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Level Set Representation

S.Osher and J.Sethian
Fronts propagating with curvature-dependent speed . . . .
J. Comp. Phys. 79(1988), 12–49.

Piecewise constant function v defined through thresholding a
continuous level set function u. Let

−∞ = c0 < c1 < · · · < cK−1 < cK =∞.

v(x) =
K∑

k=1

vk I{ck−1<u≤ck}(x); v = F (u).

F : X 7→ Z is the level-set map., X cts fns. Z piecewise cts fns.
(Andrew Stuart) http://homepages.warwick.ac.uk/∼masdr Bayesian Inversion 4 / 31



Level Set Inversion

F. Santosa
A level-set approach for inverse problems . . .
ESAIM 1(96), 17–33.

G : Z → RJ and η ∈ RJ a realization of an observational noise.

Inverse Problem

Find v ∈ Z , given y ∈ RJ satisfying y = G(v) + η.

Prior Knowledge
v is piecewise constant taking a finite set of prescribed values.
Interfaces unknown. Write v = F (u) and view u as the unknown.

Model-Data Misfit

The model-data misfit is Φ(u; y) = 1
2

∣∣∣Γ−1/2(y − G ◦ F (u)
)∣∣∣2.
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Example 1: Image Reconstruction

H.W. Engl, M. Hanke and A. Neubauer
Regularization of Inverse Problems
Kluwer(1994)

Forward Problem

Define K : Z → RJ by (Kv)j = v(xj), xj ∈ D ⊂ Rd . Given v ∈ Z

y = Kv .

Let η ∈ RJ be a realization of an observational noise.

Inverse Problem

Given prior information v = F (u), u ∈ X and y ∈ RJ , find v :

y = Kv + η.
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Example 2: Groundwater Flow
M. Dashti and A.M. Stuart
The Bayesian approach to inverse problems.
Handbook of Uncertainty Quantification
Editors: R. Ghanem, D.Higdon and H. Owhadi, Springer, 2017.
arXiv:1302.6989

Forward Problem: Darcy Flow

Let X+ := {v ∈ Z : essinfx∈Dv > 0}. Given κ ∈ X+, find y := G(κ) ∈ RJ

where yj = `j(p),V := H1
0 (D), `j ∈ V ∗, j = 1, . . . , J and

−∇ · κ∇p = f in D,
p = 0 in ∂D..

Let η ∈ RJ be a realization of an observational noise.

Inverse Problem

Given prior information κ = F (u), u ∈ X and y ∈ RJ , find κ :

y = G(κ) + η.

(Andrew Stuart) http://homepages.warwick.ac.uk/∼masdr Bayesian Inversion 7 / 31



Example 3: Electrical Impedance Tomography
M. Dunlop and A.M. Stuart
Bayesian formulation of EIT.
arXiv:1509.03136
Inverse Problems and Imaging, Submitted, 2015.

Apply currents I` on e`, ` = 1, . . . ,L.
Induces voltages Θ` on e`, ` = 1, . . . ,L.
We have an Ohm’s law Θ = R(σ)I.
σ is conductivity of the interior.

D

el
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Example 3: Electrical Impedance Tomography

Forward Problem: Steady Maxwell Equations

Given σ ∈ X+, find (θ,Θ) ∈ H1(D)× RL :

−∇ · σ∇θ = 0 in D, σ
∂θ

∂ν
= 0 on ∂D\ ∪` e`,∫

e`
σ
∂θ

∂ν
dS = I`, and θ + z`σ

∂θ

∂ν
= Θ` on e`, ` = 1, · · · ,L.

Let η ∈ RL be a realization of an observational noise.

Invere Problem (Ohm’s Law)

Given prior information σ = F (u), u ∈ X and currents I and y ∈ RL,
find σ :

y = R(σ)I + η.
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Tikhonov Regularization

G : Z → RJ and η ∈ RJ a realization of an observational noise.

Inverse Problem

Find u ∈ X , given y ∈ RJ satisfying y = G ◦ F (u) + η.

Model-Data Misfit

The model-data misfit is Φ(u; y) = 1
2

∣∣∣Γ−1/2(y − G ◦ F (u)
)∣∣∣2.

Tikhonov Regularization
Minimize, for some E compactly embedded into X ,

I(u; y) := Φ(u; y) +
1
2
‖u‖2E .
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Issues

Issues:
F is discontinuous.
How to impose length scales via regularization?
How to choose amplitude scales ck in F?

Plan for talk:
Explain these issues in the classical setting.
Show how the Bayesian reformulation addresses them all.
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Discontinuity of Level Set Map

F (·) is continuous at u F (·) is discontinuous at u

v = F (u) := v+ I{u≥0}(x) + v− I{u<0}(x).

Causes problems in classical level set inversion.
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Length-Scale Matters

Figure demonstrates role of length-scale in level-set function.
Classical Tikhonov-Phillips regularization does not allow for direct
control of the length-scale.

New ideas needed.
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Amplitude Matters

Y. Lu
Probabilistic Analysis of Interface Problems
PhD Thesis (2016), Warwick University

Consider case of K = 2, c1 = 0.
For contradiction assume u? is a minimizer of I(u; y).

Now define the sequence uε = εu?. Then if 0 < ε < 1,

Φ(uε; y) = Φ(u?; y), ‖uε‖E = ε‖u?‖E ⇒ I(uε; y) < I(u?; y).

Hence I(uε; y) is an infimizing sequence. But uε → 0 and
I(0; y) > I(uε; y) for ε� 1.
Thus infimum cannot be attained.
This issue caused by thresholding at 0. But idea generalizes.

Choice of threshold matters.
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Informal Approach

The Idea: Words
Problem is under-determined; data is noisy. Probability delivers
missing information and accounts for observational noise.

The Idea: Picture
G = G ◦ F . Find u from y = G(u) + η.
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Physicists Approach

The Idea: Bayes’ Formula

P(u|y) ∝ P(y |u)P(u),

posterior ∝ likelihood× prior.

The Idea: Annealing

P(u) = N(0,C)

‖ · ‖2E = 〈·,C−1·〉

I(u; y) = Φ(u; y) +
1
2
‖u‖2E .

P(u|y) ∝ exp
(
−I(u; y)

)
.
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Rigorous Approach
M. Iglesias, Y. Lu and A. M . Stuart
A level-set approach to Bayesian geometric inverse problems.
arXiv:1504.00313

M. Iglesias
A regularizing iterative ensemble Kalman method for PDE constrained inverse problems.
arXiv:1505.03876

L2
ν(X ; S) = {f : X → S : Eν‖f (u)‖2S <∞}.

Theorem (Iglesias, Lu and S)
Let µ0(du) = P(du) and µy (du) = P(du|y). Assume that u ∈ X µ0−a.s.
Then for Examples 1–3 (and more) µy � µ0 and y 7→ µy (du) is
Lipschitz in the Hellinger metric. Furthermore, if S is a separable
Banach space and f ∈ L2

µ0
(X ; S), then∥∥Eµy1 f (u)− Eµ

y2 f (u)
∥∥

S ≤ C|y1 − y2|.

Key idea in proof is that F : X → Z is continuous µ0− a.s.
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Whittle-Matern Priors

c(x , y) = σ2 1
2ν−1Γ(ν)

(τ |x − y |)νKν(τ |x − y |).

ν controls smoothness – draws from Gaussian fields with this
covariance have ν fractional Sobolev and Hölder derivatives.
τ is an inverse length-scale.
σ is an amplitude scale.

CWM(σ,τ) ∝ σ2τ2ν(τ2I −4)−ν−
d
2 .
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Example 2: Groundwater Flow
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Figure: (Row 1, τ = 15) Logarithm of the true hydraulic conductivity. (Row 2
τ = 10,30,50,70,90) samples of F (u). (Row 3) F (E(u)). (Row 4) E(F (u).
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Hierarchical Whittle-Matern Priors (The Problem)

Prior:
P(u, τ) = P(u|τ)P(τ).

P(u|τ) = N(0,CWM(σ,τ)).

Recall CWM(σ,τ) ∝ σ2τ2ν(τ2I −4)−ν−
d
2 .

Theorem
For fixed σ the family of measures N(0,CWM(σ,·)) are mutually singular.

Algorithms which attempt to move between singular measures perform
badly under mesh refinement (since they fail completely in the fully
resolved limit).
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Hierarchical Whittle-Matern Priors (The Solution)
M. Dunlop, M. Iglesias and A. M . Stuart
Hierarchical Bayesian Level Set Inversion
arXiv:1601.03605

Hence choose σ = τ−ν and define: Cτ ∝ (τ2I −4)−ν−
d
2 . Prior:

P(u, τ) = P(u|τ)P(τ).

P(u|τ) = N(0,Cτ ).

Theorem
The family of measures N(0,Cτ ) are mutually equivalent.

Suggests need to scale thresholds in F by τ. Let

−∞ = c0 < c1 < · · · < cK−1 < cK =∞.

v(x) =
K∑

k=1

vk I{ck−1<uτν≤ck}(x); v = F (u, τ).
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Hierarchical Posterior

Prior

P(u, τ) = N(0,Cτ )P(τ),

Cτ ∝ (τ2I −4)−ν−
d
2 .

Model-Data Misfit

The model-data misfit is Φ(u, τ ; y) = 1
2

∣∣∣Γ−1/2(y − G ◦ F (u, τ)
)∣∣∣2.

Likelihood P(y |u, τ) ∝ exp
(
−Φ(u, τ ; y)

)
.

Posterior

I(u, τ ; y) = Φ(u, τ ; y) +
1
2
‖C−

1
2

τ u‖2 − logP(τ),

P(u, τ |y) ∝ exp
(
−I(u, τ ; y)

)
.

Same well-posedness theory as in non-hierarchical case.(Andrew Stuart) http://homepages.warwick.ac.uk/∼masdr Bayesian Inversion 25 / 31



MCMC

We implement a Metropolis-within-Gibbs algorithm to generate a
posterior-invariant Markov chain (uk , τk ):

Propose vk+1 from a P(u|τk )−reversible kernel.
uk+1 = vk+1 w.p. 1 ∧ exp(Φ(uk , τk )− Φ(vk+1, τk )),
uk+1 = uk otherwise.
Propose tk+1 from a P(τ)−reversible kernel.
τk+1 = tk+1 w.p. 1 ∧ exp(Φ(uk+1, τk )− Φ(uk+1, tk+1))w(τk , tk+1),
τk+1 = τk otherwise.

Here w(τ, t) is density of N(0,Ct ) with respect to N(0,Cτ ).
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Example 2: Groundwater Flow
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Figure: (Row 1, τ = 15) Logarithm of the true hydraulic conductivity (middle,
top). (Row 2 τ = 10,30,50,70,90) samples of F (u, τ). (Row 3)
F (E(u),E(τ)). (Row 4) E(F (u, τ)).
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Summary
Last 5 years development of a theoretical and computational framework
for infinite dimensional Bayesian inversion with wide applicability:

1 Framework allows for noisy data and uncertain prior information.
2 Probabilistic well-posedness.
3 Theory clearly delineates (and links) analysis and probability.
4 Theory leads to new algorithms (defined on Banach space).
5 Grid-independent convergence rates for MCMC.

The methodology has been extended to solve interface problems. This is
achieved via the level set representation.

1 Level set method becomes well-posed in this setting.
2 Discontinuity in level set map is a probability zero event.
3 Hierarchical choice of length-scale improves performance.
4 Amplitude scale is linked to length-scale via measure equivalence.
5 Algorithms which reflect this link are mesh-invariant.

Potential for many future developments for both applications and theory:
1 Applications: subsurface imaging, medical imaging.
2 Theory: inhomogenous length-scales, new hierarchies.
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