Workshop "Mathematical Foundations of Traffic"

Macroscopic traffic flow models with non-local mean velocity

Paola Goatin

Inria Sophia Antipolis - Méditerranée paola.goatin@inria.fr

joint works with Sebastien Blandin (IBM Research Collaboratory, Singapore) Francesco Rossi (Université Aix-Marseille) Sheila Scialanga (Università di Roma I)

IPAM, September 28, 2015

Outline of the talk

2 A traffic flow model with non-local velocity

3 Well-posedness

- 4 Numerical tests
- Micro-macro limit

P. Goatin (Inria)

Outline of the talk

Non-local conservation laws

- 2 A traffic flow model with non-local velocity
- 3 Well-posedness
- 4 Numerical tests
- 5 Micro-macro limit

6 Perspectives

P. Goatin (Inria)

Non-local conservation laws

(Systems of) equations of the form

 $\partial_t U + \operatorname{div}_{\mathbf{x}} F(t, \mathbf{x}, U, w * U) = 0$

with $t \in \mathbb{R}^+$, $\mathbf{x} \in \mathbb{R}^d$, $U(t, \mathbf{x}) \in \mathbb{R}^N$, $w(t, \mathbf{x}) \in \mathbb{R}^{m \times N}$

Applications:

- sedimentation [Betancourt&al, Nonlinearity 2011]
- granular flows [Amadori-Shen, JHDE 2012]
- crowd dynamics [Colombo&al, ESAIM COCV 2011; AMS 2011; M3AS 2012]
- supply chains [ColomboHertyMercier, ESAIM COCV 2011]
- conveyor belts [Göttlich&al, Appl. Math. Modell., 2014]
- gradient constraint [Amorim, Bull. Braz. Math. Soc., 2012]

P. Goatin (Inria)

Non-local conservation laws

(Systems of) equations of the form

 $\partial_t U + \operatorname{div}_{\mathbf{x}} F(t, \mathbf{x}, U, w * U) = 0$

with $t \in \mathbb{R}^+$, $\mathbf{x} \in \mathbb{R}^d$, $U(t, \mathbf{x}) \in \mathbb{R}^N$, $w(t, \mathbf{x}) \in \mathbb{R}^{m \times N}$

General well posedness results:

- 1D scalar equations [AmorimColomboTeixeira, ESAIM M2AN 2015]
- multiD scalar equations [ColomboHertyMercier, ESAIM COCV 2011]
- multiD systems

[CrippaMercier, NoDEA 2012; AggarwalColomboGoatin, SINUM 2015]

Outline of the talk

2 A traffic flow model with non-local velocity

3 Well-posedness

4 Numerical tests

5 Micro-macro limit

6 Perspectives

P. Goatin (Inria)

A model with non-local velocity¹

LWR model with downstream non-local velocity

$$\partial_t \rho(t, x) + \partial_x \left(\rho(t, x) V(t, x) \right) = 0$$

where

$$V(t,x) = v\left(\int_x^{x+\eta} \rho(t,y)w_\eta(y-x) \ dy\right), \quad \eta > 0$$

with $w_{\eta} \in \mathbf{C}^{1}([0,\eta]; \mathbb{R}^{+})$ non-increasing and $\int_{0}^{\eta} w_{\eta}(x) dx = 1$ $v: [0, \rho_{\max}] \to \mathbb{R}^{+}$ s.t. $-A \leq v' \leq 0, v(0) = v_{\max}, v(\rho_{\max}) = v_{\min}$

¹[BlandinGoatin, 2015; GoatinScialanga, submitted]

P. Goatin (Inria)

Macroscopic models with non-local velocity

A model with non-local velocity¹

LWR model with downstream non-local velocity

$$\partial_t \rho(t, x) + \partial_x \left(\rho(t, x) V(t, x) \right) = 0$$

where

$$V(t,x) = v\left(\int_x^{x+\eta} \rho(t,y)w_\eta(y-x) \ dy\right), \quad \eta > 0$$

with $w_{\eta} \in \mathbf{C}^{1}([0,\eta]; \mathbb{R}^{+})$ non-increasing and $\int_{0}^{\eta} w_{\eta}(x) dx = 1$ $v: [0, \rho_{\max}] \to \mathbb{R}^{+}$ s.t. $-A \leq v' \leq 0, v(0) = v_{\max}, v(\rho_{\max}) = v_{\min}$

Related works:

• sedimentation model: $F(\rho, \rho * w) = \rho(1-\rho)^{\alpha}V(\rho * w), \ \alpha = 0 \text{ or } \alpha \ge 1$ [Betancourt&al, Nonlinearity 2011]

• Arrhenius look-ahead dynamics: $F(\rho, \rho * w) = \rho(1-\rho)e^{-(\rho * w)}$ [SopasakisKatsoulakis, SIAM 2006] [KurganovPolizzi, NHM 2009] [LiLi, NHM 2011]

P. Goatin (Inria)

¹[BlandinGoatin, 2015; GoatinScialanga, submitted]

The model avoids the infinite acceleration drawback of classical macroscopic models:

$$\dot{x}(t) = V(t, x(t)), \qquad t > 0$$

$$\implies \qquad \ddot{x}(t) = V_t(t, x(t)) + V(t, x(t))V_x(t, x(t)), \qquad t > 0$$

If $\rho(t, \cdot) \in \mathbf{L}^1 \cap \mathbf{L}^\infty$, we have

$$\|V_t\|_{\infty} = 2w_{\eta}(0)\|v\|_{\infty}\|v'\|_{\infty}\|\rho\|_{\infty}$$
$$\|V_x\|_{\infty} = 2w_{\eta}(0)\|v'\|_{\infty}\|\rho\|_{\infty}$$

P. Goatin (Inria)

Outline of the talk

2 A traffic flow model with non-local velocity

3 Well-posedness

4 Numerical tests

5 Micro-macro limit

6 Perspectives

P. Goatin (Inria)

Numerical tests

Micro-macro limit

Perspectives

Well-posedness

Theorem [BlandinGoatin, 2015; GoatinScialanga, submitted]

Let $\rho_0 \in BV(\mathbb{R}; [0, \rho_{\max}])$. Then the Cauchy problem

$$\begin{cases} \partial_t \rho + \partial_x \left(\rho V(t, x) \right) = 0 & x \in \mathbb{R}, t > 0 \\ \rho(0, x) = \rho_0(x) & x \in \mathbb{R} \end{cases}$$

admits a unique weak entropy entropy solution ($\rho \in \mathbf{L}^1 \cap \mathbf{L}^{\infty} \cap BV$), such that

$$\min_{\mathbb{R}} \{\rho_0\} \le \rho(t, x) \le \max_{\mathbb{R}} \{\rho_0\} \quad \text{for a.e. } x \in \mathbb{R}, \, t > 0$$

P. Goatin (Inria)

Introduction Non-local LWR Well-posedness Numerical tests Micro-macro limit Kružkov entropy condition²

Definition

A function $\rho \in (\mathbf{L}^1 \cap \mathbf{L}^\infty \cap BV)(\mathbb{R}^+ \times \mathbb{R}; \mathbb{R})$ is an entropy weak solution if

$$\int_{0}^{+\infty} \int_{-\infty}^{+\infty} \left(\left| \rho - \kappa \right| \varphi_t + \left| \rho - \kappa \right| V \varphi_x - \operatorname{sgn}(\rho - \kappa) \kappa V_x \varphi \right) (t, x) dx dt + \int_{-\infty}^{+\infty} \left| \rho_0(x) - \kappa \right| \varphi(0, x) dx \ge 0$$

for all $\varphi \in \mathbf{C}_{\mathbf{c}}^{1}(\mathbb{R}^{2}; \mathbb{R}^{+})$ and $\kappa \in \mathbb{R}$.

Perspectives

²[ColomboHertyMercier, ESAIM COCV 2011; Betancourt&al, Nonlinearity 2011]

P. Goatin (Inria)

Macroscopic models with non-local velocity

Uniqueness³

Theorem

Let ρ , σ be two entropy weak solutions of CP with initial data ρ_0 , σ_0 respectively. Then, for any T > 0 there holds

$$\|\rho(t,\cdot) - \sigma(t,\cdot)\|_{\mathbf{L}^1} \le e^{\mathcal{K}T} \|\rho_0 - \sigma_0\|_{\mathbf{L}^1} \qquad \forall t \in (0,T].$$

where

$$\begin{aligned} \mathcal{K} &= w_{\eta}(0) \left\| v' \right\|_{\infty} \left(\sup_{t \in [0,T]} \| \rho(t, \cdot) \|_{\mathrm{BV}(\mathbb{R})} + 2 \| \rho_0 \|_{\infty} \right) \\ &+ \| \rho_0 \|_1 \left(2 (w_{\eta}(0))^2 \| v'' \|_{\infty} \| \rho_0 \|_{\infty} + \| v' \|_{\infty} \| w'_{\eta} \|_{\mathbf{L}^{\infty}([0,\eta])} \right) \end{aligned}$$

Proof. Doubling of variables.

P. Goatin (Inria)

³[Betancourt&al, Nonlinearity 2011]

Existence: a Lax-Friedrichs numerical scheme

Take Δx s.t. $\eta = N \Delta x \exists N \in \mathbb{N}$:

$$\rho_j^{n+1} = H(\rho_{j-1}^n, \dots, \rho_{j+N}^n) = \rho_j^n - \frac{\Delta t}{\Delta x} \left(F_{j+1/2}^n - F_{j-1/2}^n \right)$$

with numerical flux

$$F_{j+1/2}^{n} = \frac{1}{2}\rho_{j}^{n}V_{j}^{n} + \frac{1}{2}\rho_{j+1}^{n}V_{j+1}^{n} + \frac{\alpha}{2}(\rho_{j}^{n} - \rho_{j+1}^{n})$$

where $V_j := v \left(\Delta x \sum_{k=0}^{N-1} w_{\eta}^k \rho_{j+k} \right)$, and we assume

$$\Delta t \le \frac{2}{2\alpha + A\Delta x \, w_{\eta}(0)} \, \Delta x \qquad (CFL)$$
$$\alpha \ge v_{\max} + A\Delta x \, w_{\eta}(0)$$

P. Goatin (Inria)

Macroscopic models with non-local velocity

September 28, 2015 12 / 33

Lax-Friedrichs numerical scheme

Given

$$H(\rho_{j-1}^n, \dots, \rho_{j+N}^n) = \rho_j^n + \frac{\lambda\alpha}{2} \left(\rho_{j-1}^n - 2\rho_j^n + \rho_{j+1}^n\right) + \frac{\lambda}{2} \left(\rho_{j-1}^n V_{j-1}^n - \rho_{j+1}^n V_{j+1}^n\right)$$

For k = 2, ..., N - 2

$$\frac{\partial H}{\partial \rho_{j+k}} = \frac{\lambda}{2} \Delta x \left(\rho_{j-1} w_{\eta}^{k+1} v' \left(\Delta x \sum_{k=0}^{N-1} w_{\eta}^k \rho_{j-1+k} \right) - w_{\eta}^{k-1} \rho_{j+1} v' \left(\Delta x \sum_{k=0}^{N-1} w_{\eta}^k \rho_{j+1+k} \right) \right)$$

P. Goatin (Inria)

Lax-Friedrichs numerical scheme

Given

$$H(\rho_{j-1}^n, \dots, \rho_{j+N}^n) = \rho_j^n + \frac{\lambda\alpha}{2} \left(\rho_{j-1}^n - 2\rho_j^n + \rho_{j+1}^n\right) + \frac{\lambda}{2} \left(\rho_{j-1}^n V_{j-1}^n - \rho_{j+1}^n V_{j+1}^n\right)$$

For k = 2, ..., N - 2

$$\frac{\partial H}{\partial \rho_{j+k}} = \frac{\lambda}{2} \Delta x \left(\rho_{j-1} w_{\eta}^{k+1} v' \Big(\Delta x \sum_{k=0}^{N-1} w_{\eta}^k \rho_{j-1+k} \Big) - w_{\eta}^{k-1} \rho_{j+1} v' \Big(\Delta x \sum_{k=0}^{N-1} w_{\eta}^k \rho_{j+1+k} \Big) \right)$$

 \implies The scheme is not monotone!

P. Goatin (Inria)

Estimates

\mathbf{L}^∞ estimates

Let $\rho_m = \min_{j \in \mathbb{Z}} \{\rho_j^0\} \in [0, \rho_{\max}]$ and $\rho_M = \max_{j \in \mathbb{Z}} \{\rho_j^0\} \in [0, \rho_{\max}]$. Then $\rho_m \le \rho_j^n \le \rho_M \qquad \forall j, n$

Estimates

\mathbf{L}^∞ estimates

Let
$$\rho_m = \min_{j \in \mathbb{Z}} \{\rho_j^0\} \in [0, \rho_{\max}]$$
 and $\rho_M = \max_{j \in \mathbb{Z}} \{\rho_j^0\} \in [0, \rho_{\max}]$. Then
 $\rho_m \le \rho_j^n \le \rho_M \qquad \forall j, n$

BV estimates

Let $\rho_0 \in BV(\mathbb{R}; [0, \rho_{\max}])$. Then

$$\sum_{j} \left| \rho_{j+1}^{n} - \rho_{j}^{n} \right| \le e^{w_{\eta}(0) \left(5A + 7 \left\| v^{\prime \prime} \right\|_{\infty} \right) \frac{n}{2} \Delta t} \sum_{j} \left| \rho_{j+1}^{0} - \rho_{j}^{0} \right|$$

P. Goatin (Inria)

Estimates

\mathbf{L}^{∞} estimates

Let
$$\rho_m = \min_{j \in \mathbb{Z}} \{\rho_j^0\} \in [0, \rho_{\max}]$$
 and $\rho_M = \max_{j \in \mathbb{Z}} \{\rho_j^0\} \in [0, \rho_{\max}]$. Then
 $\rho_m \le \rho_j^n \le \rho_M \qquad \forall j, n$

BV estimates

Let $\rho_0 \in BV(\mathbb{R}; [0, \rho_{\max}])$. Then

$$\sum_{j} \left| \rho_{j+1}^{n} - \rho_{j}^{n} \right| \le e^{w_{\eta}(0) \left(5A + 7 \left\| v^{\prime \prime} \right\|_{\infty} \right) \frac{n}{2} \Delta t} \sum_{j} \left| \rho_{j+1}^{0} - \rho_{j}^{0} \right|$$

L^1 stability estimates

Let $\rho_0, \bar{\rho}_0 \in BV(\mathbb{R}; [0, \rho_{\max}])$. Then

$$\sum_{j} \Delta x \left| \rho_{j}^{n} - \bar{\rho}_{j}^{n} \right| \le K(w_{\eta}, \rho_{0}, \bar{\rho}_{0}, n\Delta t) \sum_{j} \Delta x \left| \rho_{j}^{0} - \bar{\rho}_{j}^{0} \right|$$

P. Goatin (Inria)

Introduction	Non-local LWR	Well-posedness	Numerical tests	Micro-macro limit	Perspectives
		\mathbf{L}^∞ es	stimates		

\mathbf{L}^{∞} estimates

Let $\rho_m = \min_{j \in \mathbb{Z}} \{\rho_j^0\} \in [0, \rho_{\max}]$ and $\rho_M = \max_{j \in \mathbb{Z}} \{\rho_j^0\} \in [0, \rho_{\max}]$. Then $\rho_m \le \rho_j^n \le \rho_M \qquad \forall j, n$

Introduction	Non-local LWR	Well-posedness	Numerical tests	Micro-macro limit	Perspectives
		\mathbf{L}^∞ es	stimates		

\mathbf{L}^{∞} estimates

Let
$$\rho_m = \min_{j \in \mathbb{Z}} \{\rho_j^0\} \in [0, \rho_{\max}]$$
 and $\rho_M = \max_{j \in \mathbb{Z}} \{\rho_j^0\} \in [0, \rho_{\max}]$. Then
 $\rho_m \le \rho_j^n \le \rho_M \qquad \forall j, n$

↑

Lemma

Let $0 \leq \rho_m \leq \rho_j^n \leq \rho_M \leq \rho_{\max}$ for all $j \in \mathbb{Z}$. Then

$$H(\rho_m, \rho_m, \rho_m, \rho_{j+2}, \dots, \rho_{j+N-2}, \rho_m, \rho_m) \ge \rho_m$$

$$H(\rho_M, \rho_M, \rho_M, \rho_{j+2}, \dots, \rho_{j+N-2}, \rho_M, \rho_M) \le \rho_M$$

P. Goatin (Inria)

BV estimates

$$\begin{split} \Delta_{j+\frac{1}{2}}^{n+1} &= \frac{\lambda}{2} \left[\alpha + V_j + \rho_{j-1} \Delta x \; v'(\xi) w_{\eta}^0 - \Delta x \; v'(\xi') \sum_{k=2}^{N-2} w_{\eta}^{k-1} \Delta_{j+k+\frac{1}{2}} \right] \Delta_{j-\frac{1}{2}} \\ &+ \left[1 - \lambda \alpha + \frac{\lambda}{2} \rho_{j-1} \Delta x \; v'(\xi) w_{\eta}^1 - \frac{\lambda}{2} \Delta x \; v'(\xi') \sum_{k=2}^{N-2} w_{\eta}^{k-1} \Delta_{j+k+\frac{1}{2}} \right] \Delta_{j+\frac{1}{2}} \\ &+ \frac{\lambda}{2} \left[\alpha - V_{j+2} + \rho_{j-1} \Delta x \; v'(\xi) w_{\eta}^2 - \rho_{j+1} \Delta x \; v'(\xi') w_{\eta}^0 \right] \Delta_{j+\frac{3}{2}} \\ &+ \frac{\lambda}{2} \Delta x \; \sum_{k=2}^{N-2} \Delta_{j+k+\frac{1}{2}} \left[\rho_{j-1} \; v'(\xi) (w_{\eta}^{k+1} - w_{\eta}^{k-1}) + w_{\eta}^{k-1} \rho_{j-1} \left(v'(\xi) - v'(\xi') \right) \right] \\ &- \frac{\lambda}{2} \rho_{j+1} \; \Delta x \; v'(\xi') \; w_{\eta}^{N-2} \Delta_{j+N-\frac{1}{2}} \\ &- \frac{\lambda}{2} \rho_{j+1} \; \Delta x \; v'(\xi') \; w_{\eta}^{N-1} \Delta_{j+N+\frac{1}{2}} \\ \end{split}$$
where $\Delta_{j+k-1/2}^n = \rho_{j+k}^n - \rho_{j+k-1}^n \text{ for } k = 0, \dots, N+1 \end{split}$

 $v'' = 0 \implies$ monotonicity preserving

P. Goatin (Inria)

Discrete entropy inequalities

Proposition

If $\alpha \geq 1$ and the CFL condition holds, for all $j \in \mathbb{Z}$, $n \in \mathbb{N}$, $\kappa \in \mathbb{R}$ we have

$$\begin{aligned} p_{j}^{n+1} - \kappa | - |\rho_{j}^{n} - \kappa| + \lambda \left(F_{j+1/2}^{\kappa}(\rho_{j}^{n}, \rho_{j+1}^{n}) - F_{j-1/2}^{\kappa}(\rho_{j-1}^{n}, \rho_{j}^{n}) \right) \\ + \frac{\lambda}{2} \operatorname{sgn}(\rho_{j}^{n+1} - \kappa) \kappa \left(V_{j+1}^{n} - V_{j-1}^{n} \right) \le 0 \end{aligned}$$

where

$$F_{j+1/2}^{\kappa}(u,v) = G_{j+1/2}(u \wedge \kappa, v \wedge \kappa) - G_{j+1/2}(u \vee \kappa, v \vee \kappa)$$
$$G_{j+1/2}(u,v) = \frac{1}{2}u V_j^n + \frac{1}{2}v V_{j+1}^n + \frac{\alpha}{2}(u-v)$$

Lax-Wendroff type argument \implies convergence

P. Goatin (Inria)

Introduction	Non-local LWR	Well-posedness	Numerical tests	Micro-macro limit	Perspectives
		Regularity	of solutions ⁴		

Proposition

If the initial datum $\rho_0 \in W^{1,\infty}(\mathbb{R})$, then the solution $\rho \in W^{1,\infty}(\mathbb{R}^+ \times \mathbb{R})$

Indeed,

$$\left|\frac{\rho_{j+1}^n - \rho_j^n}{\Delta x}\right| \le e^{7w_\eta(0)\left(A + \left\|v^{\prime\prime}\right\|_{\infty}\right)\frac{n}{2}\Delta t} \sup_j \left|\frac{\rho_{j+1}^0 - \rho_j^0}{\Delta x}\right|$$

$$\left|\frac{\rho_j^{n+1} - \rho_j^n}{\Delta t}\right| \le \left[\alpha + v_{\max} + A\left(1 + w_\eta(0)\Delta x\right)\right] \sup_j \left|\frac{\rho_{j+1}^n - \rho_j^n}{\Delta x}\right|$$

⁴[Betancourt&al, Nonlinearity 2011]

P. Goatin (Inria)

Outline of the talk

A traffic flow model with non-local velocity

3 Well-posedness

4 Numerical tests

Micro-macro limit

6 Perspectives

P. Goatin (Inria)

Monotonicity preservation

Figure: Density profiles at time t = 0.01 corresponding to $\rho_L = 0.2$, $\rho_R = 0.8$ and kernel $w_\eta(x) = 1/\eta$, $\eta = 0.1$.

P. Goatin (Inria)

Dependence on the location of the kernel support

We set $v(\rho) = 1 - \rho$ and

downstream:
$$V_d(t,x) = 1 - \int_x^{x+\eta} \rho(t,y) w_\eta(y-x) \, dy$$

center:
$$V_c(t,x) = 1 - \int_{x-\eta/2}^{x+\eta/2} \rho(t,y) w_\eta(y-x) \, dy$$

upstream :
$$V_u(t,x) = 1 - \int_{x-\eta}^x \rho(t,y) w_\eta(y-x) \, dy$$

P. Goatin (Inria)

Numerical tests

Perspectives

Dependence on the location of the kernel support

Rarefaction

Figure: $w_{\eta}(x) = 1/\eta$ with downstream, central and upstream supports respectively and initial data $\rho_L = 0.6$, $\rho_R = 0.2$

P. Goatin (Inria)

Micro-macro limit

Perspectives

Dependence on the kernel support

Shock

Figure: $w_{\eta}(x) = 1/\eta$ with downstream, central and upstream supports respectively and initial data $\rho_L = 0.4$, $\rho_R = 0.9$

P. Goatin (Inria)

Dependence on the kernel support

Oscillating initial datum

Figure: $w_{\eta}(x) = 1/\eta$ with downstream, central and upstream supports respectively

P. Goatin (Inria)

Kernel monotonicity

Figure: $\rho(t = 0.5, \cdot)$ corresponding to $\rho_L = 0.4$, $\rho_R = 0.9$

	$w_\eta(x) = 1/\eta$		$w_{\eta}(x) = 2(\eta - x)/\eta^2$		$w_{\eta}(x) = 2x/\eta^2$	
Δx	$\gamma(\Delta x)$	L ¹ -error	$\gamma(\Delta x)$	L^1 -error	$\gamma(\Delta x)$	L ¹ -error
0.01	0.98021	3.013e-03	1.06427	3.315e-02	-0.42189	1.241e-01
0.005	0.93000	1.709e-03	1.06119	1.590e-02	-0.88509	1.287e-01
0.0025	0.61590	1.044e-03	0.87964	7.650e-03	-0.13054	1.303e-01
0.00125	0.44360	6.344e-04	1.05856	3.696e-03	0.15360	1.069e-01
0.000625	0.57113	3.632e-04	0.99995	1.547e-03	0.27699	7.093e-02

Table: Convergence orders and L¹-errors to the reference solutions corresponding to $\Delta x = 0.00015625$

P. Goatin (Inria)

$$\partial_t \rho + \partial_x \left(\rho v(\rho * w_\eta) \right) = 0 \quad \to \quad \partial_t \rho + \partial_x \left(\rho v(\rho) \right) = 0 \quad ??$$

We consider
$$v(\rho) = 1 - \rho$$
 and $\rho_0(x) = \begin{cases} 0.8 & \text{if } -0.5 < x < -0.1 \\ 0 & \text{otherwise} \end{cases}$

	$w_{\eta}($	$x) = 1/\eta$	$w_\eta(x) =$	$= 2(\eta - x)/\eta^2$		
η	$\gamma(\eta)$ L ¹ -error		$\gamma(\eta)$	L^1 -error		
0.1	0.747605	6.417287 e-02	0.764526	4.814767 e-02		
0.01	0.877130	1.147483 e-02	0.920991	8.280359 e-03		
0.001	-	1.522703 e-03	-	9.932484 e-04		

P. Goatin (Inria)

Outline of the talk

A traffic flow model with non-local velocity

3 Well-posedness

4 Numerical tests

Micro-macro limit

6 Perspectives

P. Goatin (Inria)

Microscopic model⁵

N-dimensional dynamical system with metric interaction

 $\begin{aligned} \dot{x}_N &= v(0) \\ \dot{x}_i &= v \left(\frac{M}{N} \sum_{j=1}^N w_\eta^N (x_{i+j} - x_i) \right) & \text{for } i = N - 1, \dots, 1 \\ x_i(0) &= x_i^0 \end{aligned}$

where w_{η}^{N} is a regularized (continuous) kernel

$$\begin{split} M &= \int \rho_0(x) \, dx \\ x_1^0 &:= \sup \left\{ x \in \mathbb{R} \colon \int_{-\infty}^x \rho_0(y) \, dy < \frac{M}{N} \right\} \\ x_i^0 &:= \sup \left\{ x \in \mathbb{R} \colon \int_{x_{i-1}^0}^x \rho_0(y) \, dy < \frac{M}{N} \right\}, \quad i = 2, \dots, N \end{split}$$

P. Goatin (Inria)

⁵[GoatinRossi, in preparation]

Microscopic model⁵

N-dimensional dynamical system with metric interaction

 $\begin{aligned} \dot{x}_N &= v(0) \\ \dot{x}_i &= v \left(\frac{M}{N} \sum_{j=1}^N w_\eta^N(x_{i+j} - x_i) \right) \\ x_i(0) &= x_i^0 \end{aligned}$ for $i = N - 1, \dots, 1$

where w_{η}^{N} is a regularized (continuous) kernel

$$\begin{split} M &= \int \rho_0(x) \, dx \\ x_1^0 &:= \sup \left\{ x \in \mathbb{R} \colon \int_{-\infty}^x \rho_0(y) \, dy < \frac{M}{N} \right\} \\ x_i^0 &:= \sup \left\{ x \in \mathbb{R} \colon \int_{x_{i-1}^0}^x \rho_0(y) \, dy < \frac{M}{N} \right\}, \quad i = 2, \dots, N \end{split}$$

Related works:

• FTL \rightarrow LWR:

[ColomboRossi, Rend. Sem. Mat. Univ. Padova 2014] [DiFrancescoRosini, ARMA 2015]

P. Goatin (Inria)

⁵[GoatinRossi, in preparation]

Well-posedness

Numerical tests

Micro-macro limit

Perspectives

Discrete maximum principle

Due to the non-increasing monotonicity of w_{η} , there holds

•
$$x_i^0 - x_{i-1}^0 \ge \ell \quad \forall i \implies x_i(t) - x_{i-1}(t) \ge \ell \quad \forall i \quad \forall t > 0$$

•
$$x_i^0 - x_{i-1}^0 \le L \quad \forall i \implies x_i(t) - x_{i-1}(t) \le L \quad \forall i \quad \forall t > 0$$

Convergence

Define the empirical measure

$$\rho^N(t,\cdot) := \frac{M}{N} \sum_{i=1}^N \delta_{x_i(t)}$$

weak solution of

$$\partial_t \rho^N + \partial_x \left(\rho^N v \left(\int w_\eta^N(y-x) \, d\rho^N(t,y) \right) \right) = 0$$

Convergence

Define the empirical measure

$$\rho^N(t,\cdot) := \frac{M}{N} \sum_{i=1}^N \delta_{x_i(t)}$$

weak solution of

$$\partial_t \rho^N + \partial_x \left(\rho^N \, v \left(\int w^N_\eta (y-x) \, d\rho^N(t,y) \right) \right) = 0$$

Theorem [GoatinRossi, in preparation]

Let $\rho_0 \in BV(\mathbb{R}; [0, \rho_{max}])$ with compact support. Then for any T > 0 we have

$$\rho^N \rightharpoonup \rho$$

weakly in the sense of measures.

Convergence

Define the empirical measure

$$\rho^N(t,\cdot) := \frac{M}{N} \sum_{i=1}^N \delta_{x_i(t)}$$

weak solution of

$$\partial_t \rho^N + \partial_x \left(\rho^N \, v \left(\int w^N_\eta(y-x) \, d\rho^N(t,y) \right) \right) = 0$$

Theorem [GoatinRossi, in preparation]

Let $\rho_0 \in BV(\mathbb{R}; [0, \rho_{max}])$ with compact support. Then for any T > 0 we have

$$\rho^N \rightharpoonup \rho$$

weakly in the sense of measures.

Proof. Relies on ∞ -Wasserstein distance

$$W_{\infty}(\mu,\nu) := \inf \left\{ \lambda - \operatorname{ess\,sup} |y - x| \colon \lambda \in \Pi(\mu,\nu) \right\}$$

[ChampionDePascaleJuutinen, SIAM J. Math. Anal. 2008]

P. Goatin (Inria)

Perspectives

Micro-macro limit

Numerically, we consider

$$\tilde{\rho}_N(t,\cdot) := \sum_{i=1}^{N-1} \frac{M/N}{x_{i+1}(t) - x_i(t)} \chi_{[x_i(t), x_{i+1}(t)[}$$

P. Goatin (Inria)

Outline of the talk

A traffic flow model with non-local velocity

3 Well-posedness

- 4 Numerical tests
- 5 Micro-macro limit

P. Goatin (Inria)

Some open problems:

- boundary conditions
- topological VS metric interactions
- finite acceleration models for pollution estimation

Perspectives

Some open problems:

- boundary conditions
- topological VS metric interactions
- finite acceleration models for pollution estimation

Thank you!

P. Goatin (Inria)