
Bayesian Analysis of Traffic Flow Data
Workshop II: Traffic Estimation @ IPAM’s Traffic Program

Vadim Sokolov Nicholas Polson

Argonne National Laboratory and University of Chicago

October 13, 2015

1 / 94



Overview

• Motivation

• LWR Model. How do we model traffic jams? Flux Function or Fundamental
Diagram State-Space Representation

• Sequential Bayesian Learning Particle Filtering and Learning Methods
On-line Tracking of Traffic Flow Densities
Bayesian methods are flexible and fast

• Empirical Results: I-55 in Chicago

• Statistical Learning Models

• Sparseness and Robustness

• Liner and Non-linear

2 / 94



Motivation (Data)

• Speed plots for 1 year

• 48 Wednesdays; 52 minus holidays and missing data days

• Measurements taken every 5 minutes (each plot has up to 14967
measurements)

• Speed is a mixture. There are surprises!

3 / 94



Non-recurrent traffic conditions
Weather

• Impact of light snow on travel times

• I-55 near Chicago on December 11, 2013

• 1.8 inches of snow

(a) North Bound (b) South Bound

4 / 94



Non-recurrent traffic conditions
Special Events

Impact of special events on I-55 north bound travel

(a) NATO Summit on (b) NATO Summit on
Sunday May 20, 2012 Monday May 21, 2012

(c) New York Giants at Bears on (d) Baltimore Ravens at Bears on
Thursday October 10, 2013 Sunday November 10, 2013

5 / 94



Motivation

Real Time Traffic Management

• Route guidance

• Ramp metering

• Adaptive traffic signals

• Speed harmonization

• Incident management

• Estimate current traffic
conditions

¿¿

6 / 94



Motivation

Dynamic traffic and demand management (need 15-60 minute forecasts)

7 / 94



Data
• Loop detector (presence sensor)

• Speed, occupancy and flow, averaged over 5 minutes

• 1500 highway location around Chicago area

• Archived at Argonne since 2008

• Approx 50Mb per sensor (75Gb total)

• Missing/inaccurate measurements is an issue

8 / 94



System Health

0 1 2 3 4 5 20

Number of Malfunction Sensors

Pe
rc

en
t o

f M
al

fu
nc

tio
n 

Se
ns

or
s

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

9 / 94



Single Lane Loop Detector
I-55 NB Google Street View

10 / 94



Macroscopic Traffic Flow

Free flow regime (no interactions between cars)

Congestion at bottlenecks

11 / 94



Fundamental Characteristics

• q(x , t): flow [vehicles per hour]

• ρ(x , t): density [vehicles per mile]

• v(x , t): speed [miles per hour]

q(x , t) = v(x , t)× ρ(x , t)

[vehicles per hour] = [miles per hour] × [vehicles per mile]

12 / 94



Discontinuities

• Macroscopic parameters (flow, density, speed) might have
discontinuities

• Even when initial and boundary conditions are smooth

• Physical interpretation: traffic queue

• Shock wave (downstram density is different from upstream density)

13 / 94



LWR Traffic Flow Model
Lighthill-Whitham-Richards

∂ρ(x , t)

∂t
+

∂q(x , t)

∂x
= 0

Relation between density and flow (fundamental diagram)

q(x , t) = q∗(ρ(x , t))

Combined with fundamental diagram

∂ρ(x , t)

∂t
+

∂q∗(ρ(x , t), x)

∂x
= 0

• One dimensional conservation law

• Properly models shock wave path

• Homogeneous road segment

• Key postulate: there is relation between flow q and density ρ

14 / 94



Examples

Fundamental diagram (flow-density relation):

Greenshield’s Triangular

Speed-density relation:

Greenshield’s Triangular

15 / 94



Solving the Conservation Law Equation
Godunov Scheme

• Discontinuous solution (finite differences are not applicable)

• Godunov Scheme solves Riemann problem for each 2 consecutive sells

Riemann = Cauchy problem (initial value problem) with initial conditions that have a
single discontinuity

ρ0(x) =

{
ρl , x < 0

ρr , x > 0
(1)

For th Riemann problem the speed of the of the shock wave propagation is given by

w =
q(ρl )− q(ρr )

ρl − ρr

16 / 94



LWR Model Parameters

Fundamental diagram + conservation law

ρc - critical density
qc - critical flow (capacity)
ρjam - maximal possible density

17 / 94



Example: I-55 Chicago

18 / 94



Wave Speed Propagation is a Mixture Distribution
Shock wave propagation speed is a mixture, when calculated using
Godunov scheme

w =
q(ρl )− q(ρr )

ρl − ρr

[
mi

h

]
=

[
veh

h

] [
mi

veh

]
.

Assume ρl ∼ TN(32, 16, 0, 320) and ρr ∼ TN(48, 16, 0, 320)
qc = 1600 veh/h, ρc = 40 veh/mi , and ρjam = 320 veh/mi

19 / 94



Traffic Flow Speed Forecast is a Mixtrue Dsitribution

Theorem: The solution (including numerical) to the LWR model with
stochastic initial conditions is a mixture distribution.

A moment based filters such as Kalman Filter or Extended Kalman Filter
would not capture the mixture.

20 / 94



Problem at Hand
The Parameter Learning and State Estimation Problem

• Goal: given sparse sensor measurements, find the distribution over
traffic state and underlying traffic flow parameters
p(θt , φ|y1, y2, ..., yt); φ = (qc , ρc )

• Parameters of the evolution equation (LWR) are stochastic

• Distribution over state is a mixture

• Can’t use moment based filters (KF, EKF,...)

21 / 94



Data Assimilation
State Space Representation

State space formulation allows to combine knowledge from analytical
model with the one from field measurements, while taking model and
measurement errors into account

22 / 94



State Space Representation

• State vector θt = (ρ1t , . . . , ρnt )

• Boundary conditionals ρ0t and ρ(n+1)t

• Underlying parameters φ = (qc , ρc ) are stochastic

Observation: yt+1 = Hθt+1 + v ; v ∼ N(0,V ) (2)

Evolution: θt+1 = fφ(θt ) +w ; w ∼ N(0,W ) (3)

H : RM → Rk in the measurement model. φ = (qc , ρc , ρmax ).
Parameter priors: qc ∼ N(µq , σ2

c ), ρc = Uniform(ρmin, ρmax )

23 / 94



Particle Parameter Learning

24 / 94



Streaming Data
How do Parameter Distributions change in Time?

Online Dynamic Learning

• Real-time surveillance

• Bayes means sequential
updating of information

• Update posterior density
p(θ,φ | yt) with every
new observation
(t = 1, . . . ,T ) -
“sequential learning” Bayes theorem:

p(θ,φ | y t) ∝ p(yt | θ) p(θ | y t−1)

25 / 94



Particle Filter (Resample-Propagate)
Construct an essential state vector θt+1.

p(θt+1|y t+1) =
∫

p(θt+1|θt , yt+1) dP(θt |y t+1)

∝
∫

p(θt+1|θt , yt+1)︸ ︷︷ ︸
propagate

︷ ︸︸ ︷
p(yt+1|θt )︸ ︷︷ ︸

resample

dP(θt |y t )

Bayes Rule
p(yt+1, θt+1|θt ) = p(yt+1|θt ) p(θt+1|θt , yt+1).

• Given a particle approximation to pN (θt |y t )

pN
(
θt+1|y t+1

)
∝

N

∑
i=1

p
(
yt+1|θ(i)t

)
p
(

θt+1|θ(i)t , yt+1

)
(4)

=
N

∑
i=1

w
(i)
t p

(
θt+1|θ(i)t , yt+1

)
, (5)

where

w
(i)
t =

p
(
yt+1|θ(i)t

)
∑N

i=1 p
(
yt+1|θ(i)t

) .

• Essentially a mixture Kalman filter

26 / 94



Resample – Propagate

−0.5 −0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4 0.5

●●●● ●● ● ● ● ●●● ● ●● ●● ●● ● ●●●●●● ●● ● ●

●●●● ●● ● ● ● ●●● ● ●● ●● ●● ● ●●●●●● ●● ● ●

●● ●● ● ●● ●● ●● ● ●● ●● ● ●●●●● ●● ●●●●● ●

●● ●● ● ●● ●● ●● ● ●● ●● ● ●●●● ● ●● ●●●●● ●

●● ● ●● ●● ●● ●● ●●● ●● ●●● ●●●● ● ●●●●● ●

Posterior at t

Reweights at t+1

Posterior at t+1

Reweights at t+2

Posterior at t+1

27 / 94



Particle Parameter Learning

Given particles (a.k.a. random draws) (θ
(i)
t , φ(i), s

(i)
t ), i = 1, . . . ,N

p(θt |y1:t ) =
1

N

N

∑
i=1

δ
θ(i)

.

• First resample (θ
k(i)
t , φk(i), s

k(i)
t ) with weights proportional to p(yt+1|θk(i)t , φk(i))

and s
k(i)
t = S(s

(i)
t , θ

k(i)
t , yt+1) and then propogate to p(θt+1|y1:t+1) by drawing

θ
(i)
t+1 from p(θt+1|θk(i)t , φk(i), yt+1), i = 1, . . . ,N.

• Next we update the sufficient statistic as

st+1 = S(s
k(i)
t , θ

(i)
t+1, yt+1),

for i = 1, . . . ,N, which represents a deterministic propogation.

• Finally, parameter learning is completed by drawing φ(i) using p(φ|s(i)t+1) for
i = 1, . . . ,N.

28 / 94



Algorithm

These ingredients then define a particle filtering and learning algorithm for the
sequence of joint posterior distributions p(θt , φ|y1:t ):

Step 1. (Resample) Draw an index kt (i) ∼ MultN

(
w

(1)
t , ...,w

(N)
t

)
,

where the weights are given by w
(i)
t ∝ p(yt+1|(θt , φ)(i)), for i = 1, ...,N

Step 2. (Propagate) Draw θ
(i)
t+1 ∼ p

(
θt+1|θkt (i)t , yt+1

)
for i = 1, ...,N.

Step 3. (Update) s
(i)
t+1 = S(s

kt (i)
t , θ

(i)
t+1, yt+1)

Step 4. (Replenish) φ(i) ∼ p(φ|s(i)t+1)

There are a number of efficiency gains from such an approach, e.g. it does not suffer
from degeneracy problems associated with traditional propagate-resample algorithms
when yt+1 is an outliers.

29 / 94



Resample-Propagate Steps (LWR model)

Resample: p(yt+1|θt+1, φ) ∼ N(Ht+1θt+1,Vt)

Propagate: p(θt+1|θt , φ) ∼ N(fφ(θt),Wt).

Therefore, we have distribution

p(yt+1|θt , φ) ∼ N(Ht+1fφ(θt),H
T
t+1WtHt+1 + Vt)

For propagation of θt+1, we use Bayes’ rule

p(θt+1|θt , φ, yt+1) ∼ N(µt+1,Ct+1)

mean and variance follow the Kalman recursion

Forecast: µf = fφ(θt), Cf = Wt+1

Kalman Gain: K = Cf H
T
t+1(Ht+1Cf H

T
t+1 + Vt+1)

−1

Measurement Assimilation: µt+1 = µf +K (yt+1 −Ht+1µf )

Ct+1 = (I −KHt+1)Cf

30 / 94



Typical Morning Peak Period Pattern
February 2009, I-55 NB @ Cicero

4 5 6 7 8 9

10
15

20
25

Friday

Time

4 5 6 7 8 9
5

10
15

20
25

Monday

Time

S
pe

ed
 [m

/s
]

4 5 6 7 8 9

5
10

15
20

25

Tuesday

Time

S
pe

ed
 [m

/s
]

4 5 6 7 8 9

5
10

15
20

25

Wednesday

4 5 6 7 8 9

20
22

24
26

28

Thursday

S
pe

ed
 [m

/s
]

4 5 6 7 8 9
10

15
20

25

Friday

S
pe

ed
 [m

/s
]

31 / 94



Empirical Results I (state estimation)

Mixture at t=890s Mixture at t=910s

With Parameter Learning Without Parameter Learning

32 / 94



Empirical Results II (parameter learning)

Posterior for qc Posterior for ρc

33 / 94



Accident Photos

(a)Accident and (b) Image of the accident
loop detector locations from the roadside camera

34 / 94



Real-time accident modeling

• Identify a drop in capacity (critical flow) due to an accident

• May 9, 2014 a semi-tractor trailer caught fire at 6:40 am on
interstate highway I-55

• The police shut down the southbound lanes

• Will the filter pick up the “rubbernecking” effect on the northbound
lanes?

35 / 94



Model Setup

• Road segment under study is between two sensors: length is 845
meters

• h = 845/4 = 211 meters

• τ = 5 minutes ( satisfies the Courant-Friedrichs-Lewy condition)

• Prior on road capacity: qm ∼ U [1440, 1560] veh/h
• Critical density is fixed at ρm = 0.025 veh/m
• σmeas = 0.2× 10−2 veh/m
• σevolution = 0.1× 10−2 veh/m

36 / 94



Regularization

• To address the problem of model identification

• Use relation between free flow speed, capacity and critical density,
namely vf = qc/ρc to regularize

• vf ≈ 17 m/s

Our particle weights are regularized by

w
(i)
t =

p
(
yt+1|(θt , φ)(i)

)
ϕ(q

(i)
c /ρ

(i)
c , vf , σvf )

∑N
i=1

[
p
(
yt+1|(θt , φ)(i)

)
ϕ(q

(i)
c /ρ

(i)
c , vf , σvf )

] ,

where ϕ is the p.d.f of the normally distributed variable. The prior error
standard deviation was set at σvf = 5 m/s. Choice of both vf and σvf is
based on empirical observations.

37 / 94



Learned Road Capacity

• 15 minutes between traffic flow speed reverts to a normal level and
capacity recovers.

• time it takes the algorithm to learn the capacity

(a) Learned capacity of (b) Measured speed at
the road segment the south loop-detector

38 / 94



Learned Road Capacity

• captures the effect of capacity degradation as a result of the accident

• 95% Bayes credible intervals demonstrate that uncertainty about the
estimate is larger during normal operating mode and lower during
the periods of capacity degradation and recovery.

• slope of the speed curve on an accident day is much steeper than
the slope of the learned capacity curve

• there is some delay associated with the learning process

.

39 / 94



Problems With Flow Models

• Need to know fundamental diagram for each road segment under
study

• Need to deal with data imputations

• Works very well with flow/density measurements, need to tweak for
speed measurements (GPS)

• Assumptions on the shape of fundamental diagram do not always
hold (histeria, arterials)

Image Source: https://www.ocf.berkeley.edu/~argote/research.html

40 / 94

https://www.ocf.berkeley.edu/~argote/research.html


Statistical Learning

Models:

1. Non parametric regression (nearest neighbors)

2. Autoregression (linear)

3. Deep learning (non-linear regression)

Model requirements:

• Robustness (data is noisy)

• Scalability (data sets are large)

• Forecast accuracy (Robustness)

41 / 94



Large Road Graph

• Graph of the roads might
contain millions of vertexes
(road segments)

• Measured data is in Tb

• Need scalable models

42 / 94



Study Area

• 20 loop detector sensors

• 13 miles of I-55 north bound (towards the city)

• downstream is always congested in the morning

• upstream might be uncontested

• used data from 2009

43 / 94



Patterns in flow data

0 2 4 6 8 10 12

Mile Post

T
im

e 
[h

]

2
4

6
8

10
12

14
16

18
20

22

44 / 94



Robustness

Measurement data is noisy with many anomalies.
Potential solutions:

• Smooth data (filter out unnecessary variations and anomalies)

− Iterative Exponential Smoothing
− Median Smoothing
− Trend Filtering

• Use robust loss functions, when possible, i.e. l1 norm or equivalently
Huber’s fit, when computation is an issue.

45 / 94



Iterative Exponential Smoothing

●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

● ●

●

● ●
●

●

● ●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●
● ●

●

●

●

●

●
●

●

●
●

●

● ●

●

0 2 4 6 8 10 12

5
10

15
20

25
30

time

sp
ee

d 
[m

/s
]

xn = (1− β)xn−1 + βxn

where x0 = 0, and β is the smoothing parameter, with 0 < β < 1.

xn = β
n

∑
i=1

(1− β)n−1xi .

• +: Computationally Efficient
• +: Works well for arterials
• - : Does not work work well for processes that quickly change

regimes (highways)
46 / 94



Median Filter

●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

● ●

●

● ●
●

●

● ●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●
● ●

●

●

●

●

●
●

●

●
●

●

● ●

●

0 2 4 6 8 10 12

5
10

15
20

25
30

time

sp
ee

d 
[m

/s
]

• +: Computationally Efficient

• +: Captures quick changes in regimes

• -: Does not perform well on arterials

47 / 94



Trend Filter

●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

● ●

●

● ●
●

●

● ●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●
● ●

●

●

●

●

●
●

●

●
●

●

● ●

●

0 2 4 6 8 10 12

5
10

15
20

25
30

time

sp
ee

d 
[m

/s
]

• +: Computationally Efficient

• +: Captures quick changes in regimes

• +: Accurately captures up/down trend, even short ones

• -: Does not perform well on arterials

• -: Slopes might be underestimated

48 / 94



Autoregression

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

5 10 15 20 25 30

0
10

20
30

yt

y t
+1

Forecast:

x ti = ∑
j∈N(i)

L

∑
l=1

alijx
t−l
j

49 / 94



Autoregression

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●
●●

●●●●●●●●●●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●
●

●
●

●
●

●
● ● ● ● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●●●●●●●●●●●●●●●●●●●

●●
●●

●●
●●●●●●●●●●●●●●

●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ● ● ● ● ● ● ●

●
●

●
●

●
●

●
●

●
●

●
●
●
●
●
●
●
●
●●

●●
●●
●●

●●
●●●

●●●
●●●

●●●
●●●

●●●●
●●●
●●●●

●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●

●
●

●●●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ● ● ● ● ● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●●
●●●●●

●●
●●●●●

●●●●
●●●
●●●●
●●●●●●●●

●●●●●●●
●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●
●
●
●
●
●●

●●●●
●●

●●
●●

●●
●●

●●
●●●

●●●
●●●
●●●●●●●●●●●●

●

●●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ● ● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ● ●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●
●●
●●
●●●
●●●●
●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●
●●
●●
●●
●●
●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ● ● ●●●●●●●
●

●
●

●●●●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●●

●●● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●●
●●●●●●

●●●
●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ● ● ● ● ●
●

●
●

●
●

●
●

●
●

●
●
●
●

●
●

●
●

●
●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●
●

●
●
●
●
●
●●●●●●●●●● ●●●●

●●
●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●
●●
●●
●●
●●
●●●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ● ● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●●
●●●
●●

●●●●●●●●● ● ● ● ● ●●●●
●●

●
●

●
●

●
●●●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●●●●●●●
●

●

●

●

●

●

●

●

●
●

●
● ● ● ● ● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●●●●●●●●●●

●●●●
●●●●
●●●●●●●
● ●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●●●●

●●
●●●●●●●● ● ● ● ● ● ● ● ● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●
●
●●●

●
●

●●● ● ● ● ● ● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●
●
●
●
●
●
●

●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

●
●

●
●
●
●
●
●
●
●
●●

●●
●●

●●
●●
●●
●●●
●●●
●●●●
●●●●●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●
●

●●●●●●●●●●●●●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
● ● ●●

●
●

●

●

●

●

●

●
●

●
●

●●●●●●
●●●

●
●

●
●

●●● ● ● ●
●

●
●

●
●
●
●
●
●
●
●
●
●
●●
●●●●●●●●●●●●●●●●●●

●●
●●
●●●●●●●●●●●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●
●● ● ● ● ● ● ● ● ●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●
●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●
●●
●●●

●●●●●●
●●●●●

●●●●●●●●●●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

● ● ● ● ● ● ● ● ●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●●

●●
●●
●●

●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●
●
●
●
●●●● ● ● ● ● ● ● ● ● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●●
●●●●●●●

●●●●●●●● ●●●●●●●●●●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●
●●
●●●●●

●
●

●●●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●●● ● ● ● ● ● ● ● ● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●●
●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●

●●●●●●
●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●
●●

●●
●●

●●
●●
●●
●●●
●●●●●●●●●●●●●●●●●●●●

●●
●●
●●
●●
●●●
●●●
●●●●●●

●●●●●● ●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●
●●●●●●●●●●●●●●●●●●

●
●●●●●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ● ● ● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●●
●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●

●●
●●

●●●●●●●●●●●●
●

●
●

●
●●●●●●●●●●●● ● ● ● ●

●
●

●
●

●
●
●
●
●
●
●
●
●
●●
●●
●●●
●●●

●●●●
●●●●●

●●●●●
●●●●●

●●●●●
●●●●●●●●

●●●●

●●●
●●●

●●●
●●●●●●●

●●●
●●

●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●
●
●●

●●●●●●●●●●●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

● ● ● ● ● ● ● ● ●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●

●●●
●●●●●●●●●●●●

●
●

●

●

●

●

●
●
●

●
●

●
●

●
●

● ● ● ●
●

●
●

●
●

●
●

●
●
●

●

●

●

●

●
●

●
●●●●●●●●●●●●●●●

●●
●●
●●

●●
●●
●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●
●●●●●●

●●●●●●●●●●●●●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ● ● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●●
●●
●●
●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●
●
●

●
● ● ● ● ● ● ● ● ● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●
●●●●●●
●●●●●●●●●

●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●

●●
●●

●●●●●●●●●●●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ● ● ● ● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●●

●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●

●●●●●●
●●
●●
●●
●●
●●●
●●●●●●●●●●●●●●●●●●●●● ● ● ●●●●●●

●
●
●
●
●
●
●●
●●
●●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●
●
●●

●●
●●●●●●●●●●●

●●
●●
●●
●●
●●
●●●

●●●●●
●●●

●●●
●●●●●●●●●●●●●●●●

●
●●●●●●●● ● ●●●●●●●

●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●

●●
●●
●●
●●

●●●
●●●

●●●
●●●
●●●●
●●●●●●●●●● ●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●
●●●●

●●●
●●●●●●●●●●●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ● ● ● ● ● ● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●
●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●

●●
●●●●●●●●●●

●●●
●

●
●●●●●

●
●

●
●

●

●
●

●
●
●

●

●

●

●

●

●
● ● ● ●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●●
●●
●●●●●●●●●●●●

●●●
●●●●
●●●●●●●
●●●●●●●●●●●

●●
●●●
●●●●

●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●●●●●●●●●●●●●●

●
●
●
●●
●●

●●
●●
●●

●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

5 10 15 20 25

5
10

15
20

25

ld$N6040[1:n]

ld
$N

60
40

_1
0[

1:
n]

50 / 94



k-Nearest Neigbours

0 5 10 15 20 25 30

5
10

15
20

25
30

time

sp
ee

d

now

Forecast #1

Forecast:

x ti =
1

k ∑
τ∈Nk (x

t
i )

xτ
i

Neighbors both in space and time
51 / 94



k-Nearest Neigbours

0 5 10 15 20 25 30

5
10

15
20

25
30

time

sp
ee

d

now

Forecast #2

52 / 94



k-Nearest Neigbours

0 5 10 15 20 25 30

5
10

15
20

25
30

time

sp
ee

d

now

Forecast #3

53 / 94



Choice of predictors: Heuristics

• Geometric neighbors: might end up including many unnecessary
edges (especially in city centers)

• Topological neighbors: can miss an important predictor (i.e.
frontage road or arterial part of a corridor)

54 / 94



Atomated choice of predictors

• Forward step-wise: at each step add the predictor that leads to
smallest error

• Backward step-wise: at each step remove least significant predictor
(with smallest p-value)

• Forward stage-wise: update the coefficient for the predictor most
correlated with error

• Regularization

55 / 94



Regularizartion

Ivanov regularization

min
x∈R
||Ax − b||22 s.t. ||x ||l ≤ k

Morozov regularization

min
x∈R
||x ||l s.t. ||Ax − b||22 ≤ τ

Here τ reflects the so called noise level, i.e. an estimate of the error
which is made during the measurment of b.
Tikhonov regularization

min
x∈R
||Ax − b||22 + λ||x ||l

• Tikhonov regularization with l = 1 is lasso

• Tikhonov regularization with l = 2 is ridge regression

• lasso + ridge = elastic net

56 / 94



Choosing time lag L

The max at L = 6

57 / 94



Lasso

Sparsity pattern of matrix A (L = 6, i.e. 120 predictors):

column

ro
w

20 40 60 80 100 120

20
15

10
5

80% of entries are zeros

58 / 94



40 minute forecat with VAR (lasso fit)

6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

5
10

15
20

25
30

7

time

sp
ee

d 
[m

/s
]

data

var

const

59 / 94



40 minute forecat with VAR (lasso fit)

6 7 8 9 10

5
10

15
20

25
30

245

time

sp
ee

d 
[m

/s
]

data

var

const

60 / 94



Neural network models

Simplest version: linear regression

61 / 94



Neural network models

• Coefficients attached to predictors are called weights.

• Forecasts are obtained by a linear combination of inputs.

• Weights selected using a learning algorithm that minimises a cost
function.

62 / 94



Neural network models

Nonlinear regression model with one hidden layer

63 / 94



Neural network models

• A multilayer feed-forward network where each layer of nodes receives
inputs from the previous layers.

• Inputs to each node combined using linear combination.

• Result modified by nonlinear function before being output

64 / 94



Neural network models

Inputs to hidden neuron j linearly combined:

zj = bj +
i

∑
i=1

wijxi

Modified using nonlinear function such as a tanh:

s(x) =
sinh(x)

cosh(x)
=

ex − e−x

ex + e−x

or Rectified Linear
s(x) = max(0, s)

This tends to reduce the effect of extreme input values, thus making the
network somewhat robust to outliers

65 / 94



Neural network models

• Weights take random values to begin with, which are then updated
using the observed data.

• There is an element of randomness in the predictions. So the
network is usually trained several times using different random
starting points, and the results are averaged.

• Number of hidden layers, and the number of nodes in each hidden
layer, must be specified in advance.

66 / 94



Neural Network models for TIme Series

• Lagged values of the time series can be used as inputs to a neural
network.

• Model with no hidden layers is equivalent to an VAR(p) model but
without stationarity restrictions.

• Seasonal inputs, with seasonality m:
(xt−1, xt−2, ..., xt−p, xt−m, xt−2m, ..., xt−Pm) and k neurons in the
hidden layer.

• This model is equivalent to an VAR(p, 0, 0)(P, 0, 0)m model but
without stationarity restrictions.

67 / 94



Deep Learning

0 5 10 15 20

10
20

30
40

77

time

sp
ee

d 
[m

/s
]

data

dl

const

68 / 94



Deep Learning

2 4 6 8 10 12

10
20

30
40

77

time

sp
ee

d 
[m

/s
]

data

dl

const

69 / 94



Work in Progress

Observation: yt = HT xt + γT zt + vt , vt ∼ N(0,VtΣt)

Evolution: xt = Fαt (xt−1) + wt , wt ∼ N(0,WtΣt)

p(αti = 1) =
exp(c + ναt−1i + υZti )

1 + exp(c + ναt−1i + υZti )

• Fαt is a statistical learning model

• yt = (yt1, ..., ytq)T , the q-vector of observations at time t

• vt , the q-vector of observational errors at time t

• xt = [xt2, ..., xt2] ∈ R× the matrix whose columns are the state
vectors of the individual routes

• αt is the special event indicator

• Zti regressors can include xt and yt and known forecasts (weather
forecast, scheduled road work,...)

70 / 94



Deep Learning Errors are not White Noise

●

●

●

●

●●
●
●
●●●●●●●●●●●●●●●●●●

●●
●

●

●

●

●

●
●
●●

●●
●●

●●●●
●
●
●
●
●●●●●●

●
●
●
●●●

●
●●

●

●

●

●

●

●

●●●
●
●●●

●●●●

●

●

●

●

●

●●
●

●

●

●
●●●●●●●

●
●
●
●●●●●●

●●
●●

●●
●●

●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●
●●

●

●

●
●●

●

●

●●
●

●

●

●

●
●●

●

●

●
●●

●
●

●

●

●
●●●

●
●●●●

●
●
●●●

●
●

●

●

●
●●

●
●
●●

●

●

●

●

●

●
●
●

●

●

●

●
●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●
●

●

●

●
●●●●●

●

●

●

●

●

●

●

●

●
●●

●

●
●
●
●●●

●
●
●●●●●●

●
●
●
●
●
●
●
●
●
●
●
●

0 5 10 15 20

−
6

−
4

−
2

0
2

Time

R
es

id
ua

l

Potential solution add an ARIMA model for the residuals (whiten them).
In this specific case ARIMA(2,1,1) whitens the errors.

71 / 94



Quick Comparison of Computational Costs

Training Forecast
KNN fast slow
VAR fast fast
DL slow fast

72 / 94



Discussion

Traffic Flow Model (LWR) Flux function. Traffic jam and prediction

Bayesian Data Analysis Natural approach. Works even though fφ(θt ) only numerically
available Hard to build random walk Metropolis-Hastings algorithms
to deal with this problem. Parameter learning helps avoiding
estimation bias, can be used for event identification

Statistical Learning A viable competitor to physics-based models. Can do inference
with PF, even for non-linear hierarchical models (DL + Logistic
Regression + ARIMA)

73 / 94



ADDITIONAL SLIDES

74 / 94



Mixture Kalman Filter For Traffic

Observation: yt+1 = Hxt+1 + γT zt+1 + vt+1, vt+1 ∼ N(0,Vt+1)

Evolution: xt+1 = Fαt+1xt + (1− Fαt+1)µ + αtβt + ω1

βt+1 = max(0, βt + ω2)

Switching Evolution: αt+1 ∼ p(αt+1|αt ,Zt)

where zt is an exogenous variable that effects the sensor model, µ is an
average free flow speed

αt ∈ {0, 1,−1}

ω = (ω1, ω2)
T ∼ N(0,W ), v ∼ N(0,V )

Fαt =

{
1, αt ∈ {1,−1}
F , αt = 0

No boundary conditions estimation is needed. Not capacity/critical
density is needed.

75 / 94



Choosing p(αt+1|αt ,Zt)

• Weekends are different from weekdays

• Time of day matters

• Weather effects on traffic

• Special Events

(a) Average Speed per day (b) Speed on Wednesdays

Non-parametric regression seems to work well (or choose your favorite
machine learning algorithm)

76 / 94



Filtered speed and α (flow regime)

0 2 4 6 8 10 12 14 16 18 20 22 24

5

10

15

20

25

30

Time

S
pe

ed
 [m

/s
]

y
E[x|y]
q025
q975

0 2 4 6 8 10 12 14 16 18 20 22 24

0.2

0.3

0.4

0.5

0.6

P
(α

=
0)

0 2 4 6 8 10 12 14 16 18 20 22 24

0.15

0.20

0.25

0.30

0.35

0.40

P
(α

=
1)

0 2 4 6 8 10 12 14 16 18 20 22 24
0.20

0.25

0.30

0.35

0.40

0.45

0.50

Time

P
(α

=
−

1)

77 / 94



Filtered β (rate of degradation/recovery)

(a) Recovery (b) Degradation

78 / 94



POLARIS
Transport System Modeling Tool

• Agent based Approach

• Traveler is in the center

• All aspects of the traveler’s
day are modeled explicitly in
a single model

• Integrated Network and
Demand

• Physical laws that govern
dynamics of traffic flow
Newells model

• Managed Lanes

• Controlled intersections

• Traveler information systems

• Traffic management

• Multimodal travel

79 / 94



POLARIS Stacks

80 / 94



Travel Demand

81 / 94



Some Applications

82 / 94



POLARIS and Autonomie
Energy of Transport System; Connected and Automated Vehciles

83 / 94



Results

84 / 94



Solving the Conservation Law Equation
Godunov Scheme

Discontinuous solutions (finite differences are not applicable)

•
ρn+1
i = ρni +

τ

h
(qG (ρ

n
i−1, ρni )− qG (ρ

n
i , ρni+1))

where ρni density value at x = ih, t = nτ

qG (ρl , ρr ) =


q(ρl ), ρr < ρl ≤ ρm

q(ρc ), ρr ≤ ρm ≤ ρl

q(ρr ), ρm ≤ ρr < ρl

min(q(ρl ), q(ρr )), ρl < ρr

(6)

• To include boundary conditions (in flow and out flow).

ρn+1
0 = ρn0 +

τ

h
(qG (ρ

n
−1, ρn0)− qG (ρ

n
0, ρn1)) , with ρn−1 =

1

τ

∫ (n+1/2)τ

(n−1/2)τ
ρ(0, t)dt

and

ρn+1
M = ρn0 +

τ

h

(
qG (ρ

n
M−1, ρnM )− qG (ρ

n
M , ρnM+1)

)
, with ρnM+1 =

1

τ

∫ (n+1/2)τ

(n−1/2)τ
ρ(L, t)dt

• Courant-Friedrichs-Lewy type condition: τ ≤ h
|vmax | , guarantees stability

85 / 94



Godunov Schema

Solves Riemann problem for each 2 consecutive cells.
Riemann = Cauchy problem (initial value problem) with initial conditions
that have a single discontinuity

ρ0(x) =

{
ρl , x < 0

ρr , x > 0
(7)

For th Riemann problem the speed of the of the shock wave propagation
is given by

w =
q(ρl )− q(ρr )

ρl − ρr

86 / 94



Microscopic Simulation (Car Following)

General Motors (GM) based car-following models: acceleration is a
response to the stimulus (force from interaction)

v̇(t) = α
vn(t)m

(∆xn(t))l
(vn−1(t − τ)− vn(t − τ))

α, l , m: parameters of the model

87 / 94



Simulation Classification

The simulation depends on the granularity of the representation

• Macroscopic

− Space is continuous/discretized
− Time is discrete

• Microscopic

− Individual vehicles are represented
− Individual interactions between vehicles are modeled

88 / 94



Microscopic Simulation

• Car Following

− Distance-based models (stimulus is a function of ∆x)
− Psycho-physical (reaction is function of ∆v , and ∆x)
− Other acceleration models (might be different for free flow vs

congested regime)

• Lane changing

• Gap acceptance

89 / 94



Microscopic Simulation Demonstration (I-90 NB in
Chicago)

90 / 94

../video/vissim.avi


Galton 1877: First Particle Filter

91 / 94



Example
of one day speed profile from May 14, 2009 (Thursday)

92 / 94



LWR Model Derivation

Use the cumulative flow N(x , t), number of vehicles that pass location x
by time t. Then the conservation law can be derived by evaluating

∂N

∂t
= q(x , t),

∂N

∂x
= −ρ(x , t)

Assuming that N is smooth

∂2N

∂x∂t
=

∂2N

∂t∂x

93 / 94



Streaming Data
Online Learning

Construct an essential state vector θt+1.

p(θt+1|y t+1) =
∫

p(θt+1|θt , yt+1) dP(θt |y t+1)

∝
∫

p(θt+1|θt , yt+1)︸ ︷︷ ︸
propagate

︷ ︸︸ ︷
p(yt+1|θt )︸ ︷︷ ︸

resample

dP(θt |y t )

1. Re-sample with weights proportional to p(yt+1|θ(i)t ) and generate {θζ(i)
t }Ni=1

2. Propagate with θ
(i)
t+1 ∼ p(θt+1|θζ(i)

t , yt+1) to obtain {θ(i)t+1}Ni=1

Parameters: p(θ|θt+1) drawn “offline”

94 / 94


