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TRACKING IN SMART BUILDINGS

Figure 3: The floor plan of the experimental area. O�ces are mostly on the
outside of the building. The areas observed by sensors (shaded) are hallways,
lobbies, and meeting rooms.

0118.txt.gz May 24 05:46:40 2007 – Jul 2 15:41:50 2007

The filename refers to the high-order bits of the timestamps on the data
contained in each file.

The files contain data like this:

470 01179980510828 01179980511853 1.0
469 01179980512169 01179980513193 1.0
467 01179980513580 01179980514609 1.0
468 01179980514573 01179980515598 1.0

The first element is the sensor identification number. The second and third
numbers are the timestamps of the beginning of the event. The fourth number
is a meaningless place holder value.

The map in Figure 3 depicts the test area. Executives and administrators
occupy the wing on the right right side of the eighth floor map. Researchers
occupy the bottom and left wings, and most of the 7th floor. The central core
of the building contains restrooms, lobbies, elevators, and on the eighth floor,
the mail room and the kitchen. There are several stairwells that connect the
floors.

We have been collecting data at this facility since October of 2005. Data
from the entire area depicted on that map has been continuously recorded since
March 2006. The system generates approximately two million motion detections
per month.

MERL-TR2007-069 November 2007

Some benefits:
• HVAC optimization
• Emergency evacuation
• …
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ABSTRACT
Automotive traffic monitoring using probe vehicles with Global
Positioning System receivers promises significant improvements in
cost, coverage, and accuracy. Current approaches, however, raise
privacy concerns because they require participants to reveal their
positions to an external traffic monitoring server. To address this
challenge, we propose a system based on virtual trip lines and an
associated cloaking technique. Virtual trip lines are geographic
markers that indicate where vehicles should provide location up-
dates. These markers can be placed to avoid particularly privacy
sensitive locations. They also allow aggregating and cloaking sev-
eral location updates based on trip line identifiers, without knowing
the actual geographic locations of these trip lines. Thus they facil-
itate the design of a distributed architecture, where no single entity
has a complete knowledge of probe identities and fine-grained lo-
cation information. We have implemented the system with GPS
smartphone clients and conducted a controlled experiment with 20
phone-equipped drivers circling a highway segment. Results show
that even with this low number of probe vehicles, travel time esti-
mates can be provided with less than 15% error, and applying the
cloaking techniques reduces travel time estimation accuracy by less
than 5% compared to a standard periodic sampling approach.

Categories and Subject Descriptors
K.4.1 [Computers and Society]: Public Policy Issues–Privacy;
K.6 [Management of Computing and Information Systems]: Se-
curity and Protection
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1. INTRODUCTION
Automotive navigation systems enable the effective delivery and

presentation of fine-grained traffic information to drivers and have
thus created demand for improved traffic data collection. Conven-
tional traffic information services rely on eyewitness reports, traffic
cameras, and loop detectors. More recently, traffic estimates are
also generated from cellular base station hand off rates [22]. Due to
their high cost, or low precision position information, these mech-
anisms are only available at selected traffic hotspots.

Probe vehicle systems promise to significantly improve cover-
age and timeliness of traffic information. Probe vehicle systems es-
timate traffic flow and congestion through speed reports collected
from a set of GPS-equipped vehicles. Thus, with sufficient pene-
tration (fraction of total traffic) this approach could potentially col-
lect real-time traffic information over the complete road network at
minimal cost for transportation agencies.

Several studies have demonstrated the feasibility of traffic flow
estimation through analysis, simulations, and experiments [23, 20,
57]. Several open questions remain, however, before such a sys-
tem is likely to be realized. First, it is unclear how such a system
can quickly be bootstrapped since the service is only useful with
sufficient participants. While telematics platforms or navigations
system hardware is capable of performing these functions, these
platforms are not openly programmable and thus hard to retrofit
for this purpose. Second, it is not known how the quality of the
obtained traffic information compares with those collected through
conventional methods (e.g., loop detectors). Third, the system re-
quires that cars reveal their positions to a traffic monitoring orga-
nization, raising privacy concerns. Our earlier work [35] has pro-
posed privacy enhancing technologies that can alleviate concerns.
These solutions, however, still require users to trust centralized pri-
vacy servers.

[Hoh et al., MobiSys’08]



PRIVACY ATTACK ON THE
MOBILE CENTURY DATASET

necessarily mean that a cyberattack occurred, since sensor
faults or model violations could lead to the same result.

6.3 Vehicle reidentification example
Our objective is now to illustrate the performance of the

framework described above on a non trivial case of vehicle
reidentification. We consider the same physical setup as pre-
viously, with 20 blocks of upstream (9) and downstream (10)
boundary conditions. We also consider 3 blocks of (real) in-
ternal conditions (11), extracted from the mobile century
dataset. Among these 3 blocks, two originate from the same
Mobile Century test vehicle, and one originates from another
mobile century vehicle. The layout is illustrated in Figure 2.

Figure 2: Vehicle reidentification problem layout.
In this problem, we consider one block of internal
condition (left) generated by a given probe vehicle.
We also have two additional blocks of internal con-
dition, generated after the first one. Among these
two blocks, one comes from the same vehicle that
generated block #1.

Vehicle reidentification problems are at the core of user
privacy analysis for probe-based traffic information systems.
Indeed, the average distance to confusion [19] is an impor-
tant metric to evaluate user privacy. However typical algo-
rithms such as the one used in [19] do not take into account
the effects of the flow model. For instance, the reidentifica-
tion model used in [19] assumes that the velocity of vehicles
is more or less constant, and looks for the best candidate
within a region of the space-time domain satisfying this con-
straint. If we apply this procedure to the problem described
in Figure 2, it is easy to visually check that GPS track #3
is the most probable successor of GPS track #1, since it is
in the alignment of track #1. However, in this specific case
GPS track #2 is actually the successor to GPS track #1, and
GPS track #3 has been generated by another probe vehicle.
The model-based reidentification scheme (15) is not fooled
by the situation: minimizing |L1 − L2| gives 0, while mini-
mizing |L1 − L3| gives 41. Thus, the nonzero optimal value
of (15) rules out GPS track #3 as a possible successor to
GPS track #1, a result that does not seem obvious at all by
looking at the configuration in Figure 2. The density maps
corresponding to the computations of (15) are illustrated in
Figure 3.

This result suggests that the framework can help in the
vehicle reidentification problem, which is importance for pri-
vacy analysis.Indeed, it is very likely that if an attacker gains
access to some private probe vehicle data, he or she can
also gain access to additional traffic flow measurements from

Figure 3: Example of reidentification. The corre-
sponding scenario is decribed in Figure 2. Top: So-
lution to the reidentification problem (15), with an
objective |L1 − L2|. Bottom: Solution to the same
problem with an objective |L1 − L3|. A nonzero op-
timum means that both tracks cannot be generated
by the same vehicle, according to both the model
and the available data.

sensors, which are sometimes even public (for instance the
PeMS system operating in California, see [31]). Hence, the
example described above suggests that attacks on anony-
mous location tracks can be much more damaging than ini-
tially thought.

Note also that our framework rules out the physical impos-
sibilities, but does not help in choosing a successor whenever
problem (15) has an optimal value of 0 for two or more op-
tions. However, this model can be used in conjunction with
other probabilistic vehicle path inference models to identify
the successor.

7. CONCLUSION
In this article, we introduce a new framework for solving

some privacy and security problems on systems modeled by
Hamilton-Jacobi equations, such as the highway transporta-
tion network. Using a semi-analytical expression of the so-
lutions to the Hamilton-Jacobi equation, we formulate the
problem of checking the consistency of the data with respect
to the model as a Mixed Integer Linear Program (MILP).
The method does not require any approximation or Monte-
Carlo simulations to operate, and is tractable. We illustrate
the performance of the method on an experimental dataset
containing fixed sensor as well as probe data.

Future work will be dedicated to the generalization of the
method to allow model uncertainty. Another direction is
the study of spoofing cyber-attacks on transportation net-
works, taking into account the coupling effect of junctions
and possibly detecting such attacks earlier.
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A Model-based Framework for Privacy and

Security Analysis of Traffic Monitoring

Systems
Edward S. Canepa, Member, IEEE, and Christian G. Claudel, Member, IEEE

Abstract

Most large scale traffic information systems rely on fixed sensors (e.g. loop detectors, cameras) and

user generated data, the latter in the form of GPS traces sent by smartphones or GPS devices onboard

vehicles. While this type of data is relatively inexpensive to gather, it can pose multiple security and

privacy risks, even if the location tracks are anonymous. In particular, creating bogus location tracks

and sending them to the system is relatively easy. This bogus data could perturb traffic flow estimates,

and disrupt the transportation system whenever these estimates are used for actuation. Another issue

could be the possibility for an attacker to infer user location tracks from anonymous location data,

which affects users privacy. In this article, we propose a new framework for solving a variety of privacy

and cybersecurity problems arising in transportation systems. The state of traffic is modeled by the

Lighthill-Whitham-Richards traffic flow model, which is a first order scalar conservation law with a

concave flux function. Given a set of traffic flow data, we show that the constraints resulting from

this partial differential equation are mixed integer linear inequalities for some decision variable. The

resulting framework is very flexible, and can in particular be used to detect spoofing attacks in real time,

or to carry out attacks on location tracks. Numerical implementations are performed on experimental

data from the Mobile Century experiment.

I. INTRODUCTION

The convergence of mobile sensing, communication and computing has led to the rise of a

new class of systems known as cyberphysical systems, which are physical systems sensed and

actuated by “cyber” agents, an example of which is the transportation network. In transportation

systems, a new form of sensing has emerged since a few years in the form of probe vehicles. In

this paradigm, the vehicles themselves transmit their speed and location anonymously [33] to a

February 16, 2013 DRAFT

[Canepa and Claudel, HiCoNS’13]



§ Privacy breaches generally due to existence of side information
§ Mass. GIC medical DB linked with voter registration DB [Sweeney, 

1997]
§ Netflix prize with IMDB [Narayanan & Shmatikov, 2008]
§ Individual online transactions with changes in public recommendation 

systems [Calandrino et al., 2011]
§ “Anonymity” in location based services is very hard to provide!

§ Very hard to know what the adversary knows, or might know in the future

PRIVACY IS NOT ANONYMITY

+
Robust De-anonymization of Large Sparse Datasets

Arvind Narayanan and Vitaly Shmatikov
The University of Texas at Austin

Abstract

We present a new class of statistical de-
anonymization attacks against high-dimensional
micro-data, such as individual preferences, recommen-
dations, transaction records and so on. Our techniques
are robust to perturbation in the data and tolerate some
mistakes in the adversary’s background knowledge.

We apply our de-anonymization methodology to the
Netflix Prize dataset, which contains anonymous movie
ratings of 500,000 subscribers of Netflix, the world’s
largest online movie rental service. We demonstrate
that an adversary who knows only a little bit about
an individual subscriber can easily identify this sub-
scriber’s record in the dataset. Using the Internet
Movie Database as the source of background knowl-
edge, we successfully identified the Netflix records of
known users, uncovering their apparent political pref-
erences and other potentially sensitive information.

1 Introduction

Datasets containing micro-data, that is, information
about specific individuals, are increasingly becoming
public in response to “open government” laws and to
support data mining research. Some datasets include
legally protected information such as health histories;
others contain individual preferences and transactions,
which many people may view as private or sensitive.

Privacy risks of publishing micro-data are well-
known. Even if identifiers such as names and Social
Security numbers have been removed, the adversary can
use background knowledge and cross-correlation with
other databases to re-identify individual data records.
Famous attacks include de-anonymization of a Mas-
sachusetts hospital discharge database by joining it with
a public voter database [25] and privacy breaches caused
by (ostensibly anonymized) AOL search data [16].

Micro-data are characterized by high dimensionality

and sparsity. Each record contains many attributes (i.e.,
columns in a database schema), which can be viewed as
dimensions. Sparsity means that for the average record,
there are no “similar” records in the multi-dimensional
space defined by the attributes. This sparsity is empir-
ically well-established [7, 4, 19] and related to the “fat
tail” phenomenon: individual transaction and preference
records tend to include statistically rare attributes.

Our contributions. Our first contribution is a formal
model for privacy breaches in anonymized micro-data
(section 3). We present two definitions, one based on the
probability of successful de-anonymization, the other on
the amount of information recovered about the target.
Unlike previous work [25], we do not assume a pri-
ori that the adversary’s knowledge is limited to a fixed
set of “quasi-identifier” attributes. Our model thus en-
compasses a much broader class of de-anonymization
attacks than simple cross-database correlation.

Our second contribution is a very general class of
de-anonymization algorithms, demonstrating the funda-
mental limits of privacy in public micro-data (section 4).
Under very mild assumptions about the distribution from
which the records are drawn, the adversary with a small
amount of background knowledge about an individual
can use it to identify, with high probability, this individ-
ual’s record in the anonymized dataset and to learn all
anonymously released information about him or her, in-
cluding sensitive attributes. For sparse datasets, such as
most real-world datasets of individual transactions, pref-
erences, and recommendations, very little background
knowledge is needed (as few as 5-10 attributes in our
case study). Our de-anonymization algorithm is robust
to the imprecision of the adversary’s background knowl-
edge and to perturbation that may have been applied to
the data prior to release. It works even if only a subset
of the original dataset has been published.

Our third contribution is a practical analysis of
the Netflix Prize dataset, containing anonymized
movie ratings of 500,000 Netflix subscribers (sec-
tion 5). Netflix—the world’s largest online DVD rental

1
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Anonymization of Location Data Does Not Work:

A Large-Scale Measurement Study
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ABSTRACT
We examine a very large-scale data set of more than 30 bil-
lion call records made by 25 million cell phone users across
all 50 states of the US and attempt to determine to what
extent anonymized location data can reveal private user in-
formation. Our approach is to infer, from the call records,
the “top N” locations for each user and correlate this in-
formation with publicly-available side information such as
census data. For example, the measured “top 2” locations
likely correspond to home and work locations, the “top 3” to
home, work, and shopping/school/commute path locations.
We consider the cases where those “top N” locations are
measured with di↵erent levels of granularity, ranging from
a cell sector to whole cell, zip code, city, county and state.
We then compute the anonymity set, namely the number of
users uniquely identified by a given set of “top N” locations
at di↵erent granularity levels.

We find that the “top 1” location does not typically yield
small anonymity sets. However, the top 2 and top 3 loca-
tions do, certainly at the sector or cell-level granularity. We
consider a variety of di↵erent factors that might impact the
size of the anonymity set, for example the distance between
the “top N” locations or the geographic environment (rural
vs urban). We also examine to what extent specific side in-
formation, in particular the size of the user’s social network,
decrease the anonymity set and therefore increase risks to
privacy. Our study shows that sharing anonymized location
data will likely lead to privacy risks and that, at a mini-
mum, the data needs to be coarse in either the time domain
(meaning the data is collected over short periods of time, in
which case inferring the top N locations reliably is di�cult)
or the space domain (meaning the data granularity is strictly
higher than the cell level). In both cases, the utility of the
anonymized location data will be decreased, potentially by
a significant amount.

⇤Part of this work was done while the author was working
at Sprint.
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Keywords
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1. INTRODUCTION
Decades ago, people used to worry about leaving their

keys or wallets behind when they left their house. Nowa-
days, we worry about leaving our cell phones behind (and
we still check for keys and wallets...) Indeed, cell phones
have becomes an increasingly important part of life and it is
no wonder that nationwide penetration rates trend towards
100% in many developed countries, and are already signifi-
cantly above 100% in several others.
Because they are ubiquitous and because they have be-

come a natural part of daily life (meaning that users are
not expected to behave abnormally when they carry their
phone), cell phones have become a powerful tool to ana-
lyze human behavior, in particular as it relates to physical
places through the study of mobility patterns, and the re-
search interest in this area has increased dramatically over
the past few years [3, 27, 9, 28, 24]. The availability of
mobility and location data also drives a vibrant ecosystem
of location-based services ranging from navigation to prox-
imity advertising (mobile coupons) with a plethora of new
services introduced daily. All those services need access to
some kind of location and mobility data. Cellular operators
collect such location information, in particular Call Details
Records (CDRs) in particular for billing and troubleshoot-
ing purposes. CDRs contain information about every call
carried by the cellular network, including time of the call,
location, and identities of both parties involved in the call.
Thus, they enable the study of human mobility at a very
large scales. With the increasing need or desire to pub-
lish or share CDRs or CDR-like call logs to third parties,
the issue of privacy has become a major concern. The de-
fault approach has often been to anonymize CDRs or other
call logs and replace user identities with random identifiers.
A key question then is: Can these anonymized records be

145

10/10/2015 Riding with the Stars: Passenger Privacy in the NYC Taxicab Dataset – Research

http://research.neustar.biz/2014/09/15/riding-with-the-stars-passenger-privacy-in-the-nyc-taxicab-dataset/ 1/13

Riding with the Stars: Passenger Privacy in the NYC Taxicab Dataset
SEPTEMBER 15, 2014 BY ATOCKAR 56 COMMENTS

In my previous post, Differential Privacy: The Basics, I provided an introduction to differential privacy by exploring its definition and

discussing its relevance in the broader context of public data release. In this post, I shall demonstrate how easily privacy can be breached and

then counter this by showing how differential privacy can protect against this attack. I will also present a few other examples of differentially

private queries.

The Data
There has been a lot of online comment recently about a dataset released by the New York City Taxi and Limousine Commission. It contains

details about every taxi ride (yellow cabs) in New York in 2013, including the pickup and drop off times, locations, fare and tip amounts, as well

as anonymized (hashed) versions of the taxi’s license and medallion numbers. It was obtained via a FOIL (Freedom of Information Law)

request earlier this year and has been making waves in the hacker community ever since.

The release of this data in this unalloyed format raises several privacy concerns. The most well-documented of these deals with the hash

function used to “anonymize” the license and medallion numbers. A bit of lateral thinking from one civic hacker and the data was completely

de-anonymized. This data can now be used to calculate, for example, any driver’s annual income. More disquieting, though, in my opinion, is

the privacy risk to passengers. With only a small amount of auxiliary knowledge, using this dataset an attacker could identify where an

individual went, how much they paid, weekly habits, etc. I will demonstrate how easy this is to do in the following section.

Violating Privacy
Let’s consider some of the different ways in which this dataset can be exploited. If I knew an acquaintance or colleague had been in New York

last year, I could combine known information about their whereabouts to try and track their movements for my own personal advantage.

Maybe they filed a false expense report? How much did they tip? Did they go somewhere naughty? This can be extended to people I don’t know

– a savvy paparazzo could track celebrities in this way, for example.

There are other ways to go about this too. Simply focusing the search on an embarrassing night spot, for example, opens the door to all kinds of

information about its customers, such as name, address, marital status, etc. Don’t believe me? Keep reading…

Stalking celebrities
First things first. How might I track a person? Well, to zone in on a particular trip, I can use any combination of known characteristics that

appear in the dataset, such as the pickup or drop-off coordinates or datetime, the medallion or license number, or even the fare amount from a

receipt. Being the avid fanboy that I am (note: sarcasm), I thought it might be interesting to find out something new about some of the

celebrities who had been seen in New York in 2013. In particular, where did they go to / come from, and how much did they tip?

In order to do this, I spent some of the most riveting hours of my professional career searching through images of “celebrities in taxis in

Manhattan in 2013” to find enough information to identify the correct record in the database. I had some success – combining the below photos

of Bradley Cooper and Jessica Alba with some information from celebrity gossip blogs allowed me to find their trips, which are shown in the

accompanying maps.
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Bradley Cooper (Click to Explore) Jessica Alba (Click to Explore)

In Brad Cooper’s case, we now know that his cab took him to Greenwich Village, possibly to have dinner at Melibea, and that he paid $10.50,

with no recorded tip. Ironically, he got in the cab to escape the photographers! We also know that Jessica Alba got into her taxi outside her

hotel, the Trump SoHo, and somewhat surprisingly also did not add a tip to her $9 fare. Now while this information is relatively benign,

particularly a year down the line, I have revealed information that was not previously in the public domain. Considering the speculative drivel

that usually accompanies these photos (trust me, I know!), a celebrity journalist would be thrilled to learn this additional information.

A few innocent nights at the gentlemen’s club
But OK, perhaps you’re not convinced. After all, this dataset is (thankfully) not real-time. How about we leave the poor celebrities alone and

consider something a little more provocative. Larry Flynt’s Hustler Club is in a fairly isolated location in Hell’s Kitchen, and no doubt

experiences significant cab traffic in the early hours of the morning. I ran a query to pull out all pickups that occurred outside the club after

midnight and before 6am, and mapped the drop-off coordinates to see if I could pinpoint individuals who frequented the establishment. The

map below shows my results – the yellow points correspond to drop-offs that are closely clustered, implying a frequent customer.

Click to Explore

The potential consequences of this analysis cannot be overstated. Go ahead, zoom in. You will see that the GPS coordinates are terrifyingly

precise. Using this freely-obtainable, easily-created map, one can find out where many of Hustler’s customers live, as there are only a handful

of locations possible for each point. Add a little local knowledge, and, well, it’s not rocket science. “I was working late at the office” no longer

cuts it: Big Brother is watching.

Even without suspicions or knowledge of the neighborhood, I was able to pinpoint certain individuals with high probability. Somewhat

shockingly, just googling an address reveals all kinds of information about its inhabitants. Take the following example:

Examining one of the clusters in the map above revealed that only one of the 5 likely drop-off addresses was inhabited; a search for that

address revealed its resident’s name. In addition, by examining other drop-offs at this address, I found that this gentleman also frequented

such establishments as “Rick’s Cabaret” and “Flashdancers”. Using websites like Spokeo and Facebook, I was also able to find out his

property value, ethnicity, relationship status, court records and even a profile picture!

Of course, I will not publish any of this information here, but this was by no means a unique situation. While the online availability of all this

potentially private information is part of a wider discussion, it’s fair to say that this guy has a right to keep his nighttime activities a secret.

[Anthony Tockar]



• The data collection process (communications, third party aggregator) is 
not the only risk

• Risks associated to data collection can typically be addressed by 
anonymization, cryptographic means and other system design tricks 
(encrypted communications, proxy servers, homomorphic encryption if 
the aggregator is not trusted, etc.)

• Still, a useful system cannot avoid a fundamental disclosure of information 
(ex: real-time traffic density map, travel time estimates, etc.). Want to make 
sure this does not leak too much information about individuals

• Positive feedback loop: offering privacy guarantees encourages user 
adoption which helps with performance and privacy

PRIVACY THREATS AND OBJECTIVES



§ What is privacy, formally?

§ Developing practical privacy-preserving mechanisms

§ What are the tradeoffs between privacy and utility for a given system?

§ Here in particular, privacy-preserving real-time information processing
§ Estimation / monitoring
§ Control / decision making

PRIVACY CHALLENGES



Need privacy-preserving data-assimilation procedures for heterogeneous 
data sources and dynamic models

TRAFFIC INFORMATION 
WITH FORMAL PRIVACY GUARANTEES ?
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Fig. 4.10 a Microscopic simulation of a traffic breakdown and stop-and-go waves caused by an
on-ramp. Shown is the local speed. b–e flow-density data where the measurement process was
simulated using data of “virtual” detectors and different aggregation methods. b Flow Q = 1/⟨!tα⟩
versus density Q/V (the standard procedure), c flow Q versus density Q/VH , d flow Q∗ = ⟨1/!tα⟩
versus density Q∗/VH , e flow Q versus density Q∗/VH . For comparison, plot f displays the point
cloud obtaining by using the actual local values of flow and density, and the fundamental diagram
is plotted as solid line in b–f

(Fig. 4.10e) consistently yields the least biased result in the simulations although
the unbiased flow is given by the harmonic mean Q (Eq. 3.6) of the microscopic
flow, and not by the arithmetic average Q∗ (Eq. 3.12). In any case, the difference
between the true flow-density points (f) and the data shown in (b)–(e) is caused by
the measurement process. The difference between the flow-density data (f) and the
fundamental diagram, however, is due solely to non-equilibrium effects. This can
be concluded since identical driver-vehicle units were simulated (for details, see
Fig. 11.4 in Part II where this simulation is discussed in detail).
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§ In statistics
§ Risk associated to small entries in table counts
§ Techniques: cell suppression, clustering, perturbations…
§ [Duncan & Lambert, 1986], [Reiter, 2005]

§ In information theory
§ Lower bound conditional entropy H(private info|public info) while still 

publishing useful information
§ [Sankar et al., 2010], [Venkitasubramaniam, 2013] 

§ In computer science
§ K-anonymity [Sweeney, 1998]  (used by [Hoh et al.], but per speed sample)
§ Differential privacy [Dwork et al., 2006]

Preserving Privacy requires some form of 
obfuscation of the data published

DEFINITIONS OF PRIVACY



§ Set-up:

§ Key Idea:
§ A differentially private mechanism randomly perturbs its answer to a query so that the 

output distribution over answers does not vary much if any given individual changes its 
data (or even participates or not)

§ Hard to infer if the specific data of any individual was used or not to answer the query

DIFFERENTIAL PRIVACY, INFORMALLY

Database

 resp. 1 resp. n

resp. 2

db mgmt system

analyst 
/ userqueries

sanitized answers
(public)



DIFFERENTIAL PRIVACY, INFORMALLY



§ Set-up:

§ Adj(d,d’) a symmetric relation on the set D of datasets
§ Adjacent datasets differ by the data of a single individual
§ A mechanism                               is (ε,δ)-DP if for all        

sets           and all databases d, d’ s.t.Adj(d,d’), we have

(N.B.: we can interchange d and d’ in (*) by symmetry of Adj)

DIFFERENTIAL PRIVACY, FORMALLY

Database

 resp. 1 resp. n

resp. 2

db mgmt system

analyst 
/ userqueries

sanitized answers
(public)

M : D � � ⇥ (R,M)

S 2 M

P(M(d) 2 S)  e✏P(M(d0) 2 S) + � (*)



§ Constant ε is typically small (i.e. ~ 0.1, ln(2), …) 
§ multiplicative error

§ Constant δ is very small (i.e. ~0.01, 0.05) 
§ additive error

§ If δ=0 then we have (ε,0)-DP or simply ε-DP

§ Privacy definition depends on adjacency relation: characterizes 
the pairs of datasets that we want to make hard to distinguish

DIFFERENTIAL PRIVACY, FORMALLY

P(M(d) 2 S)  e✏P(M(d0) 2 S) + �



§ Equivalent definition in terms of hypothesis testing 
[Wasserman and Zhu, 2010], [Oh and Viswanath, 2013]
§ H0: the dataset is d
§ H1: the dataset is d’, adjacent to d
§ S a rejection region to design
§ Pba of false alarm (H0 true but rejected):
§ Pba of missed detection (H0 false but retained):

§ Theorem: M is differentially private iff for all Adj(d,d’) and all S:

AN OPERATIONAL INTERPRETATION 
OF DIFFERENTIAL PRIVACY

It is impossible to get both small Pfa et Pmd from 
data obtained via a DP mechanism

PS,d,d0

fa = P(M(d) 2 S)

PS,d,d0

fa + e✏PS,d,d0

md � 1� �

and e✏PS,d,d0

fa + PS,d,d0

md � 1� �

PS,d,d0

md = P(M(d0) 2 S̄)



If a mechanism M is (ε,δ)-differentially private and f is an 
arbitrary (possibly randomized) function, then f (M(d)) is also 
(ε,δ)-differentially private

§ f as the adversaries : models arbitrary auxiliary or side 
information the adversary may have. Privacy guarantee holds 
no matter what adversary does 

§ f as our algorithm: if we access the database in a differentially 
private way, we don’t have to worry about how our algorithm 
post-processes the result, as long as it does not re-access 
the database

RESILIENCE TO POST-PROCESSING
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Differentially Private Filtering
Jerome Le Ny, Member, IEEE, and George J. Pappas, Fellow, IEEE

Abstract—Emerging systems such as smart grids or intelli-
gent transportation systems often require end-user applications
to continuously send information to external data aggregators
performing monitoring or control tasks. This can result in an
undesirable loss of privacy for the users in exchange of the benefits
provided by the application. Motivated by this trend, this paper
introduces privacy concerns in a system theoretic context, and
addresses the problem of releasing filtered signals that respect
the privacy of the user data streams. Our approach relies on
a formal notion of privacy from the database literature, called
differential privacy, which provides strong privacy guarantees
against adversaries with arbitrary side information. Methods are
developed to approximate a given filter by a differentially private
version, so that the distortion introduced by the privacy mecha-
nism is minimized. Two specific scenarios are considered. First,
the notion of differential privacy is extended to dynamic systems
with many participants contributing independent input signals.
Kalman filtering is also discussed in this context, when a released
output signal must preserve differential privacy for the measured
signals or state trajectories of the individual participants. Second,
differentially private mechanisms are described to approximate
stable filters when participants contribute to a single event stream,
extending previous work on differential privacy under continual
observation.

Index Terms—Estimation, filtering, Kalman filtering, privacy.

I. INTRODUCTION

A rapidly growing number of applications require users to

release private data streams to third-party applications

for signal processing and decision-making purposes. Exam-

ples include smart grids, population health monitoring, online

recommendation systems, traffic monitoring, fuel consump-
tion optimization, and cloud computing for industrial control

systems. For privacy, confidentiality or security reasons, the
participants benefiting from the services provided by these

systems generally do not want to release more information than

strictly necessary.
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In a smart grid for example, a customer could receive better

rates in exchange of continuously sending to the utility com-

pany her instantaneous power consumption, thereby helping

to improve the demand forecast mechanism. In doing so

however, she is also informing the utility or a potential eaves-

dropper about the type of appliances she owns as well as her

daily activities [3]. Similarly, individual private signals can

be recovered from published outputs aggregated from many

users, and anonymizing a dataset is not enough to guarantee

privacy, due to the existence of public side information. This

is demonstrated in [4], [5] for example, where private ratings

and transactions from individuals on commercial websites

are successfully inferred with the help of information from

public recommendation systems. Emerging traffic monitoring
systems using position measurements from smartphones [6] is

another application area where individual position traces can

be re-identified by correlating them with public information

such as a person’s location of residence or work [6], [7]. Hence,

the development of rigorous privacy preserving mechanisms

is crucial to address the justified concerns of potential users
and thus encourage an increasing level of participation, which

can in turn greatly improve the efficiency of these large-scale
systems.

Precisely defining what constitutes a breach of privacy is a
delicate task. A particularly successful recent definition of pri-
vacy used in the database literature is that of differential pri-
vacy [8], which is motivated by the fact that any useful informa-
tion provided by a dataset about a group of people can compro-

mise the privacy of specific individuals due to the existence of
side information. Differentially private mechanisms randomize

their responses to dataset analysis requests and guarantee that

whether or not an individual chooses to contribute her data only

marginally changes the distribution over the published outputs.

As a result, even an adversary cross-correlating these outputs

with other sources of information cannot infer much more about

specific individuals after publication than before [9].
Most work related to privacy is concernedwith the analysis of

static databases [8], [10]–[12], whereas cyber-physical systems

clearly emphasize the need for mechanisms working with dy-

namic, time-varying data streams. Recently, the problem of re-

leasing differentially private statistics when the input data takes

the form of a binary stream describing event occurrences aggre-

gated from many participants has been considered in [13]–[15].

This work forms the basis for the scenario studied in Section VI,

and is discussed in more details in Section VI-C. However,

most of this paper is devoted to a different situation where par-

ticipants individually provide real-valued signals. A differen-

tially private version of the iterative averaging algorithm for

consensus is considered in [16]. In this case, the input data to

protect consists of the initial values of the participants and is

0018-9286 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



§ Dataset d contains n numbers (ex: salaries): d1, …, dn

§ Query q, ex:

§ Lp-sensitivity of a query q: 𝑅 → 𝑅#

§ Laplace mechanism                                           is ε-DP

, iid on each component

§ Gaussian mechanism                                                       is (ε,δ)-DP

TWO BASIC 
DIFFERENTIALLY PRIVATE MECHANISMS

�pq := max

d,d0:Adj(d,d’)
kq(d)� q(d0)kp

q(d) + Lap(�1q/✏)

q(d) =
1

n

nX

i=1

di

�,✏ 2 O(
p

ln(1/�)/✏)

Lap(b) pdf:
1

2b
e�|x|/b, std. dev.

p
2b

d q(d) + w

q(d) + �,✏ �2q N (0, Im)



• Adjacency Adj(u,u’) between input signals
• Query ⟷ system/filter G
• Lp-sensitivity of G:

• Then the signal                       is
• ε-DP if w is Laplace white noise vector with wk,i ~ Lap(Δ1G/ε)

• (ε,δ)-DP if w is Gaussian white noise with 

GENERALIZATION TO 
DISCRETE-TIME DYNAMIC SYSTEMS

�pG = max

Adj(u,u’)
kGu�Gu0kp

where kxkp =

 1X

k=0

|xk|pp

!1/p

, |v|p =

 
nX

i=1

|vi|p
!1/p

y = Gu+ w

⌃ = (�,✏�2G)2In

+

uk 2 Rm

wk

G
yk = (Gu)k + wk 2 Rn



§ Approximate filter                        by a differentially private version

§ Adjacency relation
§ n input signals, 1 per user

EXAMPLE

Adjb(u, u0) i� for some i, kui � u0
ik2  B, and uj = u0

j for all j 6= i.

y =
mX

i=1

Giui

G1

G2

Gm

+

y

u1

u2

um



§ For this adjacency relation:

§ is the l2 ⟶ l2 incremental gain of Gi

§ if Gi is linear

§ with w a WGN s.t.
is (ε,δ)-DP

§ Output perturbation mechanism

EXAMPLE (CONT.)

Adjb(u, u0) i� for some i, kui � u0
ik2  B, and uj = u0

j for all j 6= i.

�2G = max

i

(
sup

kui�u0
ik2B

kGiui �Giu
0
ik2

)

�2G  max

i
{�2(Gi)} B

�2(Gi)

kGik1

⌃ = �2In, � = �,✏ B max

i
{�2(Gi)}y = Gu+ w

y =
mX

i=1

Giui
G1

G2

Gm

+

y

u1

u2

um



INPUT AND OUTPUT PERTURBATION

Input perturbation 
mechanism

Output perturbation 
mechanism

G1

G2

G3

+

w

w

w

u1

u2

u3

G1

G2

G3

+

u1

u2

u3

y
w

y

w ⇠ N (0,�2)

� = �,✏B

w ⇠ N (0,�2
)

� = �,✏B max

1im
{kGik1}

MSE = �2
MSE = �2

mX

i=1

kGik22



INPUT AND OUTPUT PERTURBATION:
EXAMPLE

MA

MA

MA

+

u1

u2

um

y
yt =

mX

i=1

1

l

tX

k=t�l+1

ui,k

MSE for input perturbation: 2
�,✏B

2m

l

MSE for output perturbation: 2
�,✏B

2kGik22 =
1

l
kGik1 = 1

Output perturbation better than input perturbation when m > l

m users

Average over l steps



§ Approximate F by a differentially private system
§ Add noise w proportional to sensitivity of pre-filter G for 

privacy (sensor/channel design)
§ Post-processing with H: estimation (equalization) problem
§ Design Variables: G, H (w fixed by       ) 
§ Related work: 

§ [Li and Miklau 2010], [Tanaka, Kim, Parrilo and Mitter 2015]

A MORE GENERAL 
APPROXIMATION ARCHITECTURE

HG

F

eu

y

-

w

ŷv

+

+

+

�G



§ Often we have a (public) model of the input signals
§ Ex: Average velocity estimation using individual location traces

§ Preserve privacy of measured location signals yi,t or the actual 
2D trajectories (position & speed) xi,t

MODEL BASED ESTIMATION:
AVERAGE SPEED MONITORING EXAMPLE

xi,t+1 =


1 Ts

0 1

�
xi,t + �i1


T 2
s /2 0
Ts 0

�
wi,t,

yi,t =
⇥
1 0

⇤
xi,t + �i2

⇥
0 1

⇤
wi,t

Estimate
1

n

nX

i=1

xi,2,t



§ For Kalman Filtering, we have additional public information about the 
dynamics generating the user signals

§ Estimation objective:

§ Adjacency relation:

§ Hard to distinguish between two sufficiently close state trajectories of a user

DIFFERENTIALLY PRIVATE
KALMAN FILTERING

xi,t+1 = Aixi,t +Biwi,t

yi,t = Cixi,t +Diwi,t

x1

x2

xn

A
ggregator / Estim

ator

y1

y2

yn

ẑ

min
ẑ

lim
T!1

1

T

T�1X

t=0

E
⇥
kzt � ẑtk22

⇤
zt =

nX

i=1

Lixi,t

Adj�(x, x0) i� for some i, kxi � x0
ik2  �i, and xj = x0

j for all j 6= i.



§ Input or output perturbation to the standard Kalman filter

§ Adjacency relation:

§ For the input perturbation scheme, can take into account the additional 
privacy-preserving noise in the redesign of the KF
§ But this slows down convergence

KALMAN FILTERING 
DIFFERENTIALLY PRIVATE MECHANISMS

x1

x2

xn

ẑ

G1

G2

Gn

+

y1

y2

yn

Input pert.

Output pert.

Adj�(x, x0) i� for some i, kxi � x0
ik2  �i, and xj = x0

j for all j 6= i.

xi,t+1 = Aixi,t +Biwi,t

yi,t = Cixi,t +Diwi,t



§ For the output perturbation scheme, can redesign the filter to trade-off the 
estimation error and the         norm of the filter
§ Overall MSE is  

§ Multi-objective                 optimization problem
§ Lyapunov shaping using Linear Matrix Inequalities
§ Distinguish between stable and unstable dynamics

FILTER  REDESIGN  FOR  
OUTPUT  PERTURBATION  SCHEME

 
nX

i=1

⇥TF (wi � ei)⇥22

!
+ ⇤(�, ⇥)2 max

1in
{⌅2i ⇥TF (xi � ẑi)⇥21}
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ẑ
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+
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yn

Output pert.
xi,t+1 = Aixi,t +Biwi,t

yi,t = Cixi,t +Diwi,t

H2/H1

H1

Post-filter (not 
discussed)



§ Average velocity estimation using individual location traces

AVERAGE SPEED MONITORING EXAMPLE

xi,t+1 =


1 Ts

0 1

�
xi,t + �i1


T 2
s /2 0
Ts 0

�
wi,t,

yi,t =
⇥
1 0

⇤
xi,t + �i2

⇥
0 1

⇤
wi,t

Estimate
1

n

nX

i=1

xi,2,t

⇤ = 100m

⇥ = ln 3

� = 0.05,

Ts = 1s

⌅i1 = ⌅i2 = 1

n = 200



SPEED  MONITORING
INPUT  VERSUS  OUTPUT  ARCHITECTURE
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ẑ

G1

G2

Gn

+

y1

y2

yn

x1

x2

xn

ẑ
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SPEED MONITORING
UTILITY/PRIVACY TRADEOFF



SPEED MONITORING
CONVERGENCE/PRIVACY TRADEOFF
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Fig. 4.10 a Microscopic simulation of a traffic breakdown and stop-and-go waves caused by an
on-ramp. Shown is the local speed. b–e flow-density data where the measurement process was
simulated using data of “virtual” detectors and different aggregation methods. b Flow Q = 1/⟨!tα⟩
versus density Q/V (the standard procedure), c flow Q versus density Q/VH , d flow Q∗ = ⟨1/!tα⟩
versus density Q∗/VH , e flow Q versus density Q∗/VH . For comparison, plot f displays the point
cloud obtaining by using the actual local values of flow and density, and the fundamental diagram
is plotted as solid line in b–f

(Fig. 4.10e) consistently yields the least biased result in the simulations although
the unbiased flow is given by the harmonic mean Q (Eq. 3.6) of the microscopic
flow, and not by the arithmetic average Q∗ (Eq. 3.12). In any case, the difference
between the true flow-density points (f) and the data shown in (b)–(e) is caused by
the measurement process. The difference between the flow-density data (f) and the
fundamental diagram, however, is due solely to non-equilibrium effects. This can
be concluded since identical driver-vehicle units were simulated (for details, see
Fig. 11.4 in Part II where this simulation is discussed in detail).
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Differentially Private Traffic Estimation with Hydrodynamic Models

A. Dynamic Model for Density Estimation

B. Measurement models and sanitization of observations (input 
perturbation mechanisms)

C. EKF-based designs

OUTLINE



§ Based on a conservation law (for vehicles)

§ Flow = traffic velocity x density  

§ Numerical discretization gives finite dimensional dynamic model for ⍴

MACROSCOPIC TRAFFIC FLOW MODEL

d

dt

Z
x2

x1

⇢

tot

(x, t)dx = q
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§ First-order models (LWR = Lighthill, Whitham, Richards):
§ Assume a static relation between traffic flow or velocity and density = 

“fundamental diagram”
§ Ex: Cell-transmission model (CTM), triangular f. d.

§ Godunov numerical method with triangular f.d.

MACROSCOPIC FLOW MODEL:
NUMERICAL FLUX

q(⇢)

ate due to the existence of discontinuities (shock waves)
in the solutions. Among various discretization methods
available for conservation laws, we have finite volume
methods that divide the road into cells, and compute
the average density in each cell recursively. We thus
divide the road into I cells numbered 1, . . . I. We add
two so-called ghost cells numbered 0 and I + 1, one on
each side, to handle boundary conditions, which will be
discussed later. The discrete-time conservation law for
vehicles corresponding to the integral form (1), is then

⇢

i

tot,k+1

= ⇢

i

tot,k

+
⌧

L

i

(f i�1

tot,k

� f

i

tot,k

), for i = 1, . . . I,

(3)
where ⌧ is a timestep, L

i

is the length of cell i, f

i

tot,k

is the total so-called numerical flux out of cell i (i.e.,
through the interface i ! i + 1) during period k, and
⇢

i

tot,k

is the total vehicle density in cell i at period k,
i.e., during the time interval [k⌧, (k + 1)⌧). Note here
that the numerical flux f

i

tot,k

is di↵erent in general from
the flow q

tot

(x
i|i+1

, t), where x

i|i+1

denotes the location
of the interface between cells i and i + 1. More details
are provided below.

To complete the model, we then need to introduce
a hypothesis on driving behavior, typically expressed in
the form of a relation between flow or speed and density.
However, these relations must normally be expressed in
terms of lane-averaged, also called e↵ective, quantities.
Hence we define the lane-averaged tra�c density ⇢(x, t)
(say, in vehicles per mile per lane), lane-averaged tra�c
speed v(x, t), and lane-averaged tra�c flow q(x, t) =
⇢(x, t)v(x, t) [20, Chapter 7]. If we denote by ⇢
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(x, t),
v
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(x, t) and q
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(x, t) the density, speed and flow in lane
j at a position x, and recalling that �(x) is the number
of lanes, then we have the relations
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The discretization (3) remains valid with the e↵ective
(lane-averaged) density and flux ⇢

k

and f

k

replacing the
total quantities, except in regions where the number of
lanes changes. For the discrete model, we define �

i to
be the number of lanes at the interface i ! i + 1. Any
location where the number of lanes changes is always as-
sumed to fall inside a cell. The modified discrete model
for e↵ective quantities with a varying number of lanes
is then [20, p. 74]
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We can now provide an expression of the e↵ective nu-

merical flux f
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through the interfaces. In first-order
models, proposed initially by Lighthill and Whitham
[11] and independently by Richards [15] (LWR models),
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associated parameters.

the e↵ective density is a fundamental quantity and a
su�cient description of the local tra�c state, since the
e↵ective speed and thus also the e↵ective flow are as-
sumed to be known static functions of it. The assumed
expression of flow in terms of density q(⇢) is called the
fundamental diagram, and can be obtained for a specific
road segment for example by fitting observational data.

In this paper we work for concreteness with trian-
gular fundamental diagrams, which are arguably the
most popular in practice. The resulting LWR model
is also called the Cell-Transmission Model (CTM) [3],
and can be e�ciently simulated. For simplicity we make
the additional modeling assumption that each cell has
the same fundamental diagram, whose parameters are
assumed known. The triangular fundamental diagram
can be expressed as follows

q(⇢) =

(
v

f

⇢ if ⇢  ⇢

C

= w

vf+w

⇢

J

,

w(⇢
J

� ⇢) if ⇢

C

< ⇢  ⇢

J

,

where ⇢

J

is the maximum or “jam” density on the road
segment, and ⇢

C

is the critical density at which the max-
imum flow q

max

= v

f
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C

is attained. The two cases cor-
respond to free and congested tra�c respectively, with
v

f

the free tra�c speed, and w the congestion wave
propagation speed. Fig. 1 illustrates these definitions.

For this triangular fundamental diagram, a standard
numerical method, the Godunov method, corresponds
to using the following numerical flux in (4):
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Note that this flux can be interpreted as the minimum
between the maximum flow S(⇢) = min{⇢v
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, q

max

} that
can be sent from cell i � 1 and maximum flow R(⇢) =
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)} that can be received by cell i.
Starting from the deterministic CTM model, we now

form the following stochastic state-space model of the
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FUNDAMENTAL DIAGRAM CALIBRATION

Figure 2: All aggregated measurements of the data set

Figure 3: Density repartition of data

k has a supply of the flow coresponding of the free tra�c flow if the mode is
free, or limited by the maximum flow if congested, see Figure ??. The cell k+1
has a demand to compensate its own flow if congested tra�c, or maximum flow
if not, as shown in Figure 4. The real flow will be the limiting value between
supply and demand. We can write these constraints as :

6

[Mobile Millenium dataset]



§ Set-up the dynamic model for estimation (here with an 
Extended Kalman Filter)

§ Introduce random noise to account for imperfections of the 
deterministic model

§ White noise driven boundary conditions
§ State of the ghost cells to estimate as well in general

STOCHASTIC DYNAMIC MACROSCOPIC MODEL

⇢0k+1 = ⇢0k + ⇠0k, ⇢I+1
k+1 = ⇢I+1

k + ⇠I+1
k ,

⇢ik+1 = ⇢ik +
⌧

Li

✓
�i�1

�i
F (⇢i�1

k , ⇢ik)� F (⇢ik, ⇢
i+1
k )

◆
+ ⇠ik



Differentially Private Traffic Estimation with Hydrodynamic Models

A. Dynamic Model for Density Estimation

B. Measurement models and sanitization of observations (input 
perturbation mechanisms)

C. EKF-based designs

OUTLINE



§ Single-loop detectors report every T seconds for each lane:
§ Vehicle count c(t) for the last period
§ Percentage occupancy o(t) for the last period

§ → Pseudo-measurements (j = lane #):

§ g = g-factor (average vehicle length), requires calibration (in fact 
g(x,t))

§ Various measurement models possible (i = sensor location #)

MEASUREMENT MODELS

qj(t) ⇡
cj(t)

T

, ⇢j(t) ⇡
oj(t)

g

, vj(t) ⇡ g

cj(t)

oj(t)T

y

i
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i

�iX

j=1

o

i
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i
k + ⌫

i
k

�i
k :=

1

T�i

�iX

j=1

cij,k = F (⇢ik, ⇢
i+1
k ) + ⌫ik (flow measurement model)

(density measurement model #1,
problematic for privacy)



§ GPS data can be used to simulate static sensors, similarly to the virtual trip 
lanes of Hoh. et al.

§ Allows the same algorithms to be used, although now we can have speed 
measurements from GPS

§ Sensibility analysis is similar to that of o (or o/c)

§ Other schemes might be possible but require a careful analysis of how to 
spend the privacy budget

MEASUREMENT MODELS: GPS DATA



§ Sensitivity computation for flow measurements 
§ 2 sets of trajectories differing by the trajectory of a single user

§ à add Gaussian white noise with variance                  to each single-loop 
detector count signal to get a set of (𝛆,𝛿)-differentially private signals

§ Noise variance grows linearly with number of sensor locations (trip lines). 
But valid for arbitrary variation in a user’s trajectory (strong)

SANITIZATION OF FLOW MEASUREMENTS
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SANITIZATION OF 
OCCUPANCY MEASUREMENTS

§ To use directly the occupancy measurements, let us weaken the guarantee 
by strengthening the conditions for adjacency. Impose a limit on the impact 
that one trajectory can have on the occupancy measurements

§ Adj(d,d’) if for each sensor location i, there is at most two pairs (k, j) or 
(time, lane) such that

𝑜',)* 𝑑 − 𝑜',)* 𝑑-

min 𝑜',)* 𝑑 , 	
  𝑜',)* 𝑑-
≤ 𝛾

§ Bound relative variations of occupancy by parameter ɣ

§ Then 𝑜4 = 𝜆𝑜 with 𝜆 log-N(0,𝜅8,9 2𝑀) for M sensors is (𝜖, 𝛿)-DP  (note: 
sign-preserving mechanism)

§ How to set ɣ ?
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MODELING THE EFFECT OF ONE CAR VARIATION 
ON OCCUPANCY MEASUREMENTS

G(o) = max{ |o-o’| / min(o,o’) | } for measured occupancy o § How to set ɣ ?



RELATIVE VARIATION OF OCCUPANCY
MOBILE CENTURY DATASET

§
>?,@ A B>?,@ AC

DEF >?,@ A ,>?,@ AC
= 20% satisfying 96% of data under this model 

⇒𝑜#JK=0.3132
§ Limitation of occupancies for 100% of data protection under this 

model: 𝑜 ← min 𝑜, 𝑜#JK 	
  



§ An alternative density measurement model for the initial adjacency 
relation (change one trajectory arbitrarily)
§ Use of      directly is problematic for differential privacy 

§ Requires a traffic mode estimate

§ Tolerates less precise measurements     
§ Mode estimate can be improved with HMM filter

AN ALTERNATIVE 
DENSITY MEASUREMENT MODEL
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(density pseudo-measurement model)
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yik
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ate due to the existence of discontinuities (shock waves)
in the solutions. Among various discretization methods
available for conservation laws, we have finite volume
methods that divide the road into cells, and compute
the average density in each cell recursively. We thus
divide the road into I cells numbered 1, . . . I. We add
two so-called ghost cells numbered 0 and I + 1, one on
each side, to handle boundary conditions, which will be
discussed later. The discrete-time conservation law for
vehicles corresponding to the integral form (1), is then
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where ⌧ is a timestep, L

i

is the length of cell i, f

i

tot,k

is the total so-called numerical flux out of cell i (i.e.,
through the interface i ! i + 1) during period k, and
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is the total vehicle density in cell i at period k,
i.e., during the time interval [k⌧, (k + 1)⌧). Note here
that the numerical flux f
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is di↵erent in general from
the flow q

tot

(x
i|i+1

, t), where x

i|i+1

denotes the location
of the interface between cells i and i + 1. More details
are provided below.

To complete the model, we then need to introduce
a hypothesis on driving behavior, typically expressed in
the form of a relation between flow or speed and density.
However, these relations must normally be expressed in
terms of lane-averaged, also called e↵ective, quantities.
Hence we define the lane-averaged tra�c density ⇢(x, t)
(say, in vehicles per mile per lane), lane-averaged tra�c
speed v(x, t), and lane-averaged tra�c flow q(x, t) =
⇢(x, t)v(x, t) [20, Chapter 7]. If we denote by ⇢

j

(x, t),
v

j

(x, t) and q
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(x, t) the density, speed and flow in lane
j at a position x, and recalling that �(x) is the number
of lanes, then we have the relations
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The discretization (3) remains valid with the e↵ective
(lane-averaged) density and flux ⇢

k

and f

k

replacing the
total quantities, except in regions where the number of
lanes changes. For the discrete model, we define �

i to
be the number of lanes at the interface i ! i + 1. Any
location where the number of lanes changes is always as-
sumed to fall inside a cell. The modified discrete model
for e↵ective quantities with a varying number of lanes
is then [20, p. 74]
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We can now provide an expression of the e↵ective nu-

merical flux f
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through the interfaces. In first-order
models, proposed initially by Lighthill and Whitham
[11] and independently by Richards [15] (LWR models),
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the e↵ective density is a fundamental quantity and a
su�cient description of the local tra�c state, since the
e↵ective speed and thus also the e↵ective flow are as-
sumed to be known static functions of it. The assumed
expression of flow in terms of density q(⇢) is called the
fundamental diagram, and can be obtained for a specific
road segment for example by fitting observational data.

In this paper we work for concreteness with trian-
gular fundamental diagrams, which are arguably the
most popular in practice. The resulting LWR model
is also called the Cell-Transmission Model (CTM) [3],
and can be e�ciently simulated. For simplicity we make
the additional modeling assumption that each cell has
the same fundamental diagram, whose parameters are
assumed known. The triangular fundamental diagram
can be expressed as follows
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is the maximum or “jam” density on the road
segment, and ⇢
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is the critical density at which the max-
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is attained. The two cases cor-
respond to free and congested tra�c respectively, with
v

f

the free tra�c speed, and w the congestion wave
propagation speed. Fig. 1 illustrates these definitions.

For this triangular fundamental diagram, a standard
numerical method, the Godunov method, corresponds
to using the following numerical flux in (4):
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Note that this flux can be interpreted as the minimum
between the maximum flow S(⇢) = min{⇢v

f

, q
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} that
can be sent from cell i � 1 and maximum flow R(⇢) =
min{q
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)} that can be received by cell i.
Starting from the deterministic CTM model, we now

form the following stochastic state-space model of the
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§ Gaussian mechanism not adapted to non numerical outputs such as 
mode estimate      (Congested or Free)

§ Exponential mechanism: 
§ Generic output space R for the possible answers to a query
§ Define a score function s(d,r) for the response r when the dataset is d
§ Pick the answer r with probability distribution

§ This mechanism is        - differentially private, with 

A DIFFERENTIALLY PRIVATE MECHANISM
FOR GENERAL DATA TYPES

mi
k

exp(✏s(d, r))drR
R exp(✏s(d, r))dr

.

2✏�s

�s = sup
r2R

sup
Adj(d,d0)

|s(d, r)� s(d0, r)|



§ We define the score function (high for high density)

§ Theorem:  A mechanism publishing the traffic mode        at each period, by 
generating these outputs randomly and independently with distribution

is                       - differentially private.

§ Pf idea: a single user can change the score function at most once at each 
sensor location, and by at most         (this requires bounding the occupation 
time of any car by       )  

APPLICATION TO 
TRAFFIC MODE ESTIMATION

mi
k

4✏

 
MX

i=1

1

�i

!

2/�i

0

@
y

i
k =

1

g�

i

�iX

j=1

o

i
j,k

1

A

g⇢c

sik(C) = yik/⇢c (high for high density)

sik(F) = 2� yik/⇢c (high for low density)

P(mi
k = C) =

exp(✏sik(C))

exp(✏sik(C)) + exp(✏sik(F))



Differentially Private Traffic Estimation with Hydrodynamic Models

A. Dynamic Model for Density Estimation

B. Measurement models and sanitization of observations (input 
perturbation mechanisms)

C. EKF-based designs

OUTLINE



EXAMPLE OF DP OUTPUT
DIRECT OCCUPANCY MEASUREMENTS

𝜖 = ln 2 ,𝛿 = 0.05
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FINAL ARCHITECTURE: FLOW INVERSION MODEL
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EXAMPLE OF DP OUTPUT
FLOW INVERSION MODEL

𝜖 = ln 2 ,𝛿 = 0.05



§ Many cyber-physical applications raise privacy concerns that need to be 
addressed to encourage user participation

§ Traffic information systems are an example of such sensitive systems

§ Characterizing privacy-utility tradeoffs requires a quantitative definition of 
privacy

§ Need privacy-preserving mechanisms for model-based data assimilation 
with various types of dynamic systems and data

§ Further work needed to provide quantitative privacy guarantees for traffic 
information with reasonable performance impact

SUMMARY


