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Background & History

How is traffic
distributed in a
(urban) traffic
network and why?

When? Car?
Which route? © g

Safety, reliability, toll, y P ﬁ gthere am I?
scenery, ... _,, ;'fi'-“:\- 1o CUIEA fat : Next turn?




Transportation Network Modeling

Transportation Network Modeling (Traffic Assignment):
predict flow distribution in a traffic network, given the
total demand (e.g., during the peak period)

Traffic Equilibrium (Frank Knight, 1924)
Wardrop First Principle: User Equilibrium (Wardrop,
1952)

The journey times on all the routes actually used are equal, and
less than those which would be experienced by a single vehicle on
any unused route

Wardrop Second Principle: System Optimal (Wardop,
1952)

At equilibrium, the average journey time is minimum

Close connection with Nash equilibrium (John Nash,
<Beautiful Mind>)



Dynamic Traffic Assignment (DTA)

* Intelligent Transportation Dynamic User Equilibrium (DUE)
Systems (ITS) leads to ~
Dynamic Traffic Assignment

« Two major components:
Traffic dynamics and traveler

behavior Cournot-Nash Equilibrium

* Three types of players i ;-—‘%’W‘

_ Freight ¢ ¥ = ? # ié“,iaceaﬁ%

Literature: Merchant and Nemhauser, * 3 el @ N
1978; Friesz et al, 1993; Ran and
Boyce, 1994; Lo and Szeto, 2002; Dynamic System Optimum (DSO)
Mahamassani, 2001; Ben-Akiva et al., |
2001; Ban et al., 2008, 2009, 2012a, ’

2012b; Ma et al., 2014; Ma et al., Transit

2015a, 2015b; Network PDE
approach (Bressan and Nguyen, 2015)



Path-based DUE Condition

DUE Condition (Ran and Boyce, 1996):

If, for each OD pair at each instant of time, the actual travel times experienced by
travelers departing at the same time are equal and minimal, the dynamic traffic
flow over the network is in a travel-time-based dynamic user equilibrium (DUE).

n, ) =7")= f ()=0
n, ) >7z"(@)= f7(t)=0
f = (t) : path flow for path p between OD pair rs at time instant t

17, (t) : path travel time for path p between OD pair rs at time instant t

7" (t) : minimum path travel time for all paths between OD pair rs at time instant t

L

0<py (1) -="(M)] L f, (1)20,¥r,5,p,te[0,T] NCP Formulation (infinite dimensional)

ZZE[f;S(t)—fprs*(t)]ngs*(t)zo VI Formulation (infinite dimensional)

rs p



Path Travel Time

* |nstantaneous Path Travel Time
vy (t)=) 7,(t)

 |deal (Actual) Path Travel Time

e (©) =m0 () + 7,475 (1)

_____
el



v (1) =7, (t)+7, () +7,(t) =9+ 4.5t

7(t)
n(t)
7(t)

7,(t) =2+t
r,(t)+r [t+7,(t)]=(2+t)+7,(2+2t) = (2+1) +[3+2(2+2t)] =9+ 5t
7o)+ [t+77° ()] = (9+5t) +7,(9+6t) = (9+5t) +[4+1.5(9 + 6t)] = 26.5+ 14t



Link-Node Based DUE Condition

 If, from each decision node to every destination node at
each instant of time, the actual travel times for all the routes
that are being used are equal and minimal, then the dynamic
traffic flow over the network is in a travel time based dynamic

user equilibrium (DUE) state.
P [+ Tj )

~ Linkij, Tji (t) >
> >(j e i(i )
Timet, p; (t)CD\ —
7Z_is (t)

7; () + [t + z; (0] = T (t) = p;(t)=0
7; (1) + m [t + z; ()] > 7o (t) = p;(t)=0

0< p; (1) L{z; () + 7 °[t+7;(t)]- 7" (1)} = 0<— NCP (infinite dimensional)

Ban, X., Liu, X., Ferris, M.C., and Ran, B., 2008. A link-node complementarity model
and solution algorithm for dynamic user equilibria with exact flow propagations.
Transportation Research Part B, 46(3), 389-408.



Types of DUE

Simulation-based vs Analytical DUE models
Instantaneous (reactive) vs. actual (predictive) DUE
Path-based vs Link-based DUE models
Continuous-time vs. discrete-time DUE models
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Continuous-time vs. Discrete-time

u0!1r.>b<:m!1ﬂ|euv

Continuous-
time DTA

Numerical
Solution

Continuous-
time DTA
Solution

Discrete-time
DTA

Discrete-time
DTA Solution

Queue

Eg: a-PQ model: a continuous-time system

ift € (0,7°)

s

" 0
g(t) = _ \
k max (p(t — 7°) = C, —aq(t)) t > 7°

Numerical Solutions

Queue, o.=1000

—LCS

—*— Ex-o. h=0.8M1000hour
—— Ex-o. h=1.5/1000hour
—+— Ex-c. h=2_4/1000hour
—S— Ex-o. h=4.8/1000hour

1 | |
207 208 2.09 21 2N 212 213 214 215 2.16
time (hour)

Ma, R., Ban, X., Pang, J.S., and Liu, X., 2014. Time discretization of continuous-time
dynamic network loading models. Networks and Spatial Economics, 1-23.




Modeling DUE

mc o
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A mathematical
framework that
can properly
capture both?

r choi
Jser choice User VI/NCP
model equilibrium (optimization)
(behavioral) q P
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DUE Literature (Analytical Formulations)

* Most on discrete-time DUE problems

« A handful on continuous-time DUE problems: modeling
techniques, solution techniques, among others

— Optimal control method

* Friesz et al. (1989), Ran and Shimazaki (1989), Ran et al. (1993) , Lam et
al. (1995)

— Variational inequality (V1) method

* Friesz et al. (1993), Smith (1993), Ran and Boyce (1994, 1996), Bliemer and
Bovy (2003)

 There has been a lack of a proper mathematical
framework to capture both aspects of DUE, choice
behavior and system dynamics
— Discretization scheme of continuous-time models

— Convergence of continuous trajectories constructed from discrete
time solutions



Differential Complementarity System (DCS)

 An ODE parameterized by an algebraic variable that is
required to be a solution of a finite dimensional state
dependent complementarity problem:

s da(t)

T(t
£(t) dt

= f(t,z(t), u(t)) dynamics
0 < u(t) 1L F(t,z(t),u(t)) = 0 complementarity constraint
z(0) =z initial condition,

 DCS is a special case of the Differential Variational
Inequality (DVI); see Pang and Stewart (2008) and Friesz
(2010) for DVI

* Focus on a special DCS (Pang and Stewart, 2008)
e x(t) = f(t,x) + B(t,x)u <— Dynamics linear on u
e 0<u(t) LG(tx)+ F(u(t))<— Complementarity separable on u

14



« Let Q=[0, T]xR" and two conditions

(A)f,B,and G are Lipschitz continuous functions on £2 with Lipschitz constants
L;, Ly, and L, respectively;
(B) B 1s bounded on Q@ with o, = sup [|B(t,x)| < oc.
(tx)=f2
« Convergence + Solution existence

Theorem 7.1 Let K < W™ be a nonempty closed convex set and let (f.B,G)
satisfy conditions (A) and (B). Suppose that there exist positive scalars cox, ¢1x,
Cou €14 and h such that for all h € (0,h]l and alli =0,1,... Ny,

0 hit1
I [

I < cox +ax 120 and | < cow+cra XV (7.5)

There is a sequence {h,} | 0 such that the following two limits exist: ¥ — ¥
uniformly on [0, T and ' s T weakl vin L%(0, T). Furthermore, under either

one of the following two conditions:

(a) F(u) = V(Eu), where E € R and W - RE — W™ is Lipschitz conti-
nuous, and a constant ca,, > ) exists such that for all h sufficiently small,

I EH&.EH _E“h.i | < hecou, (?.6)

(b) F(u) = Du for some positive semidefinite matrix D,
all such limits (X, u) are weak solutions of the initial-value DV (6.2).
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User choice User
model equilibrium | L VI'/ NCP”
(behavioral) DCS™ with Time
delay:
- A mathematical
| ! e framework that
- I PDEs / can properly
ratic 5 ., — ODESs with capture both
dynamics - & v Owddw time delay
(physical) | Gt iy T
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*VI:

Variational Inequality

**NCP: Nonlinear Complementarity Problem
***DCS: Differential Complementarity System




Instantaneous DUE: Simplification

 Route choice condition of instantaneous DUE: based on

prevailing traffic conditions )

. Linkij, ¢, (t) f
—_—s(l — S ) e
Timet, p; (t)Q\ — @
7" (t)
0< p;j(t) L{c;(t)+7" () —n"(t)}=0 «<——— NCP (infinite dimensional)

» Traffic dynamics: Point Queue Model

.+ ADCS o D
(1) = u(t)+p(t—te) —C o
ff_.( ,] u(t) f_rp[ 0) Observations:
0 <wu(t) L gq(t) =0, Discontinuities may occur when
v(t) =C —u(t) queue length changes from 0 to

: 0 . /S A1 ‘ nonzero or vice-versa.
cij(t) =7 + (Cij )™ qis(t)

Ban, X., Pang, J.S., Liu, X., and Ma, R., 2012. Continuous-time Point-Queue Models in
Dynamic Network Loading. Transportation Research Part B, 46(3), 360-380.
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DCS Formulation for IDUE

> ()

s':(i,7)€L

<— Route Choice

0 <Pyt L T+ ——= +(t) —mi(t) = 0, V(i,j) € Ls
/2.}
0<mt) Lo Y, Py - Y vit)-di(t) 2 0, VieN, Flow
7:(6:1) €L JIELs conservation
0 = n3(t),
v(t) =C —u(t)
i) = ut)+ptCu)-C Queue

0 < u(t) L qt) >0
cij(t) = 75 4+ (Cij )~ (t)

<— dynamics

v () = pzf o Vi(t) if py(t) >0
[1 if p(t') =

t'+ 1 + q,-j-{t’ = t.

Destination-
<— pased exit
capacity




Solution Method — Time Decomposition

* We apply time decomposition based on free flow link times
— The DCS model is naturally decomposable to (link, destination pair)

— Due to instantaneous route choice, the route choice (i.e., to determine
the inflow to a link) and traffic dynamics (i.e., to load the inflow to
generate queue length and exit flow) can be done separately

— We divide the entire study period [0, T] to intervals based on free flow
link travel times, and then divide each interval into sub-intervals based
on the minimum free flow link travel time; same scheme as in Xu et al.
(1999)

— For the DCS in each sub-interval, the time delayed term (inflow) is
already determined in the previous sub-interval and thus known
- Example: three links with 70 =172 =2.5;7) =5; study period [0,
12.25]

A . 0 " A
|

| | A | A A | | A | A A | | '
2 35 45 7 85 95 12



Solution Method — Time Stepping

For each sub-interval, IDUE is a DCS without time delay
because the delay term (inflow to a link) is already
calculated in the previous sub-interval (or known as zero).

It is solved by the time stepping method for ODE (Shampine
and Thompson, 2001)

The traffic dynamics (network loading) and route choice
models are solved separately and iteratively

We apply the implicit discretization scheme

Discrete traffic dynamics model: an NCP that has at least
one solution

Discrete route choice model: an NCP that at least one
solution

NCPs are solved using the PATH solver in GAMS



Continuous Time Solution Trajectories

« Construct piece wise linear trajectory based on the discrete

solution, for state variables Solution
g trajectory
i | i+1 14 A
qs (t) = qij'“tI (qSt qst ), forte[t;,t;,,] ‘i’ \\\
1 a
t,t., :discrete t|me points i \i.

h=t_, —t :thelength of each discrete time step

Lt t ot G

« Construct piece wise constant trajectory based on the
discrete solution, for algebraic variables , Solution

trajectory
°(t Sl fort et ,t /
le( ) le 0 [ ! |+1]

. discrete time points

|’ |+1

h=t._, —t :the length of each discrete time step
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Assumption (A)

 For asubinterval |, p; (r - rE}-) Is the (known) bounded,

nonnegative, integrable inflow rate to link (i,)) for
destination s

Pj (f - f?j) IS equal to the weak limit of piecewise
constant functior p;"(t) ash |0, i.e., the following

conditions hold
(i) forall h>0and all r=0,1, ..., Ny,
p;h[f} p:i-_h_r-l A p%(.{g:h.r-l ‘[S) YVt e {IE;J t rh,_ fE'r (1 ]}h]

(i1) for every continuous function ¢ on I,

L"E‘ [1 .ﬁi}"{r}rp{r}dr [1 pii(0) p(t)dt.



Solution Existence and Convergence

Theorem 1. Suppose that the inflow rate f],-j-( “) satisfy assumption (A) on the interval I £ [t, T}]. There exist a sequence of
step sizes {hy} | 0, an absolutely continuous function q;(t) on I, and an integral function ;;(t) on I such that q“‘ q uniformly on I

and y“* — Uj on L%(I). Moreover, any such limit function q;; () is a weak solution of the ODE (3) in the sense that for any two times
>t m the subinterval I,

q;i(t2) — qy(ty) = ]:2 [max (f"fjfs -10) -G, —cxf]'(s])] ds = fﬁz (pu (S - Tg) — E,'u-(s_]) ds

1 8]

or equivalently, the ODE (3) and v;(t) = pj (r — r?j) — d’—“’j!—‘ hold for almost all t 1.

Theorem 3. Suppose that q:J — @y uniformly on I. Then a sequence of step sizes {h,} | 0 exists such that for all s € S and all
(i,j) € L, the following weak limits exist in L*(I): y”“ — V5, pehe pj, and if; " _ i, Moreover, any such limit ( ) sat-

y 1 P.’
if ijr Fij i
ISﬁE’S fﬂ] ﬂmiﬂSf ﬂH fEI

0<pj(t) and T+ q"( ) —+15(t) = 113 (t) = 0, V(i,)) € Ls
0<#i(t) and ) p; — ) Bt - di(t) =0, Vie N, (24)
JHij)eLls J:jELs
0 = #(t);
moreover, on any subinterval I' C I where p;; e _, — pj; uniformly, it holds that

fp; n[ +mm i5(e) [ de = 0



Numerical results

 Observation from the instantaneous route
choice behavior: @

— Some drivers from 1 to 3 will select link 1, =

ho will back to the origi 11 N3 /41////i
who will come back to the origin at 1 later on. \
7 \ fL/' 8

Example: a small network

Houte Choice fiom node 1t 3
2600 ¢

Inflow Riate (Link 11 {390
+  Inflow Rate (Link 3

tfin Trawel Time wia Link 1 {30

—+— Wlin Travel irme via Link 3

Origin: 1; destinations: 2,3,4;
T=70 min am |
Link exit capacity: 500 vph for link 4 and
1000 vph for all other links

=
=

E
= 50 =
. . . S s | E
Free flow travel time: 17 minutes for links z 1o
2 and 6, and 10 minutes for all other links ¢ F
Demand from node 1 to node 2 R “E
, 20
. . 24000 . 5
D(t) = maz(0, 1500 — (+—T/4)%).

T2

Time (rnin

Route choice 1to 3

24



A Real-World Case Study

112

 Real network near T,
the Kichijoji e
Station, Tokyo,

Japan
— Data Collected in
1997 0
 |IDUE model |
— A simplification of m; m‘
I 7 51~99: B - foh )/ — F =
ihe Introduced S | R

IDUE model [ —> Real-world

results Evaluation by Micro Simulation data
Model Calibration Criteria

25



Results

« Solving IDUE numerically
— Total time span: 130 minutes
— Time step length: 5.4 seconds
— ~100,000 linear complementarity problems (LCP)

« Evaluation by Micro Simulation Model Calibration Criteria
(Dowling et al., 2002)

— Percentages of satisfying links over all observed links

N 1 2 4 5 6 7 13
GEH Statistic 46% | 44% | 45% | 47% | 44% | 42% | 50% <85%
Volume-difference based | 39% | 43% | 42% | 42% | 40% | 40% | 44%

— Percentages of satisfying links over boundary links

N 1 2 4 5 6 7 13
GEH Statistic 85% | 88% | 89% | 89% | 86% | 86% | 86%
Volume-difference based | 90% | 88% | 86% | 85% | 82% | 81% | 83%

>85%

26



Path Travel Times

Ten randomly selected paths

Travel time (min)

20

18

16

14

]

o

o= ] = o o2]

I Average travel time in IDUE

[ |Actual average travel time from field dataf

Path number

27



Observations

* IDUE Is an oversimplified version of UDE
« Point queue model cannot capture spillback
* Route choice is based on instantaneous travel times
« |IDUE does not model traffic signals

* Despite all these, IDUE can predict:
« The volumes of 50% of the links accurately
* The volumes of 90% of the boundary links accurately

* The travel times of selected paths to a reasonable
extent

Ma, R., Ban, X., 2014. Continuous-time Instantaneous Dynamic User Equilibria on A Real
World Traffic Network. In Proceedings of the 94" Annual Meeting of Transportation Research
Board, Washington, DC.



Predictive DUE

Uses actual travel times (more complex)

More realistic traffic dynamics model, especially to
capture possible queue spillback

Queue spillback leads to flow interactions of adjacent
links, I.e., the time decomposition (separation) idea for
point queue model would not work here

Traffic dynamics model: capture traffic realism and also
be efficient for network (large-scale) applications

They should focus on capturing inter-link interactions,
l.e., link transmission model (LTM) type is preferred



Traffic Dynamics

Describe how traffic evolves over time and
space (surface traffic in particular)

LWR model (19505s)

Cell Transmission Model (CTM; Daganzo,
1994)

Link Transmission Model (LTM; Yperman,
2007)

Double Queue Model (DQM; Osorio, 2011,
Ma et al., 2014)




Double Queue Model

quljJ (t)= B; (t) - Vij (t- Ti?))
q.‘}' (t) = ; (t— Ti(j)) —Vj (t)

q; t)
U—
)

"l]
Inflow o ( Exit flow Vj; (t)

The two queues are not independent
Queue capacity: Upper-bound of upstream queue
Non-negativity: Lower-bound of downstream queue

The two queues work as “gates” to regulate flow in/out of
the link, respecting traffic flow dynamics

Ma, R., Ban, X., Pang, J.S., 2014. Continuous-time dynamic system optimal for single-destination
traffic networks with queue spillbacks. Transportation Research Part B 68, 98-122. 31



Double Queue Model

0=y (1) < py (1) < (1) <Q

Spillback happens wheng; (t) =Q; occurs

Spillback means congestion propagates to the entrance
of a link, I.e., the inflow will be determined by the
downstream condition (at an early time). This may or
may not restrict the inflow rate to the link.

Spillback does not mean traffic jam (or stoppage)

Spillback does not necessarily lead to restriction to the
Inflow, if the inflow is small enough



Yarrow Point

" Link 1: 2.9 mi

ke 0. .
(520) , : ’QWashlngton 520

/

Gardens ,
i <8ISS _ : Washm ton 520 ‘
MADISON PARK LR k 2:0:. 7 mi

NE-24th-St-

Number of variables

0 . Link 1 Link 2
4 per link 4 4
Exit flow v;(?)
71 |_> | | 2 per cell 156 42

30 cells per mi
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Nodal model with fixed discharging priorities

In practice, most intersections need to specify the
discharging priorities for the incoming, roads.

. k\ Low Priority

High Priority

High Priority

|\ = — >_

/f 7Z Low Priority ﬂ‘\ Low Priority

Ramp Stop-signed Intersection

o °
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Nodal model with fixed discharging priorities

« Discharging priorities at a general intermediate node

Discharging priority

Flow Discharged
with priorities at
upstream

Constrained
flow capacity at
downstream




Spillbacks in capacitated queue dynamics

- Exit flow cannot reach the one that defined in PQ model
when downstream link is congested.

Double-queue

Capacitated Queue
and spillbacks

Extension

link (n™,, i) link (1, i)
* §;(t) : exit flow ‘withheld’ due to the congestion at the
downstream link(s)

- 17; (t) - inflow that needs to be ‘withheld’ at a link because
the upstream gueue reaches its gueue storage capacity

36



DCS-based Nodal Model

“If-then-else” rules can be reformulated as
complementarity conditions; see Ban et al. (2012)

Min/max operators can be reformulated as
complementarity conditions, e.g.:

X=min(a,b) ©0<a-x1Lb—-x>0

Using complementarity to explicitly express the

relationship of state variables (q's) and auxiliary variables
(6 and )

Ban, X., Pang, J.S., Liu, X., and Ma, R., 2012. Continuous-time Point-Queue Models in
Dynamic Network Loading. Transportation Research Part B, 46(3), 360-380.

Ma, R., Ban, X., Pang, J.S., 2015. Continuous-time dynamic user equilibria for
single-destination traffic networks with queue spillbacks. Submitted to
Transportation Science (2"d revision).

37



DCS-based Nodal Model
( \

L

Juigiel! 1<m<m-—1

total withheld inflow  total withheld exit flow
\ to downstream links from upstream links )
at node i with lower priority

5um 4(t) = max (D.ﬁn:n_i(t]), m=1,---, M,

l

S i(t) 2 min [ Cromi—pomi(t), Y mis(t) — Y Gumy(t) |, m=1,--- M,

0 E n™ i J_ Z ]"hj

g:(i,5)EL 1<m<m—1

H
=
-
o
3
=]
P
—
L
g
==
-
e |
=3
e

0<  Oumi(t) L Gnpni(t) —Gpm i(t) 20 m=1,--- M,

where d,m ;(t) = Cum i — pnr i () — vprm i)

0 < qi(t) L pij(t) =0

()20, m=1,--- M,

38



The DUE Model

The double queue dynamics (link-level, constant delays)
The nodal model (network level)

Flow conservation
Route choice (time-varying, state-dependent delays)

Departure time choice

A DCS with time-varying, state-dependent delays
Approximation via constant-delays

39
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Numerical example

link Ti(i) T 6ii (jii
61|0|0 | 14 | 40
1-2 (4| 8 3 36
2-3 |1} 2 2 6
1-3 (6|12 4 72
34 11| 2 2

4-5 1| 2 2
35121 4 1
5710 0 0

* A simple network with one OD
pair, node 1to 5

 Dummy origin: node 6
 Dummy destination: node 7




Flow rate

Discharging priorities with spillbacks

Spill-back at node 3

ext capacity of link 1-3

exit flow v of link 1—3l

—<v— Downstream queue of link 1-3
Upper-bound of upstream queue
—#%—Upstream queue of link 3-4

15

10

Queue length

Exit flow and queues of link 1-3

10

15 20
minute, time step =1.00 minute

Flow rate

2.5

15

0.5

Spill-back at node 3

41

minute, time step =1.00 minute

)—>

Exit flow and queues of link 2-3

—15
ext capacity of link 2-3| | —<—— Downstream queue of link 2-3
----- ext flow v of link 2-3 Upper-bound of upstream queue
4 Upstream queue of link 3-4

r -~ ~ 10

1 [

I [ 1

1 [ :

: I-d-l 1

I 1

L AAAAAAAAAN :

1 | A i

L - s

| i

1 1

1A !

¥ |

\ 7R

- - Yo ool )
5 10 15 20 25 30 35

Queue length



Open Questions

Travel time discontinuities

o o
c C

5 Ve 5

c c

) / )

=5 =5

@ ! -t 0)) t
s /7 S —N\

5 s v

= .

3 3

@D | @ -t

Stability and convergence of the model

Integration with real time data / decisions

— Beyond model parameter estimation and periodic updating

— Serves as network structure for statistical estimation/prediction
— Fundamental changes to the modeling framework



Thank You

* Questions?

« Contact Information:
Email: banx@rpi.edu
Web: www.rpi.edu/~banx
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