A Boltzmann-type kinetic approach to the modeling of vehicular traffic

Andrea Tosin

Istituto per le Applicazioni del Calcolo “M. Picone”
Consiglio Nazionale delle Ricerche
Rome, Italy

Mathematical Foundations of Traffic
UCLA, September 28-October 2, 2015
The spatially homogeneous model

1. Continuous velocity model
2. From continuous to discrete velocity model
3. Fundamental diagrams and the phase transition
4. Traffic safety

The spatially non-homogeneous model

1. Model on a single road
2. Model on road networks
The spatially homogeneous model

Continuous velocity model
From continuous to discrete velocity model
Fundamental diagrams and the phase transition
Traffic safety

The spatially non-homogeneous model

Model on a single road
Model on road networks
Basics of kinetic modeling

- Microscopic state of the vehicles: speed $v \in [0, 1]$
- Kinetic distribution function: $f = f(t, v)$ s.t.

 $$f(t, v) \, dv = \text{fraction of vehicles with speed in } [v, v + dv] \text{ at time } t \geq 0$$

The Boltzmann-type kinetic equation

$$\partial_t f = Q(f, f) := \int_0^1 \int_0^1 P(v_* \rightarrow v|v^*, \rho)f(t, v_*)f(t, v^*) \, dv_* \, dv^* - \rho f \quad (1)$$

- $P(v_* \rightarrow v|v^*, \rho)$ probability distribution of speed transitions due to pairwise (binary) interactions among the vehicles:

 $$\int_0^1 P(v_* \rightarrow v|v^*, \rho) \, dv = 1 \quad \forall v_*, v^*, \rho \in [0, 1] \quad (2)$$

- Mass conservation: $\rho(t) := \int_0^1 f(t, v) \, dv$ is constant, in fact from (1)-(2):

 $$\frac{d}{dt} \int_0^1 f(t, v) \, dv = \int_0^1 Q(f, f) \, dv = 0$$
Basics of kinetic modeling

- **Microscopic state of the vehicles:** speed \(v \in [0, 1] \)
- **Kinetic distribution function:** \(f = f(t, v) \) s.t.
 \[
f(t, v) \, dv = \text{fraction of vehicles with speed in } [v, v + dv] \text{ at time } t \geq 0
 \]

The Boltzmann-type kinetic equation

\[
\partial_t f = Q(f, f) := \int_0^1 \int_0^1 P(v_* \rightarrow v|v^*, \rho) f(t, v_*) f(t, v^*) \, dv_* \, dv^* - \rho f \tag{1}
\]

- \(P(v_* \rightarrow v|v^*, \rho) \) probability distribution of speed transitions due to pairwise (binary) interactions among the vehicles:
 \[
 \int_0^1 P(v_* \rightarrow v|v^*, \rho) \, dv = 1 \quad \forall v_*, v^*, \rho \in [0, 1] \tag{2}
 \]
- **Mass conservation:** \(\rho(t) := \int_0^1 f(t, v) \, dv \) is constant, in fact from (1)-(2):
 \[
 \frac{d}{dt} \int_0^1 f(t, v) \, dv = \int_0^1 Q(f, f) \, dv = 0
 \]
Basics of kinetic modeling

- Microscopic state of the vehicles: speed $v \in [0, 1]$
- Kinetic distribution function: $f = f(t, v)$ s.t.

$$f(t, v) \, dv = \text{fraction of vehicles with speed in } [v, v + dv] \text{ at time } t \geq 0$$

The Boltzmann-type kinetic equation

$$\partial_t f = Q(f, f) := \int_0^1 \int_0^1 P(v_* \rightarrow v|v^*, \rho)f(t, v_*)f(t, v^*) \, dv_* \, dv^* - \rho f \tag{1}$$

- $P(v_* \rightarrow v|v^*, \rho)$ probability distribution of speed transitions due to pairwise (binary) interactions among the vehicles:

$$\int_0^1 P(v_* \rightarrow v|v^*, \rho) \, dv = 1 \quad \forall v_*, v^*, \rho \in [0, 1] \tag{2}$$

- Mass conservation: $\rho(t) := \int_0^1 f(t, v) \, dv$ is constant, in fact from (1)-(2):

$$\frac{d}{dt} \int_0^1 f(t, v) \, dv = \int_0^1 Q(f, f) \, dv = 0$$
Basics of kinetic modeling

- Microscopic state of the vehicles: speed $v \in [0, 1]$
- Kinetic distribution function: $f = f(t, v)$ s.t.

$$f(t, v) \, dv = \text{fraction of vehicles with speed in } [v, v + dv] \text{ at time } t \geq 0$$

The Boltzmann-type kinetic equation

$$\partial_t f = Q(f, f) := \int_0^1 \int_0^1 P(v_* \to v | v^*, \rho) f(t, v_*) f(t, v^*) \, dv_* \, dv^* - \rho f \quad (1)$$

- $P(v_* \to v | v^*, \rho)$ probability distribution of speed transitions due to pairwise (binary) interactions among the vehicles:

$$\int_0^1 P(v_* \to v | v^*, \rho) \, dv = 1 \quad \forall \, v_*, v^*, \rho \in [0, 1] \quad (2)$$

- Mass conservation: $\rho(t) := \int_0^1 f(t, v) \, dv$ is constant, in fact from (1)-(2):

$$\frac{d}{dt} \int_0^1 f(t, v) \, dv = \int_0^1 Q(f, f) \, dv = 0$$
Microscopic state of the vehicles: speed $v \in [0, 1]$

Kinetic distribution function: $f = f(t, v)$ s.t.

$$f(t, v) \, dv = \text{fraction of vehicles with speed in } [v, v + dv] \text{ at time } t \geq 0$$

The Boltzmann-type kinetic equation

$$\partial_t f = Q(f, f) := \int_0^1 \int_0^1 \mathcal{P}(v_* \rightarrow v|v^*, \rho)f(t, v_*)f(t, v^*) \, dv_* \, dv^* - \rho f \quad (1)$$

- $\mathcal{P}(v_* \rightarrow v|v^*, \rho)$ probability distribution of speed transitions due to pairwise (binary) interactions among the vehicles:

$$\int_0^1 \mathcal{P}(v_* \rightarrow v|v^*, \rho) \, dv = 1 \quad \forall v_*, v^*, \rho \in [0, 1] \quad (2)$$

- Mass conservation: $\rho(t) := \int_0^1 f(t, v) \, dv$ is constant, in fact from (1)-(2):

$$\frac{d}{dt} \int_0^1 f(t, v) \, dv = \int_0^1 Q(f, f) \, dv = 0$$
Let $\mathcal{P}(v_* \rightarrow |v^*, \rho) \in \mathcal{P}([0, 1])$ for all $v_*, v^*, \rho \in [0, 1]$. We assume

$$W_1(\mathcal{P}(v_* \rightarrow |v^*, \rho), \mathcal{P}(w_* \rightarrow |w^*, \rho)) \leq \operatorname{Lip}(\mathcal{P})(|w_* - v_*| + |w^* - v^*| + |\rho - \rho|),$$

where W_1 is the 1-Wasserstein metric for probability measures.

Theorem (P. Freguglia, A. T., 2015 [4])

Fix $\rho \in [0, 1]$ and $f(0, v) = : f_0(v) \in \mathcal{M}^\rho_+([0, 1])$. There exists a unique $f \in C([0, +\infty); \mathcal{M}^\rho_+([0, 1]))$ which solves (1) in mild form:

$$f(t, v) = e^{-\rho t} f_0(v) + \int_0^t e^{\rho(s-t)} \int_0^1 \int_0^1 \mathcal{P}(v_* \rightarrow v|v^*, \rho)f(t, v_*)f(t, v^*) dv_* dv^* ds.$$

Given $f_{01}, f_{02} \in \mathcal{M}^\rho_+([0, 1])$, the following continuous dependence estimate holds:

$$\sup_{t \in [0, T]} W_1(f_1(t), f_2(t)) \leq e^{2\max\{1, \operatorname{Lip}(\mathcal{P})\} T} W_1(f_{01}, f_{02})$$

up to an arbitrarily large final time $T < +\infty$.
Let $\mathcal{P}(v_\ast \rightarrow \cdot | v^\ast, \rho) \in \mathcal{P}([0, 1])$ for all $v_\ast, v^\ast, \rho \in [0, 1]$. We assume

$$W_1(\mathcal{P}(v_\ast \rightarrow \cdot | v^\ast, \rho), \mathcal{P}(w_\ast \rightarrow \cdot | w^\ast, \varrho)) \leq \operatorname{Lip}(\mathcal{P}) (|w_\ast - v_\ast| + |w^\ast - v^\ast| + |\varrho - \rho|),$$

where W_1 is the 1-Wasserstein metric for probability measures.

Theorem (P. Freguglia, A. T., 2015 [4])

Fix $\rho \in [0, 1]$ and $f(0, v) =: f_0(v) \in \mathcal{M}_+^\rho([0, 1])$. There exists a unique $f \in C([0, +\infty); \mathcal{M}_+^\rho([0, 1]))$ which solves (1) in mild form:

$$f(t, v) = e^{-\rho t} f_0(v) + \int_0^t e^{\rho (s-t)} \int_0^1 \int_0^1 \mathcal{P}(v_\ast \rightarrow v | v^\ast, \rho) f(t, v_\ast) f(t, v^\ast) dv_\ast dv^\ast ds.$$

Given $f_{01}, f_{02} \in \mathcal{M}_+^\rho([0, 1])$, the following continuous dependence estimate holds:

$$\sup_{t \in [0, T]} W_1(f_1(t), f_2(t)) \leq e^{2 \max\{1, \operatorname{Lip}(\mathcal{P})\} T} W_1(f_{01}, f_{02})$$

up to an arbitrarily large final time $T < +\infty$.
We consider the following probability distribution of speed transitions:

\[
\mathcal{P}(v_* \rightarrow v | v^*, \rho) = \begin{cases}
(1 - P)\delta_{v_*}(v) + P\delta_{\min\{v_* + \Delta v, 1\}}(v) & \text{if } v_* \leq v^* \\
(1 - P)\delta_{v^*}(v) + P\delta_{v_*}(v) & \text{if } v_* > v^*
\end{cases}
\]

where \(0 < \Delta v < 1\) is given and

\[
P = P(\rho) = 1 - \rho^\gamma \quad (\gamma > 0)
\]

is a probability of passing (cf. I. Prigogine, 1961)

The time-asymptotic solution of (1), with transition probabilities (3), concentrates only on speeds which are multiples of \(\Delta v\) (G. Puppo, M. Semplice, A. T., G. Visconti, 2015 [6])

This suggests that, in order to study the macroscopic equilibria resulting from microscopic interactions, we can directly consider discrete velocity models.
We consider the following probability distribution of speed transitions:

\[P(v_* \rightarrow v | v^*, \rho) = \begin{cases}
(1 - P)\delta_{v_*}(v) + P\delta_{\min\{v_* + \Delta v, 1\}}(v) & \text{if } v_* \leq v^* \\
(1 - P)\delta_{v^*}(v) + P\delta_{v_*}(v) & \text{if } v_* > v^*
\end{cases} \]

where \(0 < \Delta v < 1\) is given and

\[P = P(\rho) = 1 - \rho^\gamma \quad (\gamma > 0) \]

is a probability of passing (cf. I. Prigogine, 1961)

The time-asymptotic solution of (1), with transition probabilities (3), concentrates only on speeds which are multiples of \(\Delta v\) (G. Puppo, M. Semplice, A. T., G. Visconti, 2015 [6])

This suggests that, in order to study the macroscopic equilibria resulting from microscopic interactions, we can directly consider discrete velocity models.
We consider the following probability distribution of speed transitions:

\[
P(v_* \rightarrow v | v^*, \rho) = \begin{cases}
(1 - P)\delta v_* (v) + P\delta_{\min\{v_*+\Delta v, 1\}}(v) & \text{if } v_* \leq v^* \\
(1 - P)\delta v^*(v) + P\delta_{v^*}(v) & \text{if } v_* > v^*
\end{cases}
\]

where \(0 < \Delta v < 1\) is given and

\[
P = P(\rho) = 1 - \rho^\gamma \quad (\gamma > 0)
\]

is a probability of passing (cf. I. Prigogine, 1961)

The time-asymptotic solution of (1), with transition probabilities (3), concentrates only on speeds which are multiples of \(\Delta v\) (G. Puppo, M. Semplice, A. T., G. Visconti, 2015 [6])

This suggests that, in order to study the macroscopic equilibria resulting from microscopic interactions, we can directly consider discrete velocity models
Discrete velocity model

- Define a speed lattice
 \[v_j = (j - 1)\Delta v, \quad j = 1, \ldots, n, \quad \Delta v = \frac{1}{n-1} \]

- Assume that \(P \) is a discrete probability distribution over \(v \):
 \[P(v_* \rightarrow v | v^*, \rho) = \sum_{j=1}^{n} P^j(v_*, v^*, \rho)\delta_{v_j}(v) \] (4)

- Fix \(\rho \in [0, 1] \) and take an initial condition of the form
 \[f_0(v) = \sum_{j=1}^{n} f_0^j \delta_{v_j}(v) \quad \text{with} \quad f_0^j \geq 0, \quad \sum_{j=1}^{n} f_0^j = \rho \] (5)

Theorem (P. Freguglia, A. T., 2015 [4])

The unique solution to (1) with transition probabilities (4) and initial condition (5) is
\[f(t, v) = \sum_{j=1}^{n} f_j(t)\delta_{v_j}(v), \quad \text{where the } f_j \text{'s satisfy} \]
\[\frac{df_j}{dt} = \sum_{h=1}^{n} \sum_{k=1}^{n} P^j_{hk}(\rho)f_h f_k - \rho f_j, \quad f_j(0) = f_0^j \] (6)

and \(P^j_{hk}(\rho) := P^j(v_h, v_k, \rho) \).
Discrete velocity model

- Define a **speed lattice**
 \[v_j = (j - 1)\Delta v, \quad j = 1, \ldots, n, \quad \Delta v = \frac{1}{n-1} \]

- Assume that \(\mathcal{P} \) is a **discrete probability distribution** over \(v \):
 \[\mathcal{P}(v_* \rightarrow v|v^*, \rho) = \sum_{j=1}^{n} \mathcal{P}^j(v_*, v^*, \rho)\delta_{v_j}(v) \] \((4) \)

- Fix \(\rho \in [0, 1] \) and take an initial condition of the form
 \[f_0(v) = \sum_{j=1}^{n} f^0_j \delta_{v_j}(v) \quad \text{with} \quad f^0_j \geq 0, \quad \sum_{j=1}^{n} f^0_j = \rho \] \((5) \)

Theorem (P. Freguglia, A. T., 2015 [4])

The unique solution to (1) with transition probabilities (4) and initial condition (5) is
\[f(t, v) = \sum_{j=1}^{n} f_j(t)\delta_{v_j}(v), \quad \text{where the} \ f_j \text{'s satisfy} \]
\[\frac{df_j}{dt} = \sum_{h=1}^{n} \sum_{k=1}^{n} \mathcal{P}_{hk}^j(\rho)f_h f_k - \rho f_j, \quad f_j(0) = f^0_j \] \((6) \)

and \(\mathcal{P}_{hk}^j(\rho) := \mathcal{P}^j(v_h, v_k, \rho) \).
Discrete velocity model

- Define a speed lattice
 \[v_j = (j - 1)\Delta v, \quad j = 1, \ldots, n, \quad \Delta v = \frac{1}{n-1} \]

- Assume that \(\mathcal{P} \) is a discrete probability distribution over \(v \):
 \[\mathcal{P}(v_* \rightarrow v|v^*, \rho) = \sum_{j=1}^{n} \mathcal{P}^j(v_*, v^*, \rho)\delta_{v_j}(v) \]
 (4)

- Fix \(\rho \in [0, 1] \) and take an initial condition of the form
 \[f_0(v) = \sum_{j=1}^{n} f_j^0 \delta_{v_j}(v) \quad \text{with} \quad f_j^0 \geq 0, \sum_{j=1}^{n} f_j^0 = \rho \]
 (5)

Theorem (P. Freguglia, A. T., 2015 [4])

The unique solution to (1) with transition probabilities (4) and initial condition (5) is \(f(t, v) = \sum_{j=1}^{n} f_j(t)\delta_{v_j}(v) \), where the \(f_j \)'s satisfy

\[\frac{df_j}{dt} = \sum_{h=1}^{n} \sum_{k=1}^{n} \mathcal{P}_{hk}^j(\rho)f_h f_k - \rho f_j, \quad f_j(0) = f_j^0 \]
(6)

and \(\mathcal{P}_{hk}^j(\rho) := \mathcal{P}^j(v_h, v_k, \rho) \).
The spatially homogeneous model
Continuous velocity model
From continuous to discrete velocity model
Fundamental diagrams and the phase transition

Discrete velocity model

- Define a speed lattice
\[v_j = (j - 1)\Delta v, \quad j = 1, \ldots, n, \quad \Delta v = \frac{1}{n-1} \]

- Assume that \(P \) is a discrete probability distribution over \(v \):
\[P(v_* \rightarrow v | v^*, \rho) = \sum_{j=1}^{n} P^j(v_*, v^*, \rho) \delta_{v_j}(v) \quad (4) \]

- Fix \(\rho \in [0, 1] \) and take an initial condition of the form
\[f_0(v) = \sum_{j=1}^{n} f^0_j \delta_{v_j}(v) \quad \text{with} \quad f^0_j \geq 0, \quad \sum_{j=1}^{n} f^0_j = \rho \quad (5) \]

Theorem (P. Freguglia, A. T., 2015 [4])

The unique solution to (1) with transition probabilities (4) and initial condition (5) is
\[f(t, v) = \sum_{j=1}^{n} f_j(t) \delta_{v_j}(v), \] where the \(f_j \)'s satisfy
\[\frac{df_j}{dt} = \sum_{h=1}^{n} \sum_{k=1}^{n} P^j_{hk}(\rho) f_h f_k - \rho f_j, \quad f_j(0) = f^0_j \quad (6) \]

and \(P^j_{hk}(\rho) := P^j(v_h, v_k, \rho) \).
From (3) we deduce:

$$\mathcal{P}^j_{hk}(\rho) = \begin{cases} (1 - P)\delta_{jh} + P\delta_{j,\min\{h+1, n\}} & \text{if } h \leq k \\ (1 - P)\delta_{jk} + P\delta_{jh} & \text{if } h > k \end{cases}$$

which explicitly reads:

$$\mathcal{P}^j_{hk}(\rho) = \begin{cases} 1 - P & \text{if } j = h \\ P & \text{if } j = h + 1 & \text{if } h \leq k, \ h < n \\ 0 & \text{otherwise} \end{cases}$$

We recall that $P = P(\rho) = 1 - \rho^\gamma$ ($\gamma > 0$)
Asymptotic distributions

- We study the asymptotic speed distributions $f^\infty = \{ f^\infty_j \}_{j=1}^n$ resulting from (6)-(7): $f^\infty_j = \lim_{t \to +\infty} f_j(t)$.

- The f^∞_j’s form a one-parameter family, the parameter being the density ρ which is conserved.

Theorem (L. Fermo, A. T., 2014 [2])

For every $n \geq 2$ and every $\rho \in [0, 1]$ there exists a unique stable and attractive equilibrium f^∞ of (6), which satisfies:

$$f^\infty_j \geq 0 \quad \forall \ j = 1, \ldots, n, \quad \sum_{j=1}^n f^\infty_j = \rho$$

- In more detail, setting $\rho_c := \left(\frac{1}{2} \right)^\frac{1}{\gamma}$,
 - for $\rho < \rho_c$ there exists only one stable and attractive equilibrium
 - for $\rho > \rho_c$ the previous equilibrium becomes unstable and a second stable and attractive one appears.

- ρ_c is a critical value for equilibria inducing a supercritical bifurcation.
We study the asymptotic speed distributions $f^\infty = \{f_j^\infty\}_{j=1}^n$ resulting from (6)-(7): \[f_j^\infty = \lim_{t \to +\infty} f_j(t) \]

The f_j^∞'s form a one-parameter family, the parameter being the density ρ which is conserved.

Theorem (L. Fermo, A. T., 2014 [2])

For every $n \geq 2$ and every $\rho \in [0, 1]$ there exists a unique stable and attractive equilibrium f^∞ of (6), which satisfies:

\[f_j^\infty \geq 0 \quad \forall j = 1, \ldots, n, \quad \sum_{j=1}^n f_j^\infty = \rho \]

In more detail, setting $\rho_c := \left(\frac{1}{2}\right)^{\frac{1}{\gamma}},$

- for $\rho < \rho_c$ there exists only one stable and attractive equilibrium
- for $\rho > \rho_c$ the previous equilibrium becomes unstable and a second stable and attractive one appears

ρ_c is a critical value for equilibria inducing a supercritical bifurcation.
We study the asymptotic speed distributions \(f^\infty = \{ f_j^\infty \}_{j=1}^n \) resulting from (6)-(7): \(f_j^\infty = \lim_{t \to +\infty} f_j(t) \).

The \(f_j^\infty \)'s form a one-parameter family, the parameter being the density \(\rho \) which is conserved.

Theorem (L. Fermo, A. T., 2014 [2])

For every \(n \geq 2 \) and every \(\rho \in [0, 1] \) there exists a unique stable and attractive equilibrium \(f^\infty \) of (6), which satisfies:

\[
f_j^\infty \geq 0 \quad \forall \ j = 1, \ldots, n, \quad \sum_{j=1}^{n} f_j^\infty = \rho
\]

In more detail, setting \(\rho_c := \left(\frac{1}{2} \right)^{\frac{1}{\gamma}} \):

- for \(\rho < \rho_c \) there exists only one stable and attractive equilibrium
- for \(\rho > \rho_c \) the previous equilibrium becomes unstable and a second stable and attractive one appears

\(\rho_c \) is a critical value for equilibria inducing a supercritical bifurcation.
We study the asymptotic speed distributions \(f^\infty = \{ f^\infty_j \}_{j=1}^n \) resulting from (6)-(7): \(f^\infty_j = \lim_{t \to +\infty} f_j(t) \).

The \(f^\infty_j \)'s form a one-parameter family, the parameter being the density \(\rho \) which is conserved.

Theorem (L. Ferro, A. T., 2014 [2])

For every \(n \geq 2 \) and every \(\rho \in [0, 1] \) there exists a unique stable and attractive equilibrium \(f^\infty \) of (6), which satisfies:

\[
\forall j = 1, \ldots, n, \quad \frac{1}{n} \sum_{j=1}^{n} f^\infty_j = \rho
\]

In more detail, setting \(\rho_c := \left(\frac{1}{2} \right)^{\frac{1}{\gamma}} \),

- for \(\rho < \rho_c \) there exists only one stable and attractive equilibrium
- for \(\rho > \rho_c \) the previous equilibrium becomes unstable and a second stable and attractive one appears

\(\rho_c \) is a critical value for equilibria inducing a supercritical bifurcation.
We study the asymptotic speed distributions $f_{\infty} = \{f_j^\infty\}_{j=1}^n$ resulting from (6)-(7): $f_j^\infty = \lim_{t \to +\infty} f_j(t)$

The f_j^∞'s form a one-parameter family, the parameter being the density ρ which is conserved.

Theorem (L. Fermo, A. T., 2014 [2])

For every $n \geq 2$ and every $\rho \in [0, 1]$ there exists a unique stable and attractive equilibrium f_{∞} of (6), which satisfies:

$$f_j^\infty \geq 0 \quad \forall \ j = 1, \ldots, n, \quad \sum_{j=1}^n f_j^\infty = \rho$$

In more detail, setting $\rho_c := \left(\frac{1}{2}\right)^\frac{1}{\gamma}$,

- for $\rho < \rho_c$ there exists only one stable and attractive equilibrium
- for $\rho > \rho_c$ the previous equilibrium becomes unstable and a second stable and attractive one appears

ρ_c is a critical value for equilibria inducing a supercritical bifurcation.
We compute the macroscopic flux q and the mean speed u at equilibrium:

$$q(\rho) := \sum_{j=1}^{n} v_j f_j^{\infty}(\rho), \quad u(\rho) := \frac{q(\rho)}{\rho}$$

along with their standard deviations (dashed-red lines in the graphs below).

- Bifurcation \rightsquigarrow phase transition, free ($\rho < \rho_c$) to congested flow ($\rho > \rho_c$)
We compute the **macroscopic flux** q and the **mean speed** u at equilibrium:

$$q(\rho) := \sum_{j=1}^{n} v_j f^\infty_j(\rho), \quad u(\rho) := \frac{q(\rho)}{\rho}$$

along with their standard deviations (dashed-red lines in the graphs below)

- **Bifurcation** \leadsto phase transition, free ($\rho < \rho_c$) to congested flow ($\rho > \rho_c$)
Traffic as a mixture of different vehicles

● We consider two populations of vehicles, say cars (C) and trucks (T), with different microscopic characteristics.

● Cars are shorter and faster while trucks are longer and slower.

● Speed grids:

\[v_j = (j - 1)\Delta v, \quad j = 1, \ldots, n^p, \quad p = C, T \]
\[\Delta v = \frac{1}{n^C - 1}, \quad n^T < n^C \]

● Characteristic lengths: \(\ell^C = 1, \ell^T > 1 \)

● Fraction of road occupancy:

\[s := \rho^C \ell^C + \rho^T \ell^T, \]

the admissible pairs of densities \((\rho^C, \rho^T) \in [0, 1]^2 \) being those s.t. \(s \leq 1 \)
We consider two populations of vehicles, say cars (C) and trucks (T), with different microscopic characteristics.

Cars are shorter and faster while trucks are longer and slower.

Speed grids:

\[v_j = (j - 1) \Delta v, \quad j = 1, \ldots, n^p, \quad p = C, T \]

\[\Delta v = \frac{1}{n^C - 1}, \quad n^T < n^C \]

Characteristic lengths: \(\ell^C = 1, \ell^T > 1 \)

Fraction of road occupancy:

\[s := \rho^C \ell^C + \rho^T \ell^T, \]

the admissible pairs of densities \((\rho^C, \rho^T) \in [0, 1]^2 \) being those s.t. \(s \leq 1 \)
Traffic as a mixture of different vehicles

- We consider two populations of vehicles, say cars (C) and trucks (T), with different microscopic characteristics.

- Cars are shorter and faster while trucks are longer and slower.

- Speed grids:

 \[v_j = (j - 1) \Delta v, \quad j = 1, \ldots, n^p, \quad p = C, T \]

 \[\Delta v = \frac{1}{n^C - 1}, \quad n^T < n^C \]

- Characteristic lengths: \(\ell^C = 1 \), \(\ell^T > 1 \)

- Fraction of road occupancy:

 \[s := \rho^C \ell^C + \rho^T \ell^T, \]

 the admissible pairs of densities \((\rho^C, \rho^T) \in [0, 1]^2 \) being those s.t. \(s \leq 1 \)
Traffic as a mixture of different vehicles

- We consider two populations of vehicles, say cars (C) and trucks (T), with different microscopic characteristics

- Cars are shorter and faster while trucks are longer and slower

- Speed grids:

 \[v_j = (j - 1)\Delta v, \quad j = 1, \ldots, n^p, \quad p = C, T \]

 \[\Delta v = \frac{1}{n^C - 1}, \quad n^T < n^C \]

- Characteristic lengths: \(\ell^C = 1, \ell^T > 1 \)

- Fraction of road occupancy:

 \[s := \rho^C \ell^C + \rho^T \ell^T, \]

 the admissible pairs of densities \((\rho^C, \rho^T) \in [0, 1]^2\) being those s.t. \(s \leq 1 \)
Traffic as a mixture of different vehicles

- We consider two populations of vehicles, say cars (C) and trucks (T), with different microscopic characteristics.

- Cars are shorter and faster while trucks are longer and slower.

- Speed grids:
 \[v_j = (j - 1)\Delta v, \quad j = 1, \ldots, n^p, \quad p = C, T \]
 \[\Delta v = \frac{1}{n^C - 1}, \quad n^T < n^C \]

- Characteristic lengths: \(\ell^C = 1, \ell^T > 1 \)

- Fraction of road occupancy:
 \[s := \rho^C \ell^C + \rho^T \ell^T, \]
 the admissible pairs of densities \((\rho^C, \rho^T) \in [0, 1]^2 \) being those s.t. \(s \leq 1 \)
Multi-population model

- **Model with self- and cross-interactions:**

 \[
 \frac{df_{j}^{p}}{dt} = \sum_{h,k=1}^{n_{p}} P_{hk}^{p,j}(\rho)f_{h}^{p}f_{k}^{p} + \sum_{h=1}^{n_{p}} \sum_{k=1}^{n_{q}} Q_{hk}^{pq,j}(\rho)f_{h}^{p}f_{k}^{q} - (\rho^{C} + \rho^{T})f_{j}^{p}
 \]

 - *self-interactions*
 - *cross-interactions*

- In the transition probabilities \(P_{hk}^{p,j}, Q_{hk}^{pq,j}\) the density \(\rho\) is replaced by the fraction of road occupancy \(s\), i.e., the probability of passing is now:

 \[
 P = P(s) = 1 - s^{\gamma}
 \]

 \(\gamma > 0\)

Theorem (G. Puppo, M. Semplice, A. T., G. Visconti, 2015 [5])

If \(n^{C} = n^{T}\) and \(\ell^{C} = \ell^{T} = 1\) the total kinetic distribution function \(f_{j}(t) := f_{j}^{C}(t) + f_{j}^{T}(t)\) solves the single-population model (6).

- \(s_{c} := \left(\frac{1}{2}\right)^{\frac{1}{\gamma}}\) is again a critical value for equilibria. For \(s = s_{c}\) the maximum flux is attained (G. Puppo, M. Semplice, A. T., G. Visconti, 2015 [5])

Andrea Tosin
A Boltzmann-type kinetic approach to the modeling of vehicular traffic
Multi-population model

- **Model with self- and cross-interactions:**

\[
\frac{df_{j}^{p}}{dt} = \sum_{h,k=1}^{n_{p}} P_{hk}^{p,j}(\rho) f_{h}^{p} f_{k}^{p} + \sum_{h=1}^{n_{p}} \sum_{k=1}^{n_{q}} Q_{hk}^{pq,j}(\rho) f_{h}^{p} f_{k}^{q} - (\rho^{C} + \rho^{T}) f_{j}^{p} \quad (q := -p)
\]

 - self-interactions
 - cross-interactions

- In the transition probabilities \(P_{hk}^{p,j}, Q_{hk}^{pq,j} \) the density \(\rho \) is replaced by the fraction of road occupancy \(s \), i.e., the probability of passing is now

\[
P = P(s) = 1 - s^{\gamma} \quad (\gamma > 0)
\]

Theorem (G. Puppo, M. Semplice, A. T., G. Visconti, 2015 [5])

If \(n^{C} = n^{T} \) and \(\ell^{C} = \ell^{T} = 1 \) the total kinetic distribution function \(f_{j}(t) := f_{j}^{C}(t) + f_{j}^{T}(t) \) solves the single-population model (6).

- \(s_{c} := \left(\frac{1}{2} \right)^{\frac{1}{\gamma}} \) is again a critical value for equilibria. For \(s = s_{c} \) the maximum flux is attained (G. Puppo, M. Semplice, A. T., G. Visconti, 2015 [5]).
Multi-population model

- Model with self- and cross-interactions:

\[
\frac{df_{ij}^p}{dt} = \sum_{h,k=1}^{n_p} P_{hk}^{ij}(\rho) f_h^p f_k^p + \sum_{h=1}^{n_p} \sum_{k=1}^{n_q} Q_{hk}^{pq,ij}(\rho) f_h^p f_k^q - (\rho^C + \rho^T) f_j^p \quad (q := -p)
\]

- In the transition probabilities \(P_{hk}^{ij}\), \(Q_{hk}^{pq,ij}\) the density \(\rho\) is replaced by the fraction of road occupancy \(s\), i.e., the probability of passing is now

\[
P = P(s) = 1 - s^\gamma \quad (\gamma > 0)
\]

Theorem (G. Puppo, M. Semplice, A. T., G. Visconti, 2015 [5])

If \(n^C = n^T\) and \(\ell^C = \ell^T = 1\) the total kinetic distribution function

\[
f_j(t) := f_j^C(t) + f_j^T(t)
\]

solves the single-population model (6).

- \(s_c := \left(\frac{1}{2}\right)^{\frac{1}{\gamma}}\) is again a critical value for equilibria. For \(s = s_c\) the maximum flux is attained (G. Puppo, M. Semplice, A. T., G. Visconti, 2015 [5]).
Model with self- and cross-interactions:

\[
\frac{df_{j}^{p}}{dt} = \sum_{h,k=1}^{n_{p}} P_{hk}^{p,j}(\rho) f_{h}^{p} f_{k}^{p} + \sum_{h=1}^{n_{p}} \sum_{k=1}^{n_{q}} Q_{hk}^{pq,j}(\rho) f_{h}^{p} f_{k}^{q} - (\rho_{C} + \rho_{T}) f_{j}^{p}
\]

- self-interactions
- cross-interactions

In the transition probabilities \(P_{hk}^{p,j}\), \(Q_{hk}^{pq,j}\) the density \(\rho\) is replaced by the fraction of road occupancy \(s\), i.e., the probability of passing is now

\[
P = P(s) = 1 - s^{\gamma} \quad (\gamma > 0)
\]

Theorem (G. Puppo, M. Semplice, A. T., G. Visconti, 2015 [5])

If \(n_{C} = n_{T}\) and \(\ell_{C} = \ell_{T} = 1\) the total kinetic distribution function \(f_{j}(t) := f_{j}^{C}(t) + f_{j}^{T}(t)\) solves the single-population model (6).

\(s_{c} := \left(\frac{1}{2}\right)^{1/\gamma}\) is again a critical value for equilibria. For \(s = s_{c}\) the maximum flux is attained (G. Puppo, M. Semplice, A. T., G. Visconti, 2015 [5]).
A fully-discrete-state kinetic theory approach to modeling vehicular traffic.

Fundamental diagrams for kinetic equations of traffic flow.

A fully-discrete-state kinetic theory approach to traffic flow on road networks.

Fundamental diagrams in traffic flow: the case of heterogeneous kinetic models.
Accepted (Preprint: arXiv:1411.4988).

Kinetic models for traffic flow resulting in a reduced space of microscopic velocities.
Transition probabilities

Figure: The asymptotic distribution function concentrates on multiples of Δv.

Andrea Tosin
A Boltzmann-type kinetic approach to the modeling of vehicular traffic
Multi-population model

Figure: Left: fundamental diagram from experimental data (Minnesota Department of Transportation, 2003). Right: fundamental diagram from the multi-population model with $\gamma = 0.5$.

Andrea Tosin
A Boltzmann-type kinetic approach to the modeling of vehicular traffic