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Interconnected decisions

Traffic decision makers:

Users
Fleet managers
Infrastructure planners

cf., Ritter: “Traffic decision support”, Thursday AM

Satisfaction with decision depends on decisions of others.

Jeff S. Shamma Game Theoretic Learning and Social Influence ∼ 2/42



Interconnected decisions

Traffic decision makers:

Users
Fleet managers
Infrastructure planners

cf., Ritter: “Traffic decision support”, Thursday AM

Satisfaction with decision depends on decisions of others.

Jeff S. Shamma Game Theoretic Learning and Social Influence ∼ 2/42



Illustrations

Commuting:

Decision = Path
Satisfaction depends on paths of others

Planning:

Decision = Infrastructure allocation
Satisfaction depends on utilization
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Viewpoint: Game theory

“... the study of mathematical models of conflict and cooperation
between intelligent rational decision-makers”

Myerson (1991), Game Theory.

Extensive literature...

Game elements:

Players/Agents/Actors
Actions/Strategies/Choices
Preferences over joint choices
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Outline

Game models

Influence models
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Making decisions vs modeling decisions

Single decision maker:

Choice set: x ∈ X
Utility function: U(x)

x = arg max
x′∈X

U(x ′)

Linear/Convex/Semidefinite/Integer/Dynamic...Programming

Good model?

Issues:

Complexity, randomness, incompleteness, framing...
Furthermore...are preferences even consistent with utility function?
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Modeling decisions in games

Elements: Players, choices, and preferences over joint choices:

Ui (x) = Ui (xi , x−i )

Solution concept: What to expect?

Nash Equilibrium

Everyone’s choice is optimal given the choices of others.

Alternatives:

Bounded rationality models
Hannan consistency, correlated equilibrium, ...
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Illustration: Congestion games (discrete)

Setup:

Players: 1, 2, ..., n
Set of resources: R = {r1, ..., rm} (roads)
Action sets: Ai ⊂ 2R (paths)
Joint action: (a1, a2, ..., an)

Cost: (vs Utility)

Resource level:
cr (a) = φr (σr (a)︸ ︷︷ ︸

#users

)

User level:
Ci (ai , a−i ) =

∑
r∈ai

cr (a)

Nash equilibrium: a∗ = (a∗1 , ..., a
∗
n)

Ci (a
∗
i , a
∗
−i ) ≤ Ci (a

′
i , a
∗
−i )
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Social influence: Equilibrium shaping

Claim: For such congestion games, NE minimizes

P(a) =
∑
r

σr (a)∑
k=0

φr (k)

Overall congestion:

G (a) =
∑
r

φr (σr (a))︸ ︷︷ ︸
cost

· σr (a)︸ ︷︷ ︸
# users

Claim: Modified resource cost

φr (σr (a)) + (σr (a)− 1) ·
(
φr (σr (a))− φr (σr (a)− 1)

)
︸ ︷︷ ︸

imposition toll

results in NE that minimizes overall congestion.
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NE & Price of X

Discussion:

Model presumes NE as outcome
How does NE compare to social planner optimal measured by G(·)?

Price-of-Anarchy (PoA):

PoA =
maxa∈NE G (a)

mina G (a)

pessimistic ratio of performance at NE vs optimal performance

Price-of-Stability (PoS):

PoS =
mina∈NE G (a)

mina G (a)

optimistic ratio of performacne at NE vs optimal performance
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Illustration: Equal cost sharing

Setup:

Equally shared cost of resource:

α

# users

(vs increasing congestion)
High road: n − ε
Low road: 1

S D

High road

Low road

NE:

All use High road at individual cost n−ε
n
< 1

All use Low road at individual cost 1
n

PoX: G (a) is sum of individual costs

PoA ≈ n & PoS = 1
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Illustration: Equal cost sharing, cont.

Setup:

Equally shared cost as before
User specific starting points

NE:

All use private resource at individual cost 1
All use shared resource at individual cost k

n

PoX: G (a) is sum of individual costs

PoA = n/k & PoS = 1

Balcan, Blum, & Mansour (2013), “Circumventing the Price of Anarchy: Leading Dynamics to Good Behavior”
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PoX analysis

Extensions: Broader solution concepts, various families of games,
price-of-uncertainty, price-of-byzantine, price-of- ...

(λ, µ)-smoothness: For any two action profiles, a∗ & a′∑
i

Ci (a
∗
i , a
′
−i ) ≤ λ

∑
i

Ci (a
∗) + µ

∑
i

C (a′)

Theorem: Under (λ, µ)-smoothness,

PoA ≤ λ

1− µ

Think of a′ as NE and a∗ as central optimum

Roughgarden (2009), “Intrinsic robustness of the price of anarchy”
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Outline/Recap

Game models

Setup & equilibrium
Price-of-X

Influence models

Equilibrium shaping

Lingering issues:
Uncertain landscapes
Equilibrium analysis
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Equilibrium shaping & uncertain landscapes

Marginal contribution utility:

Assume global objetive, G(·)
Define “null” action ∅
Set

U(ai , a−i ) = G(ai , a−i )− G(∅, a−i )

Claim: PoS = 1

Recall:

φr (σr (a)) +

new term︷︸︸︷
β (σr (a)− 1) ·

(
φr (σr (a))− φr (σr (a)− 1)

)
︸ ︷︷ ︸

imposition toll:τ(a)

Uncertain landscape: What if users have different β’s?
many more sources of uncertainty...
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Equilibrium shaping under uncertainty

φr (σr (a)) +

new term︷︸︸︷
β (σr (a)− 1) ·

(
φr (σr (a))− φr (σr (a)− 1)

)
︸ ︷︷ ︸

imposition toll:τ(a)

Theorem: As κ→∞

κ · (φr (σr (a)) + τ(a))

leads to PoA→ 1

Extensions: Optimal bounded tolls in special case of parallel links &
affine costs.

Brown & Marden (2015), “Optimal mechanisms for robust coordination in congestion games”
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Social influence: Mechanism design

Private info
D

=⇒ Social decision

vs

Private info
S

=⇒ Messages
M

=⇒ Social decision

A “mechanism” M is a rule from reports to decisions.

Mechanism M induces a game in reporting strategies.

Seek to implement D as solution of game, i.e.,

D =M◦ S?
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Standard illustration: Sealed bid/second price auctions

Private info
D

=⇒ Social decision

vs

Private info
S

=⇒ Messages
M

=⇒ Social decision

Planner objective: Assign item to highest private valuation

Agent objective: Item value minus payment

Messages: Bids

Social decision:

Item to high bidder
Payment from high bidder = Second highest bid

Claim: Truthful bidding is a NE.

Special case of broad discussion...
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Illustration: Sequential resource allocation

Private info
D

=⇒ Social decision

vs

Private info
S

=⇒ Messages
M

=⇒ Social decision

Private info is revealed sequentially

Agents do not know own valuations in advance

Decisions based on sequential messages
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Example

Two users: {1, 2}
User’s need for resource is low or high: θi ∈ {L,H}

Planner allocates resource a ∈ {1, 2}
Planner objective: Fair allocation with User 2 priority

Dynamics: Coupled state transitions according to 4× 4 matrices over set

{(L, L), (H, L), (L,H), (H,H)}
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Sequential resource allocation, cont

Private info
D

=⇒ Social decision

vs

Private info
S

=⇒ Messages
M

=⇒ Social decision

Planner objective: Induce truthful reporting

Agent objective: Future discounted resource access minus payments

∞∑
t=0

δt
(
vi (π(r t1 , ..., r

t
n), θti )− qti (r t1 , ..., r

t
n)
)

Messages: High/Low resource need

Theorem: LP computations so that truthful reporting is a NE.
Kotsalis & Shamma (2013): “Dynamic mechanism design in correlated environments”
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Example, cont

Optimal efficient policy: Favor Agent 2

π(L, L) = 1/2, π(H, L) = 1, π(L,H) = 2, π(H,H) = 2

Agent 2 can monopolize by misreporting

Payment rule:
q1(·, ·) = 0

q2(L, L) < 0, q2(L,H) < 0, q2(H, L) < 0

q2(H,H) > 0

Ex ante payment from agent 2 = 0
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Critique

Lingering issues:
Uncertain landscapes
Equilibrium analysis

Tuned for behavior only at specific Nash equilibrium

Presumes agents solve coordinated (dynamic) optimization

Presumes knowledge of full system dynamics available to all

Neglects model mismatch
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Outline/Recap

Game models

Setup & equilibrium
Price-of-X

Influence models

Equilibrium shaping
Mechanism design

Lingering issues:
Uncertain landscapes
Equilibrium analysis
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Learning/evolutionary games

Shift of focus:

Away from equilibrium—Nash equilibrium

Towards how players might arrive to solution—i.e., dynamics

“The attainment of equilibrium requires a disequilibrium process.”

Arrow, 1987.

“The explanatory significance of the equilibrium concept depends
on the underlying dynamics.”

Skyrms, 1992.
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Literature
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Stability & multi-agent learning

Caution! Single agent learning 6= Multiagent learning

Sato, Akiyama, & Farmer, “Chaos in a simple two-person game”, PNAS, 2002.
Piliouras & JSS, “Optimization despite chaos: Convex relaxations to complete limit sets via Poincare recurrence”, SODA, 2014.
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Best reply dynamics (with inertia)

ai (t) ∈

{
Bi (a−i (t − 1)) w.p. 0 < ρ < 1

ai (t − 1) w.p. 1− ρ

Features:

Pure NE is a stationary point

Based on greedy response to myopic forecast:

aguess
−i (t) = a−i (t − 1)?

Need not converge to NE

Theorem

For finite-improvement-property games under best reply with inertia,
player strategies converge to NE .

(Includes anonymous congestion games...)
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Fictitious play

Each player:

Maintain empirical frequencies (histograms) of opposing actions
Forecasts (incorrectly) that others play independently according to
observed empirical frequencies
Selects an action that maximizes expected payoff

Compare to best reply:

aguess
−i (t) = a−i (t − 1)?

vs

aguess
−i (t) ∼ q−i (t) ∈ ∆(A−i )
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Fictitious play: Convergence results

Theorem

For zero-sum games (1951), 2× 2 games (1961), potential games
(1996), and 2× N games (2003) under fictitious play , player empirical
frequencies converge to NE .

Theorem

For Shapley “fashion game” (1964), Jordan anti-coordination game
(1993), Foster & Young merry-go-round game (1998) under fictitious
play , player empirical frequencies DO NOT converge to NE .

Detail: Discussion extended to mixed/randomized NE
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FP simulations
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Rock-Paper-Scissors
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FP simulations

Shapley “Fashion Game”
R G B

R 0, 1 0, 0 1, 0
G 1, 0 0, 1 0, 0
B 0, 0 1, 0 0, 1
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FP & large games

FP bookkeeping

Observe actions of all players

Construct probability distribution of all possible opponent
configurations

Prohibitive for large games
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Joint strategy FP

Modification:

Maintain empirical frequencies (histograms) of opposing actions

Forecasts (incorrectly) that others play /////////////////independently according to
observed empirical frequencies

Selects an action that maximizes expected payoff
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JSFP bookkeeping

Virtual payoff vector: The payoffs that could have been obtained

Ui (t) =


ui (1, a−i (t))
ui (2, a−i (t))

...
ui (m, a−i (t))


Time averaged virtual payoff :

Vi (t + 1) = (1− ρ)Vi (t) + ρUi (t)

Stepsize ρ is either constant (fading) or diminishing (averaging)

Equivalent JSFP: At each stage, select best virtual payoff action

Viewpoint: Bookkeeping is oracle based (cf., traffic reports)
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JSFP simulation

Anonymous congestion
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Outline/Recap

Game models

Setup & equilibrium
Price-of-X
Learning/evolutionary games

Influence models

Equilibrium shaping
Mechanism design

Lingering issues:
Uncertain landscapes
Equilibrium analysis
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Social influence: Sparse seeding

Public service advertising
Phase I:

Receptive agents: Follow planner’s advice (e.g., with probability α)
Non-receptive agents: Unilateral best-response dynamics

Phase II: Receptive agents may revert to best-response dynamics

Main results: Desirable bounds on resulting PoA for various settings
(anonymous congestion, shared cost, set coverage...)

Compare: Nash equilibrium vs learning agents

Balcan, Blum, & Mansour (2013), “Circumventing the Price of Anarchy: Leading Dynamics to Good Behavior”
Balcan, Krehbiel, Piliouras, and Shin (2012), “Minimally invasive mechanism design: Distributed covering with carefully chosen
advice”
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Outline/Recap

Game models

Setup & equilibrium
Price-of-X
Learning/evolutionary games

Influence models

Equilibrium shaping
Mechanism design
Dynamic incentives

Lingering issues:
Uncertain landscapes
Equilibrium analysis
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Social influence & feedback control

vs
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Social influence & feedback control

vs

Benefits of feedback (Astrom)

Reliable behavior from unreliable components humans

Mitigate disturbances

Shape dynamic behavior
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Dynamic incentive challenges

Modeling:

Order?
Time-scale?
Heterogeneity?
Non-stationarity?
Resolution?
Social network effects?
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Dynamic incentive challenges

Modeling:

Order?
Time-scale?
Heterogeneity?
Non-stationarity?
Resolution?
Social network effects?

“Thus unless we know quite a lot about the topology of interac-
tion and the agents’ decision-making processes, estimates of the
speed of adjustment could be off by many orders of magnitude.”

Young, “Social dynamics: Theory and applications”, 2001.
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Dynamic incentive challenges

Modeling:

Order?
Time-scale?
Heterogeneity?
Non-stationarity?
Resolution?
Social network effects?

Reinforcement learning vs Trend-based reinforcement learning
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Dynamic incentive challenges

Modeling:

Order?
Time-scale?
Heterogeneity?
Non-stationarity?
Resolution?
Social network effects?

Measurement & actuation
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Recap/Outline/Conclusions

Game models

Setup & equilibrium
Price-of-X
Learning/evolutionary games

Influence models

Equilibrium shaping
Mechanism design
Dynamic incentives

Challenges

Modeling
Measurement & actuation June 2015
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