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“Standard” situation in traffic flow models:
« Density p = p(t, x) (of vehicles on a lane)

* Flow f (due to the underlying velocities of the vehicles)
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Standad “Standard” situation in traffic flow models:

et et * Density p = p(t, x) (of vehicles on a lane)

considered here

% Flow f (due to the underlying velocities of the vehicles)
+ First laws due to conservation princples:

D p + div, f(t,x,p) = 0
* First-order model:

* Flow-density diagram f = f(p)
« Additional sources (e.g., ramps)
* Multiple lanes

* Interaction between the vehicles

From the analytical point of view: An initial value problem

{ O:p + dive(G(t,p) p) = W(t,p) in [0, T]

p(0) = po
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« Which function space for p = p(t,-) ?

From the analytical point of view:
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An initial value problem
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Main results
* How to choose the coefficients G, W ?
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* How to choose the coefficients G, W ?
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Wanted:

s.t.

Initial data po € L*(R")

Coeff. G:[0, T] x L*(R")

Density p: [0, T] — L*(R")

9 p + divx(G(t, p)

p)

p(0)

Motivation

The Considered Problem

— WH(R",R")N L
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On a Class of
Nonlocal Traffic
Flow Models

Thomas Lorenz
Motivation

Standard
situation

Nonlocal models
considered here

Main results

Ordin. diff. eqns.
in a metric space

2
L“-valued
solutions

M-valued
solutions

Mutational
inclusions

Summary

© Motivation

© The Main Results about Nonlocal Traffic Flow Models

© Ordinary Differential Equations — But in a Metric Space:
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Theorem (Existence of L2-valued solutions)
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i.e., for every 1 € L>(R"), the function [0, T] — R, t —» / P(x) p(t, x) dx is continuous
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Theorem (Existence of L2-valued solutions)

Suppose for G: [0, T] x L2(R") — WL°(R",R") N L2
U: [0, T] x L2(R") — WH°(R") N L2
W [0, T] x L2(R") — L2(R")

Then every function py € L?(R") initializes a weak solution p : [0, T] — L*(R") of

dep + divi(G(t,p) p) = U(t,p) p + W(t.p),
i.e., for every 1 € L2(\'~'€”), the function [0, T] — R, t — / Y(x) p(t, x) dx is continuous
and, p(-) satisfies forany 0 < t; < t, < T, ¢ € C;(R”) o

(/‘” @ (p(t2) — p(t1)) dx = /:2 ,/A,, p(s;x) G(s, p(s))(x) - Vip(x) dx ds +
./:2 / (o, ) U(s, p()) (x) + W(s, p(5)) (x)) (x) dx ds
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Then every function py € L?(R") initializes a weak solution p : [0, T] — L*(R") of

O p + divi(9(t,p) p) = U(t,p) p + W(t;p),
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Then the weak solution p : [0, T] — L*(R") of

is unique.
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Theorem (Uniqueness of L2-valued solutions)
, Suppose for G: [0, T] x L2(R") — WL°(R",R") N L2
solutions. U: o, T] x LX(R") — WHS(R") N L2
M-valued W [0, T] x L*(R") — L*(R")
solutions in addition:

Then the weak solution p : [0, T] — L*(R") of
Ocp + divyk (g(t7 ) P) = U(t,p) p + W(t, p),
p(0) = po € L(RY)

is unique.
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Theorem (Uniqueness of L?-valued solutions)

Suppose for G: [0, T] x L2(R") — WL°(R",R") N L2
U: [0, T] x LX(R") — WH(R") N L?
W [0, T] x L2(R") — L*(R")
in addition:
(6) (Locally uniform LIPSCHITZ conditions w.r.t. states)
For every radius r > 0, there exists Ay > 0 s.t. ||p1ll 2gn), lp2ll 2gny < r imply
|| 6(t.p1) — G(t, pz)||L2(R,,)w) < Ar-dp2(p1, p2),
H Z/l(t7 Pl) - L{(t, pZ)HLZ(Rn) < A dLZ (Ph P2)7
[W(t, p1) — Wz, Pl 2@m = A di2(p1s p2)-

Then the weak solution p : [0, T] —s L*(R") of

Ocp + diVX(g(t7 ) P) = U(t,p) p + W(t, p),
p(0) = po € L*(R")

is unique.
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Suppose for G: [0, T] x L2(R") — WL°(R",R") N L2
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Then the weak solution p : [0, T] —s L*(R") of

Ocp + diVX(g(t7 ) P) = U(t,p) p + W(t, p),
p(0) = po € L*(R")

is unique.

da(prpm) = swn{ [ omax = [ ppax]pe @) lela <1,
R RP
lellise <1, 1Vglloe <1}
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Suppose for G, G: [0, T] x L2(R") — WH(R",R") N L2
U, U: [0, T] x L2(R") — WH=(R") N L2
W, W: [0, T] x LA(R") — L3(R")
in addition:
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[IW(t, p1) — W(t, p2)||L2(Rn)

Ar - dj2 (p1, p2),
Ar - dj2 (p1, p2),
Ar - dj2 (p1, p2)-

IAN N N
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. Suppose for G, G: [0, T] x L2(R") — WH(R",R") N L2
e U, u: [0, 7] x PR") — Whe®)N L
W . 2 2
Py W, W: [0, T] x L*(R") — L*(R")
solutions in addition:

(6) (Locally uniform LIPSCHITZ conditions w.r.t. states)
For every radius r > 0, there exists Ay > 0 s.t. ||p1ll 2gn), lp2ll 2gny < r imply
| 6(t,p1) — G(t, P2)||L2(Rn)w)
H Z/l(t, Pl) - I/{(t, pZ)“LZ(Rn)
[IW(t, p1) — W(t, p2)||L2(Rn)
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Ar - dj2 (p1, p2),
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IAN N N

Then the weak solutions p, p : [0, T] — L?(R") satisfy
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Suppose for

in addition:

Main Results

G, G: [0, T] x L2(R") — WH°(R",R") N L?
U, U: [0, T] x L2(R") — WH(R") N L2
W, W : [0, T] x L2(R") —s L2(R")

(6) (Locally uniform LIPSCHITZ conditions w.r.t. states)

For every radius r > 0, there exists Ay > 0 s.t. ||p1ll 2gn), lp2ll 2gny < r imply

Then the weak solutions p, p : [0, T] — L?(R") satisfy

| 6(t,p1) — G(t, P2)||L2(Rn)w)
H Z/l(t7 Pl) - U(t, pZ)“LZ(Rn)
[IW(t, p1) — W(t, p2)||L2(Rn)

d2 (p(1), A(8)) < (2 (p(0)

), £(0))

<

<
<

Ar - dj2 (p1, p2),
Ar - dj2 (p1, p2),
Ar - dj2 (p1, p2)-
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Suppose for G, G: [0, T] x L2(R") — WH(R",R") N L2
U, U: [0, T] x L2(R") — WH(R") N L2

W, W : [0, T] x L2(R") —s L2(R")
in addition:

(6) (Locally uniform LIPSCHITZ conditions w.r.t. states)
For every radius r > 0, there exists Ay > 0 s.t. ||p1ll 2gn), lp2ll 2gny < r imply

| 6(t,p1) — G(t, P2)||L2(Rn)w) < Ar - dp2 (p1, p2),
H U(t, p1) — U(t, pZ)”LZ(Rn) < Ar-dp2 (P17P2)7
[IW(t, p1) — Wt, P 2@m = A dia(prsp2)-

Then the weak solutions p, p : [0, T] — L?(R") satisfy
42 (o(0), 7)) < (da(p(0). 70) + [ AGs) o) -
with a constant ¢ = c(||p(0)ll,2, IA(0)ll,2, T, Ar) and
As) == sup [[G(s,)) = G(s:)[|,2 + sup [[U(s,) = UCs, )|,2 +
L2(R) 2(RN)

sp (s, ) = W(s,)],2 -
L2(RN)
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Main Results

e p + dive(B(t,p) p) = C(t, p) p,
i.e., for every bounded 1) € C°(R"), the function [0, T] — R, t — / 1 dp; is continuous
RO

and, u(-) satisfies for any0 < t; < t, < T, ¢ € C:(R")

)
/ @ duy — / @ duy = / / B(s, ps)(x) -
JRN JRN Jt,  Jrn

/: /p C(s, 1) (x)

Viep(x) dus(x) ds +

p(x) dus(x) ds.
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Then every jio € M(R") initializes a narrowly continuous distributional solution
w0, T] — M(R") of

e p + dive(B(t,p) p) = C(t, p) p,
i.e., for every bounded 1) € C°(R"), the function [0, T] — R, t — / v du; is continuous
RN
and, u(-) satisfies for any0 < t; < t, < T, ¢ € C:(R")

/mn ¢ duy, — /Rn ¢ duy = /: /Rn B(s, 1s)(x) - Vs o(x) dps(x) ds +
/ ’ /R C(s, ms)()  @(x) dus(x) ds.
f
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/ [ em)d el dusx) o
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C: [0, T] x M(R") — W1 >(R")
(1) Global a priori bounds
SUP;, (”B(t’ ”)HLOO(R") + [lec, 'U’)HLOO(JR“)) < @9
(2) Local a priori bounds: ~ For each r > 0, there is C, > 0 s.t. |u|(R") <

r implies
HaxB(t’“)HLOO(R",Ran)"‘ ||vXc(t7/J‘)HLoo(]RnYRn) < G

Then every jio € M(R") initializes a narrowly continuous distributional solution
w0, T] — M(R") of
e p + dive(B(t,p) p) = C(t, p) p,
i.e., for every bounded vp € C°(R"), the function [0, T] — R, t — / Y dpe is continuous

and, u(-) satisfies for any0 < t; < t, < T, ¢ € C:(R")

. . t
/ » dpy, — / p dupy = / / (s, us)(x) - Ve o(x) dus(x) ds +

/ [ em)d el dusx) o
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Theorem (Existence of measure-valued solutions)

Suppose for B: [0, T] x M(R") — Wh>°(R",R")
C: [0, T] x M(R") — WH2(R")
(1) Global a priori bounds
SUP:, (”B(t’ ”)HLOO(R") + e, 'U’)HLOO(JR“)) < €8
(2) Local a priori bounds:  For each r > 0, there is C, > 0 s.t. |u|(R") < r implies
[l B(t, “)HLOO(R" goxn) + [Vxc(t, “)HLOO(R",R") < G

@) ¥V p€ MR : B(,p), C(-,p1): [0, T] — (WH, || - [l1oc) are measurable.

Then every jio € M(R") initializes a narrowly continuous distributional solution
w0, T] — M(R") of
e p + dive(B(t,p) p) = C(t, p) p,
i.e., for every bounded vp € C°(R"), the function [0, T] — R, t — / Y dpe is continuous

and, u(-) satisfies for any0 < t; < t, < T, ¢ € C:(R")

. . t
/ » dpy, — / p dupy = / / (s, us)(x) - Ve o(x) dus(x) ds +

/ [ em)d el dusx) o
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Theorem (Existence of measure-valued solutions)

Suppose for B: [0, T] x M(R") — Wh>°(R",R")
C: [0, T] x M(R") — WH2(R")
(1) Global a priori bounds
SR (HB(t’H’)HL"O(R“) + ||C(t"u’)||L°°(JR“)) < @9
(2) Local a priori bounds:  For each r > 0, there is C, > 0 s.t. |u|(R") < r implies
[|ox B(t, 'U‘)HLOO(]R",]R"X"} + [[Vec(e, 'U‘)HLOO(]R",]R") < G
@) VY p€ MR : B(,pn), C(,p): [0, T] — (W2, || - ||1o0) are measurable.
(4) Fora.e. t € [0, T, the functions B(t,-), C(t, ) : M(R") — (W22, || - |[00) are

narrowly continuous.

Then every jio € M(R") initializes a narrowly continuous distributional solution
w0, T] — M(R") of
e p + dive(B(t,p) p) = C(t, p) p,
i.e., for every bounded vp € C°(R"), the function [0, T] — R, t — / Y dpe is continuous

and, u(-) satisfies for any0 < t; < t, < T, ¢ € C:(R")

. . t
/ » dpy, — / p dupy = / / (s, us)(x) - Ve o(x) dus(x) ds +

/ [ em)d el dusx) o
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O p + divy (B(t7 ) [L)
1(0)

= C(t, p),

o € M(R")
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Then the narrowly continuous distributional solution . : [0, T] — M(R") of

O p 4+ dive(B(t, p) p) = C(t, ),
p(0) = po € M(R")

is unique.
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Theorem (Uniqueness of measure-valued solutions)

Suppose for B: [0, T] x M(R") — Wh>°(R",R")

C: [0, T] x M(R") — WH=(R")
in addition:

Then the narrowly continuous distributional solution . : [0, T] — M(R") of

O p 4+ dive(B(t, p) p) = C(t, ),
p(0) = po € M(R")

is unique.
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Suppose for

in addition:

Main Results

B: [0, T] x M(R") — W (R", R")
C: [0, T] x M(R") — WL >(R")

(6) (Locally uniform LIPSCHITZ conditions w.r.t. states)

For every radius r > 0, there exists A, > 0 s.t. [p1|(R"), |p2|(R") < r imply
||B(t7 ,ufl) - B(t7 H2)||L°°(R”,]R") < Ar-dm (,ufly/"'z))
et m) — c(t, Hz)”Loo(Rn) < A da (pa, p2)-

Then the narrowly continuous distributional solution . : [0, T] — M(R") of

is unique.

{

O+ dive(B(t, p) ) = C(t, ),
u(0) = po € M(R")




On a Class of
Nonlocal Traffic
Flow Models

Thomas Lorenz

2
L“-valued
solutions

M-valued
solutions

Main Results

Theorem (Uniqueness of measure-valued solutions)

Suppose for B: [0, T] x M(R") — Wh>°(R",R")
C: [0, T] x M(R") — WH=(R")
in addition:

(6) (Locally uniform LIPSCHITZ conditions w.r.t. states)
For every radius r > 0, there exists A, > 0 s.t. [p1|(R"), |p2|(R") < r imply
||B(t7 ,ufl) - B(t7 “2)||L°°(R”,]R") < Ar-dm (,ufly/"'z))
llc(t, ma) — C(t, #2)||L00(Rn) < Ar - dag (pr, p2)-

Then the narrowly continuous distributional solution . : [0, T] — M(R") of

O+ dive(B(t, p) ) = C(t, ),
w(0) = po € M(R")

is unique.

da (s 2) = sup { /Rnwm— /Rnsaduz | € C®), Nl <1, Vol <1}
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Suppose for

in addition:

Main Results

B, B: [0, T] x M(R") — W (R",R")
C, C: [0, T] x M(R") — Wh(R")

(6) (Locally uniform LIPSCHITZ conditions w.r.t. states)
For every radius r > 0, there exists A, > 0 s.t. [p1|(R"), |p2|(R") < r imply

||B(t, 1) — B(t, “2)||L°°(R”,JR")
||c(t, m) — C(t, #Z)HLOO(R")

<
<

Ar - dp (1, p2),
Ar - dag (pr, p2).
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Theorem (Continuous dependence on data)

Suppose for B, B: [0, T] x M(R") — WY (R", R")

C, C: [0, T] x M(R") — WL (R")
in addition:

(6) (Locally uniform LIPSCHITZ conditions w.r.t. states)
For every radius r > 0, there exists A, > 0 s.t. [p1|(R"), |p2|(R") < r imply
||B(t7 ,ufl) - B(t7 “2)||L°°(R”,]R") < Ar-dm (,ufly/"'z))
llc(t, ma) — C(t, #2)||L00(Rn) < Ar - dag (pr, p2)-

Then the weak solutions p, ft : [0, T] — M(R") satisfy
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Theorem (Continuous dependence on data)

Suppose for B, B: [0, T] x M(R") — WY (R", R")

C, C: [0, T] x M(R") — WL (R")
in addition:

(6) (Locally uniform LIPSCHITZ conditions w.r.t. states)
For every radius r > 0, there exists A, > 0 s.t. [p1|(R"), |p2|(R") < r imply

|B(t, m1) — B(t, H2)||Loo engmy < A dad (1, p2),
(R",R")
[[C(t, m1) — C(t; 12)]] 00 mn < Ar - dag (pr, p2)-
(R™)

Then the weak solutions p, ft : [0, T] — M(R") satisfy

dag ((t), B(t)) < (dJM (1(0), 7(0)) + ./O‘A(s) ds) .eft
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Theorem (Continuous dependence on data)

Suppose for B, B: [0, T] x M(R") — WY (R", R")
C, C: [0, T] x M(R") — WH°(R")
in addition:

(6) (Locally uniform LIPSCHITZ conditions w.r.t. states)
For every radius r > 0, there exists A, > 0 s.t. [p1|(R"), |p2|(R") < r imply

||B(t7l1'1) _B(tva)“Loo(Rnijn) < A dM(,ufly/"'Z))
llc(t, ma) — C(t, #2)||L00(Rn) < Ar - dag (pr, p2)-

Then the weak solutions p, ft : [0, T] — M(R") satisfy
dae (u(8), (D) < (dan (u(0), i( / A®s) ds) - ef
with a constant ¢ = c(|po|(R"), |Z|(R"), T, A;) and
As) = sup [|B(s,) — B(s, ) + JSupllets,) - (s Moo -
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Solving an ordinary differential equation x’ = f(t, x)
« Explicit formula  (e.g., variation of constants)

* Approximation scheme: FEULER method

x Standard theorems about well-posedness:
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Tromas Lorens Ordinary Differential Equations
A Very Familar Situation
Solving an ordinary differential equation x’ = f(t, x)
« Explicit formula  (e.g., variation of constants)
* Approximation scheme: FEULER method
The gist
“Time
derivative”

Tool box for IVPs

Aubin’s proposal

Generalization
Key ingredients x Standard theorems about well-posedness:

x PEANO: Existence due to compactness

* PICARD-LINDELOF a.k.a. CAUCHY-LIPSCHITZ:
Existence and uniqueness due to completeness

Established extensions: Evolution equations in Banach spaces

Gist: Extend the notion of EULER method beyond linear spaces.
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Aim:

Question:

In R":

x(t)

7

x(t+h) .I

Mutational Equations
The Step to Metric Spaces

Extend ordinary differential equation x’ = f(t, x)
to a metric space (E, d)

Counterpart x'(t) of x:[0,T] — E?

Y e i X(EER) — x(8)
X (1) = hITO h

X(t)y=v = |x(t+h) — (x(t) + hv)| < o(h)

or, equivalently,
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x(t+h) .I

x(t)

7

Mutational Equations
The Step to Metric Spaces

Extend ordinary differential equation x’ = f(t, x)
to a metric space (E, d)
Counterpart x'(t) of x:[0,T] — E?

x'(t) = lim M or, equivalently,
h—0 !

X(t)y=v = |x(t+h) — (x(t) + hv)| < o(h)
v € R” induces [0,1] x R" — R", (h,y)— y + hv
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Aim:

Question:

In R™:

x(t

7

x(t+h) !

)

In (E, d):

z

T

.
9(h, 2)

Mutational Equations
The Step to Metric Spaces

Extend ordinary differential equation x’ = f(t, x)
to a metric space (E, d)
Counterpart x'(t) of x:[0,T] — E?

x'(t) = lim w or, equivalently,
h—0 !

X(t)y=v = |x(t+h) — (x(t) + hv)| < o(h)
v € R” induces [0,1] x R" — R", (h,y)— y + hv

Specify some ¥ :[0,1] x E — E, (h,z) — 9(h, z).
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Question:
In R™:
x(t+h) .’
x(1)
In (E,d):
x(t+h) .I
x(1)

f B(h (1)

Mutational Equations
The Step to Metric Spaces

Extend ordinary differential equation x’ = f(t, x)
to a metric space (E, d)
Counterpart x'(t) of x:[0,T] — E?

x'(t) = lim M or, equivalently,
h—0 !

X(t)=v <= |x(t+h) — (x(t) + hv)| < o(h)
v € R" induces [0,1] x R" — R", (h,y) — y + hv

Specify some 9 :[0,1] x E — E, (h,z) — ¥(h, z).
9=x(t) <= d(x(t+h), 9(h, x(t) < o(h)
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Question:
In R™:
x(t+h) .’
x(1)
In (E,d):
x(t+h) .I
x(1)

Mutational Equations
The Step to Metric Spaces

Extend ordinary differential equation x’ = f(t, x)
to a metric space (E, d)
Counterpart x'(t) of x:[0,T] — E?

x'(t) = lim w or, equivalently,
h—0 !

X(t)y=v = |x(t+h) — (x(t) + hv)| < o(h)
v € R" induces [0,1] x R" — R", (h,y) — y + hv

Specify some 9:[0,1] x E — E, (h,z) — ¥(h, z).
9 =x(t) = d(x(t+h), I(h, x(t) < o(h)

f Given: F:[0,T]x E— O, (t,z) — ¥
8 x(1)
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Mutational Equations
The Step to Metric Spaces

Aim: Extend ordinary differential equation x’ = f(t, x)
to a metric space (E, d)

Question: Counterpart x'(t) of x:[0,T] — E?

In R": xX'(t) = hlimo M or, equivalently,

~wn | X(t)=v = ‘x(t-i—h) — (x(t) + A v)’ < o(h)

x(t)

[ v € R" induces [0,1] x R" — R", (h,y) —> y + hv

In (E,d): Specify some 9:[0,1] x E — E, (h,z) — ¥(h, z).
wn | 9=%(t) = d(x(t+h), I(h x(t))) < o(h)

x(1)
f' Given: F:[0,T]|xE—©, (t,z) — 9
otx0)  \Wanted: cont.x: [0, T|— E : %(t) = F(t, x(t)) forae. t
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O p + div(G(t, p) p)

O+ divie (B(t, 1) )

= U(t,p)p + W(t,p)

= C(t,p)

—



On a Class of
Nonlocal Traffic
Flow Models

Thomas Lorenz

Motivation

Main results

Ordin. diff. eqns.
in a metric space

The gist

“Time
derivative”

Tool box for IVPs
Aubin’s proposal
Generalization

Key ingredients

2
L=-valued
solutions

M-valued
solutions

Mutational
inclusions

Summary

Mutational Equations

Check
conditions
on

> metric
> transitions

> sequentially
compact

-

Theorems
about
“mutational”
solutions

+ Existence
(via Euler)

+ Continuity
w.r.t. data

+ Uniqueness

More popular
meaning of
“mutational”
solution ?

. classical ?
. weak ?
. mild ?

. link to diff.
inclusions ?

8 p + divx(G(t,p) p)

Or p + divi (B(t, p) )
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The gist (1) ﬂ(O;X) = X vV x€E,
durtvmnive” (2) ﬂ(t’ X) = ﬁ(t =S 19( )) Vx€EE,s<t

Tool box for IVPs (3) 3 a(ﬁ) : d(’ﬂ(h X) 19( )) S d(X7y) . ea(ﬂ)h VX,y, h6[07 1]7
Aubin’s proposal (4) 3 6(’]_9) : d('l9( ) (t, X)) S /8(19) . |t — 5| V x€E,s, te[O, 1]

V.

Generalization
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Generalization
Kevingedints Theorem: CAUCHY-LIPSCHITZ (AUBIN)
Let : (E,d) — (©(E), D) be LIPSCHITZ with sup «a(f(-)) <oo.

s |

x(t)

x(:) = f(x(-)) ae. f o0s w0}
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Theorem: CAUCHY-LIPSCHITZ (AUBIN)

Let f: (E,d) — (©(E), D) be LipscHITZ with sup a(f(-))<oo.
Suppose all bounded closed balls in (E, d) to be complete.

s |

Then in every xo € E, there starts a unique continuous w0
solution x : [0,00[ —> E of %(-) = f(x(-)) a.e. [

o’
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Definition (TL 2010)

¥ :[0,1]x E — E, (h,x) — 9(h, x) is called a transition if

) 9(0,x) = x V x€E,
(2.) 19(1', X) = (t—S 19( s, )) Vx€EE,s<t
@) Fao () dW(h,x), 9(h d(x,y) - e h 1 1y <r, h,

:¥))
@) 36.(0): e(¥(s,x), It,x))
) 3): [9(h, x)

5’(19)"t_5| x| <r, s, t
(Lx) +vh) erh vxeE nefo,1]

IN N A

Key ingredients — to be chosen for each example:
+ Basic set E
+ Distance functions (e.g., metrics) d, e: E x E — [0, o0

% -]t E—[0,00[ (just lower semicontinuous w.r.t. d)
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solution to the autonomous linear equation d¢p + divx(g p) = up + w.
Definition A set S C L?(R") is called (uniformly) tight if [
lim  sup / |I"(x)|2 dx = 0.
r—oo fes JRrRM\B.(0)

Proposition  For every tight sequence (pi)ken in L2(R") and p € L?(R"),

sup [lpll2@ny < o0
pk —> p weakly in L2(R") <= keN
lim sz(pk,p) =0
k — oo
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Basic set E
“Abs. value” |p]

Metric d;2(p1, p2)

Suppose G:[0,T] x (L3(R"), dj2) — (WLH(R™,R™) N L2, || - |,2),
U0, T] x (L3(R"), dpp) — (WEH2@®R™) N L2, |- l;2),
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Then for every pg € L?(R"), there is at least one function p : [0, T] — L?(R") s.t.




On a Class of
Nonlocal Traffic
Flow Models

Thomas Lorenz

Autonomous
linear problem

The metric on
L5 (R")

Verifying the
transition

Weak topology
on tight subsets

First conclusions

Solutions with Values in L2(IR")

First Conclusions about Existence

Basic set E = L%(R"),

“Abs. value” |p] = ||pll2(rn)

Metric dia(prp2) = sup{ [ pondx— [ gpmax|pe CUEN, el <1
RP R?

lellie <1, IVl <1}

Suppose G:[0,T] x (L3(R"), dj2) — (WLH(R™,R™) N L2, || - |,2),
U0, T] x (L3(R"), dp) — (WEHR@R™) N L2, || |lz2),
W0, T] x (L2(R"), d) — (L2(R"), - ll2)

to be “bounded” Carathéodory functions.

Let w € L?(R") and a compact set K C R" be such that |[W(t, p)(x)| < w(x)

holds for all x € R" \ K, t € [0, T] and p € L2(R").

Then for every pg € L?(R"), there is at least one function p : [0, T] — L?(R") s.t.

(1) pis continuous w.r.t. d;» and bounded w.r.t. || - || 2gn),




On a Class of
Nonlocal Traffic
Flow Models

Thomas Lorenz

Autonomous
linear problem

The metric on
L5 (R")

Verifying the
transition

Weak topology
on tight subsets

First conclusions

Solutions with Values in L2(IR")

First Conclusions about Existence

Basic set E = L%(R"),

“Abs. value” |p] = ||pll2(rn)

Metric dia(prp2) = sup{ [ pondx— [ gpmax|pe CUEN, el <1
RP R?

lellie <1, IVl <1}

Suppose G:[0, T] x (L3(R"), dj2) — (WLH(R™,R™) N L2, || - || 2),
U0, T] x (L3(R"), dp) — (WEHR@R™) N L2, || |lz2),
W0, T] x (L2(R"), dj2) — (L*(R"), Il 1li2)

to be “bounded” Carathéodory functions.

Let w € L?(R") and a compact set K C R" be such that |[W(t, p)(x)| < w(x)

holds for all x € R" \ K, t € [0, T] and p € L2(R").

Then for every pg € L?(R"), there is at least one function p : [0, T] — L?(R") s.t.

(1) pis continuous w.r.t. d;> and bounded w.r.t. || - || 2(gn).

P
@) ote, e, ute, e, wie, o) 28 (2. t)

B0 0}




On a Class of
Nonlocal Traffic
Flow Models

Thomas Lorenz

Autonomous
linear problem

The metric on
L5 (R")

Verifying the
transition

Weak topology
on tight subsets

First conclusions

Solutions with Values in L2(IR")

First Conclusions about Existence

Basic set E = L%(R"),

“Abs. value” |p] = ||pll2(rn)

Metric dia(prp2) = sup{ [ pondx— [ gpmax|pe CUEN, el <1
RP R?

lellie <1, IVl <1}

Suppose G:[0, T] x (L3(R"), dj2) — (WLH(R™,R™) N L2, || - || 2),
U0, T] x (L3(R"), dp) — (WEHR@R™) N L2, || |lz2),
W0, T] x (L2(R"), d) — (L2(R"), - ll2)

to be “bounded” Carathéodory functions.

Let w € L?(R") and a compact set K C R" be such that |[W(t, p)(x)| < w(x)

holds for all x € R" \ K, t € [0, T] and p € L2(R").

Then for every pg € L?(R"), there is at least one function p : [0, T] — L?(R") s.t.
(1) pis continuous w.r.t. d;> and bounded w.r.t. || - || 2(gn).

(h, p(t)) (ae. 1)

«on |

2. t+h) 9
@) PR D500 oo, e, (o), Wit o)

00




On a Class of
Nonlocal Traffic
Flow Models

Thomas Lorenz

Autonomous
linear problem

The metric on
L5 (R")

Verifying the
transition

Weak topology
on tight subsets

First conclusions

Solutions with Values in L2(IR")

First Conclusions about Existence

Basic set E = L%(R"),

“Abs. value” |p] = ||pll2(rn)

Metric dia(prp2) = sup{ [ pondx— [ gpmax|pe CUEN, el <1
RP R?

lellie <1, IVl <1}

Suppose G:[0, T] x (L3(R"), dj2) — (WLH(R™,R™) N L2, || - || 2),
U0, T] x (L3(R"), dp) — (WEHR@R™) N L2, || |lz2),
W0, T] x (L2(R"), d) — (L2(R"), - ll2)

to be “bounded” Carathéodory functions.

Let w € L?(R") and a compact set K C R" be such that |[W(t, p)(x)| < w(x)

holds for all x € R" \ K, t € [0, T] and p € L2(R").

Then for every pg € L?(R"), there is at least one function p : [0, T] — L?(R") s.t.
(1) pis continuous w.r.t. d;> and bounded w.r.t. || - || 2(gn).

(h p(®) (s t)

«on |

2. Lid t+h), 9°
@) B o <” (th) (9t p(0)), Ut p(2)), W, p(1)))

00




On a Class of
Nonlocal Traffic
Flow Models

Thomas Lorenz

Autonomous
linear problem

The metric on
L5 (R")

Verifying the
transition

Weak topology
on tight subsets

First conclusions

Solutions with Values in L2(IR")

First Conclusions about Existence

Basic set E = L%(R"),

“Abs. value” |p] = ||pll2(rn)

Metric dia(prp2) = sup{ [ pondx— [ gpmax|pe CUEN, el <1
RP R?

lellie <1, IVl <1}

Suppose G:[0, T] x (L3(R"), dj2) — (WLH(R™,R™) N L2, || - || 2),
U0, T] x (L3(R"), dp) — (WEHR@R™) N L2, || |lz2),
W0, T] x (L2(R"), d) — (L2(R"), - ll2)

to be “bounded” Carathéodory functions.

Let w € L?(R") and a compact set K C R" be such that |[W(t, p)(x)| < w(x)

holds for all x € R" \ K, t € [0, T] and p € L2(R").

Then for every pg € L?(R"), there is at least one function p : [0, T] — L?(R") s.t.

(1) pis continuous w.r.t. d;> and bounded w.r.t. || - || 2(gn).
2) lim %.4d t+h), 9° h, p(t))) = 0 (ae.t
@) & e <p( ) (9(e, (), Ut p(2), W<r,p(r>))( A ))) (, )

00




On a Class of
Nonlocal Traffic
Flow Models

Thomas Lorenz

Autonomous
linear problem

The metric on
L5 (R")

Verifying the
transition

Weak topology
on tight subsets

First conclusions

Solutions with Values in L2(IR")

First Conclusions about Existence

Basic set E = L%(R"),

“Abs. value” |p] = ||pll2(rn)

Metric dia(prp2) = sup{ [ pondx— [ gpmax|pe CUEN, el <1
RP R?

lellie <1, IVl <1}

Suppose G:[0, T] x (L3(R"), dj2) — (WLH(R™,R™) N L2, || - || 2),
U0, T] x (L3(R"), dp) — (WEHR@R™) N L2, || |lz2),
W0, T] x (L2(R"), d) — (L2(R"), - ll2)

to be “bounded” Carathéodory functions.

Let w € L?(R") and a compact set K C R" be such that |[W(t, p)(x)| < w(x)

holds for all x € R" \ K, t € [0, T] and p € L2(R").

Then for every pg € L?(R"), there is at least one function p : [0, T] — L?(R") s.t.

(1) pis continuous w.r.t. d;> and bounded w.r.t. || - || 2(gn).
2) lim %.4d t+h), 9° h, p(t))) = 0 (ae.t
@) & e <p( ) (9(e, (), Ut p(2), W<r,p(r>))( A ))) (, )

(3.) the image set p([0, T]) C L?(R") is tight, 0
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First Conclusions about Existence

Basic set E = L%(R"),

“Abs. value” |p] = ||pll2(rn)

Metric dia(prp2) = sup{ [ pondx— [ gpmax|pe CUEN, el <1
RP R?

lellie <1, IVl <1}

Suppose G:[0, T] x (L3(R"), dj2) — (WLH(R™,R™) N L2, || - || 2),

lnear roblern U0, T] x (L2(R"), d2) — (WE2R") N L2, |- l2),
W0, T] x (L2(R"), dia) —> (L3(R"), I 12)
(=) to be “bounded” Carathéodory functions.

Verifying the Let w € L?(R") and a compact set K C R" be such that |[W(t, p)(x)| < w(x)
fansen holds for all x € R" \ K, t € [0, T] and p € L2(R").

Weak topology

on tight subsets Then for every pg € L?(R"), there is at least one function p : [0, T] — L?(R") s.t.

First conclusions (1) pis continuous w.r.t. d;> and bounded w.r.t. || - || 2(gn).
2) lim %.4d t+h), 9° h, p(t))) = 0 (ae.t
@) 3 & e (,;( ) (92, p(1)), Ut (1)), Wt p(r)))( ol ))) @

(3.) the image set p([0, T]) C L?(R") is tight,
(4.) pis a weak solution of 9:p + divx(G(t,p) p) = U(t,p) p + W(t, p).
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known as W1:>° dual metric [rL, 2010) or KANTOROVICH-RUBINSHTEIN metric
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Oep + divk (B(t,p) ) = C(t,p) p
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Differential Inclusions Without Convexity

Classical Result by ANTOSIEWICZ & CELLINA

Theoreom [ANTOSIEWICZ and CELLINA, 1975]
Suppose for the set-valued map F : [0, T] X R" ~ R"
@) each value F(t,x) C R" is nonempty and compact with F(t,x) C Bg(0),
@) Vx€eR": F(-,x):[0, T] ~ R" is measurable,
@) Vtel[0,T]: F(t,-):R"~ R"is continuous (w.r.t. Hausdorff metric d).
Then for each xp € R", there exists an absolutely cont. solution x : [0, T] — R" of
x" € F(-,x) a.e.in[0,T].
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Differential Inclusions Without Convexity

Classical Result by ANTOSIEWICZ & CELLINA
Selection Principle [ANTOsiEwICZ and CELLINA, 1975]

Under the preceding assumptions about the set-valued map F : [0, T| X R” ~ R",
there exists a function g : C°([0, T],R") — L*([0, T],R") such that

() for every u € CO([0, T],R"): [0, T] — R", t — g(u)(t) is integrable,

Theoreom
Mutational

inclusions

[ANTOSIEWICZ and CELLINA, 1975]

Suppose for the set-valued map F : [0, T] x R" ~ R"
Conclusions
about Balance

@) each value F(t,x) C R" is nonempty and compact with F(t,x) C Bg(0),
SEIE @) Vx€eR": F(-,x):[0, T] ~ R" is measurable,

@) Vtel[0,T]: F(t,-):R"~ R"is continuous (w.r.t. Hausdorff metric d).
Then for each xp € R", there exists an absolutely cont. solution x : [0, T] — R" of

x" € F(-,x) a.e.in[0,T].
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Classical Result by ANTOSIEWICZ & CELLINA
Selection Principle [ANTOsiEwICZ and CELLINA, 1975]

Under the preceding assumptions about the set-valued map F : [0, T| X R” ~ R",
there exists a function g : C°([0, T],R") — L([0, T],R") such that

() for every u € CO([0, T],R"): [0, T] — R", t — g(u)(t) is integrable,

@) for every u € C%([0, T],R") and a.e. t € [0, T], g(u)(t) € F(t, u(t)) C R,

Theoreom [ANTOSIEWICZ and CELLINA, 1975]

Suppose for the set-valued map F : [0, T] x R" ~ R"

@) each value F(t,x) C R" is nonempty and compact with F(t,x) C Bg(0),
@)V x€eR": F(-,x):[0, T] ~ R" is measurable,

@) Vtel[0,T]: F(t,-):R"~ R"is continuous (w.r.t. Hausdorff metric d).
Then for each xp € R", there exists an absolutely cont. solution x : [0, T] — R" of

x" € F(-,x) a.e.in[0,T].
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Classical Result by ANTOSIEWICZ & CELLINA
Selection Principle [ANTOsiEwICZ and CELLINA, 1975]

Under the preceding assumptions about the set-valued map F : [0, T| X R” ~ R",
there exists a function g : C°([0, T],R") — L([0, T],R") such that

() for every u € CO([0, T],R"): [0, T] — R", t — g(u)(t) is integrable,

@) for every u € C%([0, T],R") and a.e. t € [0, T], g(u)(t) € F(t, u(t)) C R,
(i) g is continuous w.r.t. || - ||sup and || - ||;1.

Theoreom [ANTOSIEWICZ and CELLINA, 1975]

Suppose for the set-valued map F : [0, T] x R" ~ R"

@) each value F(t,x) C R" is nonempty and compact with F(t,x) C Bg(0),
@)V x€eR": F(-,x):[0, T] ~ R" is measurable,

@) Vtel[0,T]: F(t,-):R"~ R"is continuous (w.r.t. Hausdorff metric d).
Then for each xp € R", there exists an absolutely cont. solution x : [0, T] — R" of

x" € F(-,x) a.e.in[0,T].
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Extensions

Selection Principle [ANTOsiEwICZ and CELLINA, 1975]

Under the preceding assumptions about the set-valued map F : [0, T| X R” ~ R",
there exists a function g : C°([0, T],R") — L*([0, T],R") such that

() for every u € CO([0, T],R"): [0, T] — R”, t — g(u)(t) is integrable,
@) for every u € C%([0, T],R") and a.e. t € [0, T], g(u)(t) € F(t, u(t)) C R,

(i) g is continuous w.r.t. || - ||sup and || - ||;1.

Extensions

* to separable BANACH spaces by KISIELEWICZ (1982)
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Extensions
Selection Principle [ANTOsiEwICZ and CELLINA, 1975]

Under the preceding assumptions about the set-valued map F : [0, T| X R” ~ R"
there exists a function g : C°([0, T],R") — L([0, T],R") such that

() for every u € CO([0, T],R"): [0, T] — R", t — g(u)(t) is integrable,

@) for every u € C%([0, T],R") and a.e. t € [0, T], g(u)(t) € F(t, u(t)) C R,

(i) g is continuous w.r.t. || - ||sup and || - ||;1.
y
. Extensions
Mutational
inelusions * to separable BANACH spaces by KISIELEWICZ (1982)
Conclusions .
o e * to separable metric spaces
Laws

[TL, 2010]
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Differential Inclusions Without Convexity

Extensions
Selection Principle [ANTOsiEwICZ and CELLINA, 1975]

Under the preceding assumptions about the set-valued map F : [0, T| X R” ~ R",
there exists a function g : C°([0, T],R") — L([0, T],R") such that

() for every u € CO([0, T],R"): [0, T] — R", t — g(u)(t) is integrable,

@) for every u € C%([0, T],R") and a.e. t € [0, T], g(u)(t) € F(t, u(t)) C R,
(i) g is continuous w.r.t. || - ||sup and || - ||;1.

Extensions

* to separable BANACH spaces by KISIELEWICZ (1982)

* to separable metric spaces [TL, 2010]

eg, F:[0,T]x (E,d) ~ (©(E),D)
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Multivalued Nonlocal Balance Laws

Existence of Weak Solutions to Multivalued Balance Laws
Suppose for G : [0, T] x L2(R") ~» WLo(R", R") N L2
U:[0, T] x L2(R") ~ WL (R") N L2
W [0, T] x L2(R") ~ L2(R")
@) Each of the values G(t, p), U(t, p) and W(r, p) is a nonempty set and

compact (w.r.t. || - [|;2).
2) The set values of G, U are globally bounded w.r.t. || - ||,y1,00 and,
the set values of W are bounded w.r.t. || - || 2.
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Mctiation Existence of Weak Solutions to Multivalued Balance Laws
Main results Suppose for G : [0, T] x L?(R") ~» WL°(R",R") N L?
U0, T] x L2(R") ~» WL2(R") N L2

i motric sy W [0, T] x L2(R") ~ L2(R")
i @) Each of the values G(t, p), U(t, p) and W(r, p) is a nonempty set and
Ll compact (w.r.t. || - [|;2).

2) The set values of G, U are globally bounded w.r.t. || - ||,y1,00 and,
e the set values of W are bounded w.r.t. || - || 2.

@) Vp € L2R"): G(-,p), U(,p), W(,p) : [0, T]~ (L2, ||-]|,2) are measurable.
Mutational
incusions
Conclusions
about Balance
Laws

Summary
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Multivalued Nonlocal Balance Laws

Existence of Weak Solutions to Multivalued Balance Laws

Suppose for G : [0, T] x L?(R") ~» WL°(R",R") N L?

@

(2

3.

U0, T] x L2(R") ~» WL2(R") N L2

W [0, T] x L2(R") ~ L%(R")
Each of the values G(t, p), U(t, p) and W(r, p) is a nonempty set and
compact (w.r.t. || - [|;2).

The set values of G, U are globally bounded w.r.t. || - ||\y1,00 and,
the set values of W are bounded w.r.t. || - || 2.

VpeL2(R"): G(-,p), U(-, p), W(-,p) : [0, T]~ (L2, ||-||;2) are measurable.

Forae t€[0,T]: G(t,), U(t,-), W(t,): (L2(R"),dp2) ~ (L2, | [l2)
are continuous (w.r.t. the HAUSDORFF metric).
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Multivalued Nonlocal Balance Laws

Existence of Weak Solutions to Multivalued Balance Laws

Suppose for G : [0, T] x L?(R") ~» WL°(R",R") N L?

@

(2

3.

.

(5.

U [0, T] x L2(R") ~ WL (R") A L2

W [0, T] x L2(R") ~ L%(R")
Each of the values G(t, p), U(t, p) and W(r, p) is a nonempty set and
compact (w.r.t. || - [|;2).

The set values of G, U are globally bounded w.r.t. || - ||\y1,00 and,
the set values of W are bounded w.r.t. || - || 2.

VpeL2(R"): G(-,p), U(-, p), W(-,p) : [0, T]~ (L2, ||-||;2) are measurable.
Forae. t€[0,T]: G(t,-), U(t,-), W(t,"): (LZ(R"),sz) ~ (L2, I| - ||Lz)
are continuous (w.r.t. the HAUSDORFF metric).

There exist w € L?(R") and compact K C R" s.t. V t € [0, T], p € L2(R"),
each w € W(t,p) C L2(R") satisfies |w(x)| < w(x) Vx € R"\ K.




On a Class of
Nonlocal Traffic
Flow Models

Multivalued Nonlocal Balance Laws

Thomas Lorenz

Existence of Weak Solutions to Multivalued Balance Laws
Suppose for G : [0, T] x L2(R") ~» WLo(R", R") N L?
U:[0, T] x L2(R") ~ WL(R") N L?
W [0, T] x L2(R") ~ L2(R")
@) Each of the values G(t, p), U(t, p) and W(r, p) is a nonempty set and

compact (w.r.t. || - [|;2).
2) The set values of G, U are globally bounded w.r.t. || - ||,y1,00 and,
the set values of W are bounded w.r.t. || - || 2.
@) VpeL2R"): G(-,p), U(,p), W(,p) : [0, T] ~ (L2, ||-]|;2) are measurable.
@) Forae t€[0,T]: G(t,), U(t,-), W(t,") : (L2(R"),dp2) ~ (L2, |- ]I;2)
Concius are continuous (w.r.t. the HAUSDORFF metric).
about Balance (5) There exist w € L?(R") and compact K C R" s.t. V t € [0, T], p € L2(R"),

each w € W(t,p) C L2(R") satisfies |w(x)| < W(x) Vx € R"\ K.

Then for every pg € L?(R"), there are measurable functions p : [0, T] — L?(R")
and g : [0, T] — WH°(R",R"), T : [0, T] — WL2(R™), w: [0, T] — L2(R"):
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Existence of Weak Solutions to Multivalued Balance Laws
Suppose for G : [0, T] x L?(R") ~» WL°(R",R") N L?
U:[0, T] x L2(R") ~ WL(R") N L?
W [0, T] x L2(R") ~ L2(R")

@) Each of the values G(t, p), U(t, p) and W(r, p) is a nonempty set and

compact (w.r.t. || - [|;2).
2) The set values of G, U are globally bounded w.r.t. || - ||,y1,00 and,
the set values of W are bounded w.r.t. || - || 2.
@) VpeL2R"): G(-,p), U(,p), W(,p) : [0, T] ~ (L2, ||-]|;2) are measurable.
) Forae t€[0,T]: G(t,-), U(t,-), W(t,-): (L2(R"),d}2) ~ (L2 || - |l;2)
Concius are continuous (w.r.t. the HAUSDORFF metric).
about Balance (5) There exist w € L?(R") and compact K C R" s.t. V t € [0, T], p € L2(R"),

each w € W(t,p) C L2(R") satisfies |w(x)| < W(x) Vx € R"\ K.

Then for every pg € L?(R"), there are measurable functions p : [0, T] — L?(R")
and g : [0, T] — WH°(R",R"), T : [0, T] — WL2(R™), w: [0, T] — L2(R"):

() pis a weak solution of 8; p + divx(g(t) p) = u(t) p + w(t),
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Existence of Weak Solutions to Multivalued Balance Laws
Suppose for G : [0, T] x L2(R") ~» WLo(R", R") N L2
U:[0, T] x L2(R") ~ WL(R") N L?
W [0, T] x L2(R") ~ L2(R")
@) Each of the values G(t, p), U(t, p) and W(r, p) is a nonempty set and

compact (w.r.t. || - [|;2).
2) The set values of G, U are globally bounded w.r.t. || - ||,y1,00 and,
the set values of W are bounded w.r.t. || - || 2.
@) VpeL2R"): G(-,p), U(,p), W(,p) : [0, T] ~ (L2, ||-]|;2) are measurable.
) Forae t€[0,T]: G(t,-), U(t,-), W(t,-): (L2(R"),d}2) ~ (L2 || - |l;2)
Concius are continuous (w.r.t. the HAUSDORFF metric).
about Balance (5) There exist w € L?(R") and compact K C R" s.t. V t € [0, T], p € L2(R"),

each w € W(t,p) C L2(R") satisfies |w(x)| < W(x) Vx € R"\ K.
Then for every pg € L?(R"), there are measurable functions p : [0, T] — L?(R")
and g : [0, T] — WH°(R",R"), T : [0, T] — WL2(R™), w: [0, T] — L2(R"):
() pis a weak solution of 0¢ p + divx(g(t) p) = u(t) p + w(t),
@) forae t: g(t) € G(t, p(r)), u(t) € U(t, p(t)), w(t) € W(t, p(t)).
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Summary

The focus of this talk was on a class of “multiscale” traffic flow models,

i.e., two nonhomogeneous transport equations with nonlocal dependence

= U(t,p,n) p + W(t,p, 1)

dep + divk(G(t, p, 1) p)
O + divk (B(t, p, 1) 1)

C(t,p, ) p
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Summary

Summary

The focus of this talk was on a class of “multiscale” traffic flow models,

i.e., two nonhomogeneous transport equations with nonlocal dependence

dep + divu(G(t, p, 1) p) = U(t, p,18) p + W(t,p, 1)
Oep + divk (B(t, p, 1) 1) = C(t,p,p) 1

The components are

% a (strongly) continuous solution p : [0, T] — L?(R") in the weak sense,

*a narrowly continuous solution p : [0, T] — M(R") in the distributional sense.
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