiAl,
since it forms one of the most important binary bases for superalloys [26]. The elements
Ni and Al crystallize in fcc lattices. NiAl has been observed to form in both fcc and bcc
lattices. Secondly, TiAl was chosen because of its application in gas turbines due to its high
strength to weight ratio and excellent corrosion resistance. It is used in aerospace applica-
tions, specifically in landing gear beams on the Boeing 747 and 757 replacing steel which has
too high a density [8]. We consider TiAl on an fcc lattice, but note that it can crystallize in
hcp and bcc lattices as well.

Let the atomic identities occupying the lattice of the A
x

B
1�x

alloy with N

s

sites be
summarized in an N

s

-length boolean vector called a configuration and denote it by �.
Accordingly, call the set of all possible configurations the configuration space. Now denote
a set of thermodynamic parameters which specify the state of a system, e.g., temperature,
pressure, concentration, etc., by !. We are interested in the characterization of QoIs of the
form:

�

⇤(!) = argmin
�

G(�,!), (1)

where the minimization takes place over the �’s that are compatible with !. The function
G(�,!) is just the natural thermodynamic potential of the system whose minimization gives
us the thermodynamically stable structure of the system at ! [41].

As two examples, consider first a system at zero temperature and with the concentration
as the only thermodynamic parameter, i.e., ! = {x}. For a binary A

x

B
1�x

alloy with N

s

lattice sites, we map A to -1 and B to +1. Thus, 2x = 1�
P

Ns

n=1

�

n

/N

s

, where �
n

is -1(+1) if
A(B) occupies site n. The thermodynamic potential forming the energy-composition ground
state line is �E

form

(�) ⌘ E(�) � (xE
A

+ (1 � x)E
B

), where E

C

is the internal energy of
the structure containing only C-atoms. In other words, G(�, x) = �E

form

(�) (� implies
x but we leave the notation general) and Eq. (1) forms the binary alloy GSL. As a second
example, assume the thermodynamic parameters are the pressure P and the temperature

5

The problem is:
Thermodynamic 

parameters

Thermodynamic 
potential

Alloy 
configuration

How? 
• Put prior on G. 
• Gather data. 
• Compute posterior over G. 
• Propose the simulation that maximizes expected improvement in G.

Kristensen, Bilionis, and Zabaras, 2016 (submitted to JCP)



Example: Phase Diagrams 
of Binary Alloys
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Figure 1: (Color) For TiAl. Six di↵erent stages, shown as six separate subplots arranged in two columns
and three rows, during the Bayesian global optimization algorithm for learning the true ground state line
(GSL) with an initial data pool of four structures. The iteration number of the algorithm is shown in the
top right of each subplot. E.g., the top left subplot shows the algorithm’s behavior on the initial data set
(“iteration 0”). Each subplot has two parts. The upper part shows, via a shaded blue area (for positive
ordinate values), the error measured as the vertical distance between the GSL of the current seen structures
(red dashed line at negative ordinate values) and the true GSL (blue full line at negative ordinate values)
versus Al concentration. The dashed black line in all subplots is this error between the initial GSL (iteration
0) and the true GSL. The GSLE (Eq. (27)) is given as the text under this line. The true ground states
are shown as blue upside-down triangles and the ground states which are correctly predicted by the global
EI algorithm are shown as red circles. The number of correctly predicted ground states (out of the total
possible of 26) is given in text under the true GSL. The lower plot in each subplot quantifies the EI versus
Al concentration as a dark green full line. It is the largest point of this line, marked with an upside down
red triangle, which is the global max EI, and hence where the next structure is selected for addition to the
design. Note that the lower part of each subplot in the right(left) column is measured on the right(left) side
of the figure. All ordinate values are in meV’s/atom.

3.3. Comparing data acquisition policies for learning the ground state line

The following results are all based on the Bayesian linear regression on the CE as a
surrogate and can change if using di↵erent surrogates. In Fig. 3 we compare the GSLE in
Eq. (27) of di↵erent structure acquisition strategies, including Eq. (26) for various values of
�, with the objective of learning the fcc NiAl and TiAl GSLs when starting from a (small)
initial data pool of six structures spread across the concentration range as evenly as possible.

To better represent the total temporal cost of the various methods we do not plot against
the total number of structures added to the design, but rather, we plot against the total
expected temporal cost, which, for DFT, is proportional to the number of atoms in the con-
figurational unit cell cubed. Although we are not using DFT, but rather an EAM relaxation
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Figure 1: (Color) For TiAl. Six di↵erent stages, shown as six separate subplots arranged in two columns
and three rows, during the Bayesian global optimization algorithm for learning the true ground state line
(GSL) with an initial data pool of four structures. The iteration number of the algorithm is shown in the
top right of each subplot. E.g., the top left subplot shows the algorithm’s behavior on the initial data set
(“iteration 0”). Each subplot has two parts. The upper part shows, via a shaded blue area (for positive
ordinate values), the error measured as the vertical distance between the GSL of the current seen structures
(red dashed line at negative ordinate values) and the true GSL (blue full line at negative ordinate values)
versus Al concentration. The dashed black line in all subplots is this error between the initial GSL (iteration
0) and the true GSL. The GSLE (Eq. (27)) is given as the text under this line. The true ground states
are shown as blue upside-down triangles and the ground states which are correctly predicted by the global
EI algorithm are shown as red circles. The number of correctly predicted ground states (out of the total
possible of 26) is given in text under the true GSL. The lower plot in each subplot quantifies the EI versus
Al concentration as a dark green full line. It is the largest point of this line, marked with an upside down
red triangle, which is the global max EI, and hence where the next structure is selected for addition to the
design. Note that the lower part of each subplot in the right(left) column is measured on the right(left) side
of the figure. All ordinate values are in meV’s/atom.

3.3. Comparing data acquisition policies for learning the ground state line

The following results are all based on the Bayesian linear regression on the CE as a
surrogate and can change if using di↵erent surrogates. In Fig. 3 we compare the GSLE in
Eq. (27) of di↵erent structure acquisition strategies, including Eq. (26) for various values of
�, with the objective of learning the fcc NiAl and TiAl GSLs when starting from a (small)
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0) and the true GSL. The GSLE (Eq. (27)) is given as the text under this line. The true ground states
are shown as blue upside-down triangles and the ground states which are correctly predicted by the global
EI algorithm are shown as red circles. The number of correctly predicted ground states (out of the total
possible of 26) is given in text under the true GSL. The lower plot in each subplot quantifies the EI versus
Al concentration as a dark green full line. It is the largest point of this line, marked with an upside down
red triangle, which is the global max EI, and hence where the next structure is selected for addition to the
design. Note that the lower part of each subplot in the right(left) column is measured on the right(left) side
of the figure. All ordinate values are in meV’s/atom.
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�, with the objective of learning the fcc NiAl and TiAl GSLs when starting from a (small)
initial data pool of six structures spread across the concentration range as evenly as possible.

To better represent the total temporal cost of the various methods we do not plot against
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Figure 4: (Color) (a) the logarithm of the number of symmetrically inequivalent structures Nstr versus the
number of atoms in their configurational unit cells Nat, for the fcc binary alloy lattices. (b) the number of
ground states Ngr versus Nat for fcc TiAl. (c) the fraction Ngr/Nstr, in per cents, of ground state structures,
out of the total number of structures in (a) plotted on a logarithmic scale, versus Nat (black dashed line is
a guide to the eye). All plots share the same abscissa label.

objective than learning the ground state line. Achieving global accuracy means that we
are also demanding good emulating capabilities of large energy structures. However, in
order to determine the ground state line, we need not focus on high-accuracy predictions of
high-energy structures. We see that the method does eventually achieve a low error.

Finally in this comparison, consider the thermodynamic EI cost-e�cient method A
EI�

.
Excitingly, this method achieves the lowest overall error of all methods simultaneously at a
relatively low temporal cost. Moreover, in the case of TiAl, the thermodynamic EI learns
the true ground state line for � = 1. The reason is the mix between exploration (choos-
ing large-predictive-variance structures) and exploitation (choosing lowest-predictive-mean
structures).

We now address the cost-accuracy trade-o↵ by considering the performance of the A
EI�

strategy defined in Eq. (26) for various values of �. First, consider � = 0 which should yield
a result very similar to the A

sml

. We see that this is indeed the case. Small discrepancies
are due to the way ties of structure sizes are dealt with. Next, interestingly, we find that
by changing �, the rates in error reductions change dramatically. Between NiAl and TiAl,
it is not the same value of � which achieves the lowest overall error. Notice that, by mixing
thermodynamic EI with the cost perspective we obtain lower error than A

sml

. We find that,
with our surrogate model, structure pools, and alloy materials, a value of � somewhere
around, or less than, 0.5 seems to globally balance well the cost-accuracy trade-o↵.

3.3.1. Multi-objective EI-cost trade-o↵ and the associated Pareto front
As has been previously mentioned, the structure acquisition strategy A

EI�
, Eq. (26), is

a multi-objective optimization task with an associated Pareto frontier. Each point on this
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Big cell simulations have more structures 
and cost more to simulate…

Importantly, assume that the candidate pool is generally attainable with minimal compu-
tational e↵orts, which is most typically the case.

Algorithm 1 outlines the EI sequential data acquisition policy for the thermodynamic po-
tential. The policy sequentially selects the simulations that maximize the EI. The iterations
stop when either the maximum EI falls below a specific threshold ✏ > 0 or the simulation
budget has been exhausted. At any given iteration of the algorithm, the best estimate
of the thermodynamic potential, at some !, is given by the current observed minimum-
thermodynamic-potential structure at !. In line 8 of Algorithm 1, the expensive computer

Algorithm 1: EI structure acquisition strategy for learning the thermodynamic po-
tential
Require: D

N

0

(an initial pool of N
0

observed �-!-G triples), N
max

(maximum
number of observations that can be a↵orded), ✏ (EI tolerance), S

N

pool

(large
pool of �-! pairs to select simulations from).

1 N  N

0

2 D
N

 D
N

0

3 repeat

4 Find:
�

�

(N+1)

,!

(N+1)

�

= argmax
(

˜

�,!̃)2SN
pool

EI(�̃, !̃)

5 if EI
�

�

(N+1)

,!

(N+1)

�

< ✏ then

6 Break loop
7 end

8 G

(N+1)  G

�

�

(N+1)

,!

(N+1)

�

9 D
N+1

 D
N

[
��

�

(N+1)

,!

(N+1)

, G

(N+1)

� 

10 N  N + 1
11 until N >= Nmax;

code is run on the newly selected configuration �

(N+1).

2.4.2. Dealing with structures of varying cost
Let the cost of evaluating G(�̃, !̃) be C(�̃, !̃), here C(�̃,!) is the number of atoms in the

configurational unit cell cubed. Obviously, if we had to choose among two structures with
the same cost, we would pick the one with the maximum EI. Similarly, if we had to choose
among two structures with the same EI, we would pick the one with the minimum cost.
Therefore, the information acquisition problem must balance between the two, potentially,
competing objectives of maximizing EI and minimizing cost. This multi-objective decision
problem induces a Pareto front of optimal choices. An optimal information acquisition policy
should only select for simulation optimal structures. To this end, we introduce a modified
EI policy, selecting the structure that maximizes:

EI
�

(�̃,!) ⌘ �EI(�̃, !̃)� (1� �)C(�̃, !̃), , (26)
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Figure 3: (Color) Comparison of four di↵erent structure acquisition strategies when learning the true ground
state line (GSL) for both the (a) NiAl and the (b) TiAl system. The abscissa shows the total number of
observations in the design of the computer experiment and the ordinate reports the normed di↵erence in
percents between the GSL constructed from the observations on the abscissa and the true GSL, called GSLE
(defined in Eq. (27)). The “random” graph (blue stars) has error bars from 10 di↵erent seeds of the random
number generator for picking structures at random.

structure at random.
Based on these arguments we then expect A

sml

to perform relatively well since it always
chooses the smallest structures of which the ratio of ground states is higher. In Fig. 3 we
see that this is also largely the case. Notice also that, since it selects the smallest structures
first, it never makes it far on the abscissa because the cost is kept at its lowest. The reason
why a zero error is not achieved with this strategy is because the GSL is not only made up of
smaller structures as is evident from Fig. 4(c). Therefore, A

sml

would only find all the true
ground state structures by going through the entire pool of more than 34,000 structures.
Consider next A

us

. This method aims for global accuracy of the surrogate to fit the true
EAM energy surface which, in light of a data budget, can and often will be a di↵erent
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Importantly, assume that the candidate pool is generally attainable with minimal compu-
tational e↵orts, which is most typically the case.

Algorithm 1 outlines the EI sequential data acquisition policy for the thermodynamic po-
tential. The policy sequentially selects the simulations that maximize the EI. The iterations
stop when either the maximum EI falls below a specific threshold ✏ > 0 or the simulation
budget has been exhausted. At any given iteration of the algorithm, the best estimate
of the thermodynamic potential, at some !, is given by the current observed minimum-
thermodynamic-potential structure at !. In line 8 of Algorithm 1, the expensive computer

Algorithm 1: EI structure acquisition strategy for learning the thermodynamic po-
tential
Require: D

N

0

(an initial pool of N
0

observed �-!-G triples), N
max

(maximum
number of observations that can be a↵orded), ✏ (EI tolerance), S

N

pool

(large
pool of �-! pairs to select simulations from).
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�
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�
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11 until N >= Nmax;

code is run on the newly selected configuration �

(N+1).

2.4.2. Dealing with structures of varying cost
Let the cost of evaluating G(�̃, !̃) be C(�̃, !̃), here C(�̃,!) is the number of atoms in the

configurational unit cell cubed. Obviously, if we had to choose among two structures with
the same cost, we would pick the one with the maximum EI. Similarly, if we had to choose
among two structures with the same EI, we would pick the one with the minimum cost.
Therefore, the information acquisition problem must balance between the two, potentially,
competing objectives of maximizing EI and minimizing cost. This multi-objective decision
problem induces a Pareto front of optimal choices. An optimal information acquisition policy
should only select for simulation optimal structures. To this end, we introduce a modified
EI policy, selecting the structure that maximizes:

EI
�

(�̃,!) ⌘ �EI(�̃, !̃)� (1� �)C(�̃, !̃), , (26)
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Open Questions
• Can you find information acquisition functions that 

are good for: 

• uncertainty propagation 

• model calibration 

• Yes, if you can pose these problems as 
optimization problems? Possible, but another talk.
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Thank you!
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