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ABSTRACT

Automotive traffic monitoring using probe vehicles with Global
Positioning System receivers p ises signi impro in
cost, coverage, and accuracy. Current approaches, however, raise
privacy concerns because they require participants to reveal their
positions to an external traffic monitoring server. To address this
challenge, we propose a system based on virtual trip lines and an
associated cloaking technique. Virtual trip lines are geographic
markers that indicate where vehicles should provide location up-
dates. These markers can be placed to avoid particularly privacy
sensitive locations. They also allow aggregating and cloaking sev-

General Terms

Algorithms, Design, Experimentation, Security

Keywords
Privacy, GPS, Traffic

1. INTRODUCTION

Automotive navigation systems enable the effective delivery and
presentation of fine-grained traffic information to drivers and have

[Hoh et al.,MobiSys'08]
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A Model-based Framework for Privacy and
Security Analysis of Traffic Monitoring

Systems

Edward S. Canepa, Member, IEEE, and Christian G. Claudel, Member, IEEE

Abstract

Most large scale traffic information systems rely on fixed sensors (e.g. loop detectors, cameras) and
user generated data, the latter in the form of GPS traces sent by smartphones or GPS devices onboard
vehicles. While this type of data is relatively inexpensive to gather, it can pose multiple security and
privacy risks, even if the location tracks are anonymous. In particular, creating bogus location tracks
and sending them to the system is relatively easy. This bogus data could perturb traffic flow estimates,
and disrupt the transportation system whenever these estimates are used for actuation. Another issue
could be the possibility for an attacker to infer user location tracks from anonymous location data,
which affects users privacy. In this article, we propose a new framework for solving a variety of privacy
and cybersecurity problems arising in transportation systems. The state of traffic is modeled by the
Lighthill-Whitham-Richards traffic flow model, which is a first order scalar conservation law with a
concave flux function. Given a set of traffic flow data, we show that the constraints resulting from
this partial differential equation are mixed integer linear inequalities for some decision variable. The
resulting framework is very flexible, and can in particular be used to detect spoofing attacks in real time,
or to carry out attacks on location tracks. Numerical implementations are performed on experimental

data from the Mobile Century experiment.

I. INTRODUCTION

The convergence of mobile sensing, communication and computing has led to the rise of a

[Canepa and Claudel, HICoNS’ | 3]
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Figure 3: Example of reidentification. The corre-
sponding scenario is decribed in Figure 2. Top: So-
lution to the reidentification problem (15), with an

objective |L; — Li|. Bottom: Solution to the same
problem with an objective |L; — L3|. A nonzero op-
timum means that both tracks cannot be generated
by the same vehicle, according to both the model
and the available data.
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PRIVACY ISNOT ANONYMITY

™. M

" Privacy breaches generally due to existence of side information

" Mass.GIC medical DB linked with voter registration DB [Sweeney,
1997]

= Netflix prize with IMDB [Narayanan & Shmatikov,2008]

" |ndividual online transactions with changes in public recommendation
systems [Calandrino etal, 201 1]

——— Robust De-anonymization of Large Sparse Datasets

Arvind Narayanan and Vitaly Shmatikov
The University of Texas at Austin

/

>
== Yy Abstract and sparsity. Each record contains many attributes (i.e.,
columns in a database schema), which can be viewed as
We present a new class of statistical de- dimensions. Sparsity means that for the average record,

nnnnnnnnnnnnnnnnnnnn Lo Aeninet hinh Adinsoncinnal thara ara nn “cimilar’” rerarde in tha multi_dimencinnal

= “Anonymity” in location based services is very hard to provide!

" Very hard to know what the adversary knows, or might know in the future
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NYC TAXI DATASET

Riding with the Stars: Passenger Privacy in the NYC Taxicab Dataset [Anthony Tockar]

SEPTEMBER 15, 2014 BY ATOCKAR 56 COMMENTS

In my previous post, Differential Privacy: The Basics, I provided an introduction to differential privacy by exploring its definition and
discussing its relevance in the broader context of public data release. In this post, I shall demonstrate how easily privacy can be breached and
then counter this by showing how differential privacy can protect against this attack. I will also present a few other examples of differentially

private queries.

The Data

There has been a lot of online comment recently about a dataset released by the New York City Taxi and Limousine Commission. It contains
details about every taxi ride (yellow cabs) in New York in 2013, including the pickup and drop off times, locations, fare and tip amounts, as well
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PRIVACYTHREATS AND OBJECTIVES

* The data collection process (communications,third party aggregator) is
not the only risk

* Risks associated to data collection can typically be addressed by

anonymization, cryptographic means and other system design tricks
(encrypted communications, proxy servers,homomorphic encryption if
the aggregator is not trusted, etc.)

* Still, a useful system cannot avoid a fundamental disclosure of information
(ex: real-time traffic density map, travel time estimates, etc.).Want to make
sure this does not leak too much information about individuals

* Positive feedback loop: offering privacy guarantees encourages user
adoption which helps with performance and privacy



PRIVACY CHALLENGES

" Whatis privacy, formally?

* Developing practical privacy-preserving mechanisms

"= What are the tradeoffs between privacy and utility for a given system?

" Here in particular,privacy-preserving real-time information processing
= Estimation/ monitoring

= Control/ decision making



TRAFFICINFORMATION
WITH FORMAL PRIVACY GUARANTEES?

Jistance from onramp (km)

Need privacy-preserving data-assimilation procedures for heterogeneous
data sources and dynamic models
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|. Differential Privacy

2. Example:Differentially Private Kalman Filtering

3. Differentially Private Traffic Estimation with Hydrodynamic Models
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DEFINITIONS OF PRIVACY

= |n statistics
= Risk associated to small entriesin table counts

* Techniques:cell suppression,clustering,perturbations...
#  [Duncan & Lambert, 1986], [Reiter;2005]

" |n information theory
* Lowerbound conditional entropy H(private info|public info) while still

publishing useful information
= [Sankar et al.,2010], [Venkitasubramaniam, 201 3]

" |n computer science
= K-anonymity [Sweeney, 1998] (used by [Hoh et al.],but per speed sample)

= Differential privacy [Dwork et al.,2006]

Preserving Privacy requires some form of
obfuscation of the data published



DIFFERENTIAL PRIVACY,INFORMALLY

= Set-up:

analyst
/ user

queries

Database

db mgmt system .
Sanitized answers

(public)

= Key ldea:

A differentially private mechanism randomly perturbs its answer to a query so that the

output distribution over answers does not vary much if any given individual changes its
data (or even participates or not)

Hard to infer if the specific data of any individual was used or not to answer the query



DIFFERENTIAL PRIVACY,INFORMALLY

D-

Algorithm

1 ' ratio bounded

Pr[r]

A J



DIFFERENTIAL PRIVACY,FORMALLY

" Set-up:

analyst
/ user

<
Nl

queries

Adj(d,d’) a symmetric relation on the set D of datasets

db mgmt system .
Sanitized answers

(public)

* Adjacent datasets differ by the data of a single individual

* A mechanism M : D xQ — (R, M) is (g,6)-DP if for all
sets S € M and all databases d, d’ s.t. Adj(d,d’), we have

P(M(d) € S) <eP(M(d)e S)+6 (*)
(N.B.: we can interchanged and d’ in (*) by symmetry of Ad))




DIFFERENTIAL PRIVACY,FORMALLY

P(M(d) e S) <eP(M(d)eS)+46

* Constant € is typically small (i.e. ~ 0.1,In(2),...)

" multiplicative error

= Constant 0 is very small (i.e. ~0.01,0.05)

= additive error
* [f 5=0 then we have (g,0)-DP or simply e-DP

* Privacy definition depends on adjacency relation: characterizes
the pairs of datasets that we want to make hard to distinguish



AN OPERATIONAL INTERPRETATION

OF DIFFERENTIAL PRIVACY

* Equivalent definition in terms of hypothesis testing

[Wasserman and Zhu, 2010], [Oh and Viswanath, 2013]
= HO:the datasetis d
= HI:the datasetis d’,adjacentto d

= S arejection region to design cdd
= Pba of false alarm (HO true but rejected): Pr"" =P(M(d) € 5)

fa

= Pba of missed detection (HO false but retained): poidd _ P(M(d') € S)

md

* Theorem:M is differentially private iff for all Adj(d,d’) and all S:
pSdd | eepqi,j,d’ >1-4

a

and eePJi’Ld’d/ + P,,i’(;l’d/ >1—-9

It is impossible to get both small P, et P4 from
data obtained via a DP mechanism
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RESILIENCETO POST-PROCESSING

If a mechanism M is (€,0)-differentially private and f is an
arbitrary (possibly randomized) function, then f (M(d)) is also
(€,0)-differentially private

= fas the adversaries : models arbitrary auxiliary or side
information the adversary may have. Privacy guarantee holds
no matter what adversary does

= fas our algorithm:if we access the database in a differentially
private way, we don’t have to worry about how our algorithm
post-processes the result,as long as it does not re-access
the database
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2. Example:Differentially Private Kalman Filtering

3. Differentially Private Traffic Estimation with Hydrodynamic Models
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Differentially Private Filtering

Jerome Le Ny, Member, IEEE, and George J. Pappas, Fellow, IEEE

Abstract—Emerging systems such as smart grids or intelli-
gent transportation systems often require end-user icati

In a smart grid for example, a customer could receive better

to continuously send information to external data aggregators
performing monitoring or control tasks. This can result in an
undesirable loss of privacy for the users in exchange of the benefits
provided by the application. Motivated by this trend, this paper
introduces privacy concerns in a system theoretic context, and
addresses the problem of releasing filtered signals that respect
the privacy of the user data streams. Our approach relies on
a formal notion of privacy from the database literature, called
differential privacy, which provides strong privacy guarantees
against adversaries with arbitrary side information. Methods are
developed to approximate a given filter by a differentially private
version, so that the distortion introduced by the privacy mecha-
nism is minimized. Two specific scenarios are considered. First,
the notion of differential privacy is extended to dynamic systems
with many participants contributing independent input signals.
Kalman filtering is also discussed in this context, when a released
output signal must preserve differential privacy for the measured
signals or state trajectories of the individual participants. Second,

i i private i are described to approximate
stable filters when participants contribute to a single event stream,
extending previous work on differential privacy under continual
observation.

Index Terms—Estimation, filtering, Kalman filtering, privacy.
1. INTRODUCTION

A rapidly growing number of applications require users to
release private data streams to third-party applications
for signal processing and decision-making purposes. Exam-
ples include smart grids, population health monitoring, online
recommendation systems, traffic monitoring, fuel consump-
tion optimization, and cloud computing for industrial control
systems. For privacy, confidentiality or security reasons, the
participants benefiting from the services provided by these
systems generally do not want to release more information than
strictly necessary.
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August 22, 2013. Date of publication September 23, 2013; date of current ver-
sion January 21, 2014. This work was supported in part by the Natural Sci-
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rates in of continuously sending to the utility com-
pany her instantaneous power consumption, thereby helping
to improve the demand forecast mechanism. In doing so
however, she is also informing the utility or a potential eaves-
dropper about the type of appliances she owns as well as her
daily activities [3]. Similarly, individual private signals can
be recovered from published outputs aggregated from many
users, and anonymizing a dataset is not enough to guarantee
privacy, due to the existence of public side information. This
is demonstrated in [4], [5] for example, where private ratings
and transactions from individuals on commercial websites
are successfully inferred with the help of information from
public recommendation systems. Emerging traffic monitoring
systems using position measurements from smartphones [6] is
another application area where individual position traces can
be re-identified by correlating them with public information
such as a person’s location of residence or work [6], [7]. Hence,
the development of rigorous privacy preserving mechanisms
is crucial to address the justified concerns of potential users
and thus encourage an increasing level of participation, which
can in turn greatly improve the efficiency of these large-scale
systems.

Precisely defining what constitutes a breach of privacy is a
delicate task. A particularly successful recent definition of pri-
vacy used in the database literature is that of differential pri-
vacy [8], which is motivated by the fact that any useful informa-
tion provided by a dataset about a group of people can compro-
mise the privacy of specific individuals due to the existence of
side information. Differentially private mechanisms randomize
their responses to dataset analysis requests and guarantee that
whether or not an individual chooses to contribute her data only
marginally changes the distribution over the published outputs.
As a result, even an adversary cross-correlating these outputs
with other sources of information cannot infer much more about
specific individuals after publication than before [9].

Most work related to privacy is concerned with the analysis of
static databases [8], [10]-[12], whereas cyber-physical systems
clearly I the need for 1s working with dy-
namic, time-varying data streams. Recently, the problem of re-
leasing differentially private statistics when the input data takes
the form of a binary stream describing event occurrences aggre-
gated from many participants has been considered in [13]-[15].
This work forms the basis for the scenario studied in Section VI,
and is discussed in more details in Section VI-C. However,
most of this paper is devoted to a different situation where par-
ticipants individually provide real-valued signals. A differen-
tially private version of the iterative averaging algorithm for
consensus is considered in [16]. In this case, the input data to
protect consists of the initial values of the participants and is

ibution requires IEEE

See http://www.i

html for more




TWO BASIC

DIFFERENTIALLY PRIVATE MECHANISMS

Dataset d contains n numbers (ex: salaries):d,, ..., d,
1 n
Queryqg,ex:  ¢(d) = - Z d; d q(d) +w
1=1
L,-sensitivity of a query q:R - R™

Apq -

= max

d) — q(d’
e la(d) = q(d)]

Laplace mechanism

1
L f. —elal/b

q(d) + Lap(Aiq/e)| is e-DP

std. dev. V2b iid on each component

Gaussian mechanism

q(d) + k5. Dag N(0,1,,)| is (&0)-DP

kse € O(/In(1/9)/e)



GENERALIZATIONTO

DISCRETE-TIMEDYNAMICSYSTEMS

W

u € R™ Y = (Gu)kerk c R"
> G 4%%)—>

* Adjacency Adj(u,u’) between input signals
* Query <> system/filter G

* L,-sensitivity of G: A,G = max [|Gu—Gu'|,
Adj(u,u’)

o0 1/p n 1/p
where ||z||, = (Z xk|£> , |v]p = (Z |Ui|p>
k=0 i=1

* Then thesignal y = Gu+w is

* ¢&-DPif wis Laplace white noise vector with w, ; ~ Lap(A,G/¢)

* (g,6)-DP if w is Gaussian white noise with > = (/ig,eAQG)ZIn




EXAMPLE

m
=  Approximate filtery = (GG;u; by a differentially private version
PP )4 Y P
i=1

— G

= Adjacency relation

" ninputsignals, | per user

Adj®(u,u') iff for some i, ||u; — u}||» < B,and u; = w; for all j # .



EXAMPLE (CONT,)

m
Uy
Yy = E Giu; e
i=1 e T
Adi®(u, u') iff for some 4, ||u; — u}l|s < B,and u; = w; for all j # i. .
" For this adjacency relation: [
AxG =maxq sup  [|Giu; — Giugl2
’ Jui—uj|l2<B

ArG < max{y2(G;)} B

= 72(Gi)is the l, — |, incremental gain of G;

= ||GZ||oo if G; is linear

= y=Gu+w withwaWGNst. X = 0?[,, 0 = ks B max{72(G;)}
is (,6)-DP '

=  Qutput perturbation mechanism
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INPUT AND OUTPUT PERTURBATION

wy
0 ><> » Gy T» Gy §
Yy
(O e ] G é_V.
W
s ’é g i
w ~ N(0,0%) w ~ N(0,07)
7= 5B 7 = 5B max {[[Gill}
m
MSE =) ||Gil3 MSE = o?
i=1
Input perturbation Output perturbation

mechanism mechanism



INPUT AND OUTPUT PERTURBATION:

EXAMPLE
Ui
—  MA
Average over | steps
U2 m t
—>  MA Y 1
m users Yt — Z 7 Z Ui, k
. i=1  k=t—I+1
U
— >  MA . _ )
MSE for input perturbation: k3 B 7
1G5 = % 1Gilloe = 1 MSE for output perturbation: H§,€B2

Output perturbation better than input perturbation when m > [



A MORE GENERAL
APPROXIMATION ARCHITECTURE

= Approximate F by a differentially private system

= Add noise w proportional to sensitivity of pre-filter G for
privacy (sensor/channel design)

= Post-processing with H: estimation (equalization) problem
= Design Variables: G, H (w fixed by AG )

= Related work:
= [Li and Miklau 2010], [Tanaka, Kim, Parrilo and Mitter 2015]



MODEL BASED ESTIMATION:

AVERAGE SPEED MONITORING EXAMPLE

= Often we have a (public) model of the input signals

= Ex:Average velocity estimation using individual location traces

1 T T3/2 0
Tit+l = 0 1 Tt + 0i1 Wi t,

yir =1 0] zis+0i2 [0 1] wiy

n
, 1
Estimate — Z Ti 2.t
e

" Preserve privacy of measured location signals y; . or the actual
2D trajectories (position & speed) x;



DIFFERENTIALLY PRIVATE

KALMAN FILTERING

" For Kalman Filtering, we have additional public information about the
dynamics generating the user signals

y
&
T p41 = Aixip + Biw; ¢ 1 |
2 > 3 z
g
J— —>
Yir = Cixyp + Diw; 4 X -
. 5
(] y %
*n L §

=  Estimation objective: i 1= A
) 2 = ;Limi,t min lim T ;0 E [Hzt — th%}

z T—oo
= Adjacency relation:

Adjf(z, ") iff for some i, [|a; — 2}[]2 < ps,and x; = 2; for all j # i.

= Hard to distinguish between two sufficiently close state trajectories of a user



KALMAN FILTERING

DIFFERENTIALLY PRIVATE MECHANISMS

" |nput or output perturbation to the standard Kalman filter

Input pert.
n l
X » G
! ! Output pert.
T p41 = Aixip + Biw; ¢ o 12 L,
_ Z
Vit = Cix; ¢ + Diw; 4 . .
P

= Adjacency relation:
Adj?(x,2") iff for some i, ||2; — j||2 < pi,and x; = 2 for all j # .
" For the input perturbation scheme,can take into account the additional
privacy-preserving noise in the redesign of the KF

= But this slows down convergence
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FILTER REDESIGN FOR MONTREAL

OUTPUT PERTURBATION SCHEME

Y1

I " & Output pert
Tip+1 = AiTip + Biwg " '
—_— . . . . x : G M
Yit = Ciie + Diw; ¢ ’ ? 2 Post-filter (not
discussed)
Yn
*n » G

" For the output perturbation scheme,can redesign the filter to trade-off the
estimation error and the H ., norm of the filter

= QOverall MSE is

(Z |7 F(w; em\%> + (8, )% max {p?|TF (i — 2)|%}
i=1 =r=n
= Multi-objective [ /Hoo optimization problem

= Lyapunov shaping using Linear Matrix Inequalities

* Distinguish between stable and unstable dynamics



AVERAGE SPEED MONITORING EXAMPLE

" Average velocity estimation using individual location traces

yir =1 0l zis+0i2 [0 1wy

mn
, 1
Estimate — Z Xio2t
e




SPEED MONITORING

INPUT VERSUS OUTPUT ARCHITECTURE

e .

- = = Average velocity
Estimate

80
- 70
Y1 T 60}
Xg —> G1 E
2z 50}
X Y2 G p—
2 > Gp — a0l
F =
T 30}
= 20
Yn 2 -
*n — Gp g
10+
0
0

time ( s )

p—
Y1 =
x; > G1 ~
Y2 E
3 —
. : )
. . / =
Y o
*n L Gp =
<
-

10}

0

= = = Average velocity

Estimate

time ( s )

100



SPEED MONITORING

UTILITY/PRIVACY TRADEOFF

10 1 ‘ 1 1 1 1 l
\
9 \ - = = Input pert. + original KF
| . -
‘\ *='='*Qutput pert. + original KF
8} \ -
\ Input pert. + compensating KF
\
T \ .
\
—_ \ \
= \
-~ B} ! \ -
g \ \
) \ N
| ~ -
R ~.
@ \ \\
- p -~
41 ! S o -
Q: ) s\
| ™ -
3l \ T~ a o |
\ ==
\,
2F N -
~
\.
1- - \‘~ — - -
0 1 1 1 1 | 1
0 02 04 06 08 1 12



SPEED MONITORING

CONVERGENCE/PRIVACY TRADEOFF

1w l l Ll Ll Ll )

Iy Input pert. + compensating KF
v=+=+Qutput pert. + original KF

120}

:

convergence time (s)
3 3
1 1

Vo e R L . g W

' . " o— -
— - , -




OUTLINE

|. Differential Privacy
2. Example: Differentially Private Kalman Filtering

3. Differentially Private Traffic Estimation with Hydrodynamic Models

Dynamic Measure-
macro ment / sensor

———— | Sensors > Estimator

...........

User
trajectories

v (km/h)
140
120
100
80
60
40
20

Distance from onramp (km)

Time (min)




OUTLINE

Differentially Private Traffic Estimation with Hydrodynamic Models
A. Dynamic Model for Density Estimation

B. Measurement models and sanitization of observations (input
perturbation mechanisms)

C. EKF-based designs



MACROSCOPICTRAFFIC FLOW MODEL

= Based on a conservation law (for vehicles)
d [**

dt /..
* Flow = traffic velocity x density q = vp

,Otot(ajat)daj — Qtot(xlat) - qtot(x27t)7 V.’Ifl,ﬂjg,t,

* Numerical discretization gives finite dimensional dynamic model for p

1

i i T (N ; :
pk_|_1:,0k+L )\z L —fk: , fOI“ZZl,...I.

Numerical
flux

i '

A\ lanes

celli
cell

cell 0 XX cell i-1 lane-averaged cell i+1 | L L1

density p!,




MACROSCOPIC FLOW MODEL.:

NUMERICAL FLUX

* First-order models (LWR = Lighthill, Whitham, Richards):

= Assume a static relation between traffic flow or velocity and density =
“fundamental diagram” q(p)

= Ex:Cell-transmissionmodel (CTM), triangularf. d.
A (g

Qmax ............. p

A /

pC PJ
* Godunov numerical method with triangular f.d.

fi = F(p}, pit") == min{S(p},), R(p}"")}
= min {p}cvfa Gmax; w(ﬂJ — ,0?_1)} .



FUNDAMENTAL DIAGRAM CALIBRATION

[Mobile Millenium dataset]

45

40

35

flow [veh/min]
B & 8

Y
n

10

density [veh/100m]



STOCHASTICDYNAMIC MACROSCOPIC MODEL

" Set-up the dynamic model for estimation (here with an
Extended Kalman Filter)

* |ntroduce random noise to account for imperfections of the
deterministic model

i i T (N i—1 i i g i
Pr+1 = P T+ . ( N\ F(:Ok: 17:0k:) - F(ﬂk:apk;—'_l)) + &},

" White noise driven boundary conditions

= State of the ghost cells to estimate as well in general

0 0 . 0 I+1 _ I+1 , oI+1
Pret1 =Pk T8k Por1 =Pk +&



OUTLINE

Differentially Private Traffic Estimation with Hydrodynamic Models
A. Dynamic Model for Density Estimation

B. Measurement models and sanitization of observations (input
perturbation mechanisms)

C. EKF-based designs



MEASUREMENT MODELS

" Single-loop detectors reportevery T seconds for each lane:
" Vehicle count c(t) for the last period
" Percentage occupancy o(t) for the last period

" - Pseudo-measurements (j = lane #):

o0~ 9D g Gl

~Y

) P ~ ) ~ g
T g 0j (t)T
= g = g-factor (average vehicle length),requires calibration (in fact

g(x,t))
" Various measurement models possible (i = sensor location #)

)\i
OIS By ; i x = F(py, pit) + 1) (flow measurement model)
1

AZ
Yy = X Z o' w = ph + Vi (density measurement model #1,
I = problematic for privacy)




MEASUREMENT MODELS:GPS DATA

GPS data can be used to simulate static sensors,similarly to the virtual trip
lanes of Hoh. et al.

" Allows the same algorithms to be used, although now we can have speed
measurements from GPS

= Sensibility analysis is similar to that of o (or o/c)

= Other schemes might be possible but require a careful analysis of how to
spend the privacy budget



SANITIZATION OF FLOW MEASUREMENTS

= Sensitivity computation for flow measurements
= 2 sets of trajectories differing by the trajectory of a single user

co M M oo
lp—Bl3 =D leh— > =D ot — il
k=0 1=1 1=1 k=0
2

AZ
i ~i < 2
Z(Cj,k — )| < T2(\P)2

k=0 |j=1

o

S 1
7 712
k=0

V2

= o —dlle < 2

» - add Gaussian white noise with variance (x(,¢) Ay)* to each single-loop
detector count signal to get a set of (g,0)-differentially private signals

" Noise variance grows linearly with number of sensor locations (trip lines).
But valid for arbitrary variation in a user’s trajectory (strong)



SANITIZATION OF
OCCUPANCY MEASUREMENTS

" To use directly the occupancy measurements,let us weaken the guarantee
by strengthening the conditions for adjacency.Impose a limit on the impact
that one trajectory can have on the occupancy measurements

= Adj(d,d’) if for each sensor location i, there is at most two pairs (k, j) or
(time, lane) such that

|0]l:,k (d) - Ojl:,k (d’)l
—— . <y
min (o]?’k(d), of,k (d’))

" Bound relative variations of occupancy by parametery

* Then 6 = Ao with A log-N(0,ks V2M) for M sensors is (¢,5)-DP (note:
sign-preserving mechanism)

= Howtosety!



MODELINGTHE EFFECT OF ONE CARVARIATION

ON OCCUPANCY MEASUREMENTS

G(o) = max{ |0-0’|/ min(0,0’) | } for measured occupancy o * How to set y ?
14} \ .

12} \

0.8

06

(0-0")/min(o-0")

04r

005 01 015 02 025 03 035 04 045
measured occupancy
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RELATIVEVARIATION OF OCCUPANCY

MOBILE CENTURY DATASET

Cumulative histogram of G(o) of dataset

histogram of G(o) of the dataset
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min(o ke(d),0p ¢ (d’ ))

= 20% satisfying 96% of data under this model

= 03 =0.3132

* Limitation of occupancies for 100% of data protection under this
model: 0 < min(o, 0,,45)



AN ALTERNATIVE

DENSITY MEASUREMENT MODEL

" An alternative density measurement model for the initial adjacency
relation (change one trajectory arbitrarily)

= Use of ¥; directlyis problematic for differential privacy

i 0 v densi seudo-measurement model
2k = P+ N (density p )
i f_ka if m¢ = Free ta
avec Zp = f 5 . ' Gonax oot :
pg— -k, i mj = Congested

Y

pc PJ
= Requires a traffic mode estimate m|,
m;. = Free if and oply if ¥y < pe
» Tolerates less precise measurements Y,
* Mode estimate can be improved with HMM filter



A DIFFERENTIALLY PRIVATE MECHANISM

FOR GENERALDATATYPES

= Gaussian mechanism not adapted to non numerical outputs such as
mode estimate m; (Congested or Free)

= Exponential mechanism:
" Generic output space R for the possible answers to a query

" Define a score function s(d,r) for the response r when the dataset is d
" Pick the answer r with probability distribution
exp(es(d,r))dr
Jrexp(es(d,r))dr

" This mechanismis 2¢As - differentially private,with

As=sup sup |s(d,r)—s(d,r)]
reR Adj(d,d’)



APPLICATIONTO

TRAFFIC MODE ESTIMATION

"  We define the score function (high for high density)
st (C) = 4% /p. (high for high density) ( ' X )
Y =

st (F) =2 —yt/p. (high for low density)
* Theorem: A mechanism publishing the traffic mode m}g at each period, by

generating these outputs randomly and independently with distribution

mi _ _ exp(ESi;(C))
IP)( C) exp(es}’;(C)) + eXp(GSi:“:))

M
is 4¢ (Z j@) - differentially private.
i=1

Pf idea: a single user can change the score function at most once at each

sensor location, and by at most 2/); (this requires bounding the occupation
time of any car by gpc)



OUTLINE

Differentially Private Traffic Estimation with Hydrodynamic Models
A. Dynamic Model for Density Estimation

B. Measurement models and sanitization of observations (input
perturbation mechanisms)

C. EKF-based designs



EXAMPLE OF DP OUTPUT

DIRECT OCCUPANCY MEASUREMENTS

Non-private density map Private density map - o/g
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FINALARCHITECTURE:FLOW INVERSION MODEL

User
‘ trajectories ‘
count occupancy
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Gaussian exponential
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Fundamental HMM filter
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EXAMPLE OF DP OUTPUT

FLOW INVERSION MODEL
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SUMMARY

= Many cyber-physical applications raise privacy concerns that need to be
addressed to encourage user participation

* Traffic information systems are an example of such sensitive systems

= Characterizing privacy-utility tradeoffs requires a quantitative definition of
privacy

" Need privacy-preserving mechanisms for model-based data assimilation
with various types of dynamic systems and data

» Further work needed to provide quantitative privacy guarantees for traffic
information with reasonable performance impact



