Resurrection of the Payne-Whitham Pressure?

Benjamin Seibold (Temple University)

September 29th, 2015

Collaborators and Students
Shumo Cui (Temple University)
Shimao Fan (Temple University & UIUC)
Louis Graup (Temple University)
Michael Herty (RWTH Aachen University)
Kathryn Lund (Temple University)
Rodolfo Ruben Rosales (MIT)

Research Support
NSF CNS–1446690 ... Control of vehicular traffic flow via low density autonomous vehicles
NSF DMS–1007899 ... Phantom traffic jams, continuum modeling, and connections with detonation wave theory
Overview

1. Background
2. Are Second-Order Models Closer to Reality than LWR?
3. Jamitons in Second-Order Models
4. Does Real Data Actually Favor ARZ over PW?
5. Macroscopic Limits of Microscopic Models
6. Pressure-Hesitation Models and Non-Convexity
Overview

1. Background
2. Are Second-Order Models Closer to Reality than LWR?
3. Jamitons in Second-Order Models
4. Does Real Data Actually Favor ARZ over PW?
5. Macroscopic Limits of Microscopic Models
6. Pressure-Hesitation Models and Non-Convexity
Background

Traffic Flow Measurements and Fundamental Diagram

Bruce Greenshields collecting data (1933)

[This was only 25 years after the first Ford Model T (1908)]

Traffic flow theory

- **Density** ρ: #vehicles per unit length of road (at a fixed time)
- **Flow rate** q: #vehicles per unit time (passing a fixed position)
- **Bulk velocity**: $u = q/\rho$

Contemporary measurements (q vs. ρ)

[Flow rate curve for LWRQ model]

- sensor data
- flow rate function $Q(\rho)$

Postulated density–velocity relationship

[Fundamental Diagram of Traffic Flow]
Continuum description

ρ and q aggregated over multiple lanes; position on road: x; time: t.

Number of vehicles between a and b:
$$m(t) = \int_a^b \rho(x, t) \, dx$$

Traffic flow rate (= flux):
$$q = \rho u$$

Change of number of vehicles equals inflow $q(a)$ minus outflow $q(b)$:
$$\int_a^b \rho_t \, dx = \frac{d}{dt} m(t) = q(a) - q(b) = -\int_a^b q_x \, dx$$

Equation holds for any choice of a and b, thus
continuity equation
$$\rho_t + (\rho u)_x = 0$$
(conservation of vehicles)

First-order traffic models

Assume $u = U(\rho)$, and thus
$q = \rho U(\rho) = Q(\rho)$ given by flow rate function.

Scalar hyperbolic conservation law.

Second-order traffic models

Add a second equation, modeling vehicle acceleration, e.g.:
$$u_t + uu_x = -\frac{p'(\rho)}{\rho} \rho_x + \frac{1}{\tau} (U(\rho) - u)$$

2×2 system of balance laws

\[\rho_t + (\rho U(\rho))_x = 0 \]

First-order model

\[
\begin{cases}
\rho_t + (\rho u)_x = 0 \\
u_t + uu_x + \frac{1}{\rho} p(\rho)_x = \frac{1}{\tau}(U(\rho) - u)
\end{cases}
\]

Parameters: pressure \(p(\rho) \); desired velocity function \(U(\rho) \); relaxation time \(\tau \)

Second-order model; vehicle acceleration: \(u_t + uu_x = -\frac{p'(\rho)}{\rho} \rho_x + \frac{1}{\tau}(U(\rho) - u) \)

Second-order

\[
\begin{cases}
\rho_t + (\rho u)_x = 0 \\
(u + h(\rho))_t + u(u + h(\rho))_x = \frac{1}{\tau}(U(\rho) - u)
\end{cases}
\]

hesitation function \(h(\rho) \); vehicle acceleration: \(u_t + uu_x = \rho h'(\rho) u_x + \frac{1}{\tau}(U(\rho) - u) \)

Generalized ARZ models (GARZ) [Lebacque&Mammar&Haj-Salem, Proc. 17th ISTTT 2007]: “GSOM”

Second-order

\[
\begin{cases}
\rho_t + (\rho u)_x = 0 \\
w_t + uw_x = \frac{1}{\tau}(U(\rho) - u)
\end{cases}
\]

where \(u = V(\rho, w) \)
Model shortcomings of Payne-Whitham

- **Negative velocities** can arise: \(\rho(x, 0) = 1 + \tanh(x/\varepsilon) \) and \(u(x, 0) = x^2 \) for \(x \in [-1, 1] \). Then PW yields \(u_t(0, 0) = -\frac{1}{\varepsilon} p'(1) + \frac{1}{\tau} U(1) < 0 \), if \(\varepsilon \) sufficiently small. In contrast, (G)ARZ yields \(u_t(0, 0) = \frac{1}{\tau} U(1) > 0 \).

- Some information travels faster than vehicles: \(\lambda = u \pm c \), where \(c = \sqrt{p'(\rho)} \). For ARZ: \(\lambda_1 = u - \rho h'(\rho) \) and \(\lambda_2 = u \).

- PW & ARZ have shocks that vehicles run into \((\rho_L < \rho_R \text{ and } s < u_R < u_L) \). But: PW also admits shocks that overtake vehicles from behind \((\rho_L > \rho_R \text{ and } s > u_R > u_L) \). (G)ARZ has contact discontinuities \((s = u_L = u_R) \) instead.

Current perspectives

Math: Models with a Payne-Whitham (i.e., density-based) pressure are flawed. The (G)ARZ form of the pressure is the correct one.

Metanet: [Papageorgiou et al.] PW’s problems are fixed on a discrete level.

Premise of this presentation

The Payne-Whitham pressure should be considered — in a PDE sense!
Lighthill-Whitham-Richards (LWR) model (1950s)
Velocity is uniquely determined by density: $u = U(\rho)$.

Payne-Whitham (PW) model (1970s)
ρ and u are independent variables.

Requiem for second-order models (1990s)
PW: drivers look back, shocks can overtake vehicles, $U < 0$ can happen.

Resurrection of second-order models (2000s)
Not 2^{nd} order models are flawed, just PW; fixed via a different pressure.

Now: Resurrection of the Payne-Whitham pressure?
Overview

1. Background

2. Are Second-Order Models Closer to Reality than LWR?

3. Jamitons in Second-Order Models

4. Does Real Data Actually Favor ARZ over PW?

5. Macroscopic Limits of Microscopic Models

6. Pressure-Hesitation Models and Non-Convexity
Are Second-Order Models Closer to Reality than LWR?

--- Talk by Michael Herty

LWR model

First-order model: \(\rho_t + Q(\rho)_x = 0 \)

(does not reflect spread in FD)

Data-fitted flux \(Q(\rho) \) — via LSQ-fit

Induced velocity curve \(U(\rho) \)
Aw-Rascle-Zhang (ARZ) model

\[
\begin{align*}
\rho_t + (\rho u)_x &= 0 \\
(u + h(\rho))_t + u(u + h(\rho))_x &= 0
\end{align*}
\]
where \(h'(\rho) > 0\) and, WLOG, \(h(0) = 0\).

Equivalent formulation

\[
\begin{align*}
\rho_t + (\rho u)_x &= 0 \\
w_t + uw_x &= 0
\end{align*}
\]
where \(u = w - h(\rho)\)

Interpretation 1: Each vehicle (moving with velocity \(u\)) carries a characteristic value, \(w\), which is its empty-road velocity. The actual velocity \(u\) is then: \(w\) reduced by the **hesitation function** \(h(\rho)\).

Interpretation 2: ARZ is a generalization of LWR: different drivers have different \(u_w(\rho)\).
NGSIM (I-80, Emeryville, CA; 2005)

- three 15 minute intervals
- precise trajectories of all vehicles (in 0.1s intervals)
- historic FD provided separately

Approach

- Construct macroscopic fields ρ and u from vehicle positions (via kernel density estimation)
- Use data to prescribe i.c. at $t = 0$ and b.c. at left and right side of domain
- Run PDE model to obtain $\rho_{\text{model}}(x, t)$ and $u_{\text{model}}(x, t)$ and error

$$E(x, t) = \left| \frac{\rho_{\text{data}}(x, t) - \rho_{\text{model}}(x, t)}{\rho_{\text{max}}} \right| + \left| \frac{u_{\text{data}}(x, t) - u_{\text{model}}(x, t)}{u_{\text{max}}} \right|$$

- Evaluate model error in a macroscopic (L^1) sense:

$$E = \frac{1}{TL} \int_0^T \int_0^L E(x, t) \, dx \, dt$$

Space-and-time-averaged model errors for NGSIM data

<table>
<thead>
<tr>
<th>Data set</th>
<th>LWR</th>
<th>ARZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>4:00–4:15</td>
<td>0.127 (+73%)</td>
<td>0.073</td>
</tr>
<tr>
<td>5:00–5:15</td>
<td>0.115 (+36%)</td>
<td>0.085</td>
</tr>
<tr>
<td>5:15–5:30</td>
<td>0.124 (+6%)</td>
<td>0.117</td>
</tr>
</tbody>
</table>

Even better results with GARZ.

Outcome

Second-order models reproduce real traffic dynamics better than LWR.
Overview

1. Background

2. Are Second-Order Models Closer to Reality than LWR?

3. Jamitons in Second-Order Models

4. Does Real Data Actually Favor ARZ over PW?

5. Macroscopic Limits of Microscopic Models

6. Pressure-Hesitation Models and Non-Convexity
LWR model
\[\rho_t + (\rho U(\rho))_x = 0 \]
has char. velocity \(\mu = (\rho U(\rho))' \).

Why do second-order macrosc. models need a pressure at all?
If not: pressureless gas eqns.
\[
\begin{cases}
\rho_t + (\rho u)_x = 0 \\
u_t + uu_x = \frac{1}{\tau}(U(\rho) - u)
\end{cases}
\]
\(\lambda_{\pm} = u \) with Jordan-block; vehicles pile up on top of each other (Dirac delta shocks).
Prevented by pressure, which makes system hyperbolic.

PW pressure
\[
\begin{pmatrix}
\rho \\
u
\end{pmatrix}_t + \begin{pmatrix}
u \\
1 \frac{d\rho}{\rho} \frac{d\rho}{d\rho}
\end{pmatrix} \begin{pmatrix}
\rho \\
u
\end{pmatrix}_x = \begin{pmatrix} 0 \\
\frac{1}{\tau}(U - u)
\end{pmatrix}
\]
yields \(\lambda_1 = u - c \) and \(\lambda_2 = u + c \), where \(c = \sqrt{p'(\rho)} \).

ARZ pressure
\[
\begin{pmatrix}
\rho \\
u
\end{pmatrix}_t + \begin{pmatrix}
u \\
0 - \rho \left(\frac{d\rho}{d\rho} \right)
\end{pmatrix} \begin{pmatrix}
\rho \\
u
\end{pmatrix}_x = \begin{pmatrix} 0 \\
\frac{1}{\tau}(U - u)
\end{pmatrix}
\]
yields \(\lambda_1 = u - \rho h'(\rho) \) and \(\lambda_2 = u \).
Mathematical structure (here for PW): System of balance laws

\[
\begin{pmatrix} \rho \\ u \end{pmatrix}_t + \begin{pmatrix} u \\ \frac{1}{\rho} \frac{d\rho}{d\rho} \rho \end{pmatrix} \cdot \begin{pmatrix} \rho \\ u \end{pmatrix}_x = \begin{pmatrix} 0 \\ \frac{1}{\tau} (U(\rho) - u) \end{pmatrix}
\]

- hyperbolic part
- relaxation term

\[
\lambda_1 = u - c \\
\lambda_2 = u + c
\]

Relaxation to equilibrium

Formally, we can consider the limit \(\tau \to 0 \). Then: \(u = U(\rho) \), i.e., the system reduces to LWR ("reduced equation"). Char. vel.: \(\mu = (\rho U(\rho))' \).

Sub-characteristic condition (SCC) [Whitham: Comm. Pure Appl. Math 1959]

Solutions of the 2 \times 2 system converge to solutions of LWR, only if the SCC, \(\lambda_1 \leq \mu \leq \lambda_2 \), is satisfied. Otherwise: jamitons.

Example (PW): intrinsic phase transition to "phantom traffic jams"

\[
\text{(SCC)} \iff U(\rho) - c(\rho) \leq U(\rho) + \rho U'(\rho) \leq U(\rho) + c(\rho) \iff \frac{c(\rho)}{\rho} \geq -U'(\rho).
\]

For \(p(\rho) = \frac{\beta}{2} \rho^2 \) and \(U(\rho) = u_m(1 - \rho/\rho_m) \): uniform flow stable iff \(\rho \leq \beta \rho_m^2 / u_m^2 \).
PW model
\[
\begin{cases}
\rho_t + (\rho u)_x = 0 \\
u_t + uu_x + \frac{1}{\rho} p(\rho)_x = \frac{1}{\tau} (U(\rho) - u)
\end{cases}
\]

Traveling wave ansatz
\[
\rho = \rho(\eta), \ u = u(\eta), \text{ with self-similar variable } \eta = \frac{x - st}{\tau}.
\]

Then
\[
\rho_t = -\frac{s}{\tau} \rho', \quad \rho_x = \frac{1}{\tau} \rho', \quad u_t = -\frac{s}{\tau} u', \quad u_x = \frac{1}{\tau} u'
\]

and
\[
p_x = \frac{1}{\tau} c^2 \rho', \quad c^2 = \frac{dp}{d\rho}
\]

Continuity equation
\[
\rho_t + (u\rho)_x = 0 \\
-\frac{s}{\tau} \rho' + \frac{1}{\tau} (u\rho)' = 0 \\
(\rho(u - s))' = 0
\]

\[
\rho = \frac{m}{u - s} \\
\rho' = -\frac{\rho}{u - s} u'
\]

Momentum equation
\[
\begin{align*}
u_t + uu_x + \frac{p_x}{\rho} &= \frac{1}{\tau} (U - u) \\
-\frac{s}{\tau} u' + \frac{1}{\tau} uu' + \frac{dp}{d\rho} \rho' &= \frac{1}{\tau} (U - u) \\
(u - s)u' - c^2 \frac{1}{u - s} u' &= U - u \\
u' &= \frac{(u - s)(U - u)}{(u - s)^2 - c^2}
\end{align*}
\]
Ordinary differential equation for $u(\eta)$

$$u' = \frac{(u - s)(U(\rho) - u)}{(u - s)^2 - c(\rho)^2} \quad \text{where} \quad \rho = \frac{m}{u - s}$$

where

- $s = \text{travel speed of jamiton}$
- $m = \text{mass flux of vehicles through jamiton}$

Key point for jamitons

m and s can **not** be chosen independently:

Denominator has root at $u = s + c$. Solution can only pass smoothly through this singularity (the **sonic point**), if $u = s + c$ implies $U = u$.

Using $u = s + \frac{m}{\rho}$, we obtain for this sonic density ρ_S that:

$$\begin{cases}
\text{Denominator} & s + \frac{m}{\rho_S} = s + c(\rho_S) \quad \implies \quad m = \rho_S c(\rho_S) \\
\text{Numerator} & s + \frac{m}{\rho_S} = U(\rho_S) \quad \implies \quad s = U(\rho_S) - c(\rho_S)
\end{cases}$$

Algebraic condition (Chapman-Jouguet condition [Chapman, Jouguet (1890)]) that relates m and s (and ρ_S).
Jamiton ODE

\[u' = \frac{(u - s)(U\left(\frac{m}{u-s}\right) - u)}{(u - s)^2 - c\left(\frac{m}{u-s}\right)^2} \]

Construction

1. Choose \(m \). Obtain \(s \) by matching root of denominator with root of numerator.
2. Choose \(u^- \). Obtain \(u^+ \) by Rankine-Hugoniot conditions.
3. ODE can be integrated through sonic point (from \(u^+ \) to \(u^- \)).
4. Yields length (from shock to shock) of jamiton, \(\lambda \), and number of cars, \(N = \int_0^{\lambda} \rho(x)dx \).

Inverse construction

If \(\lambda \) and \(N \) are given, find jamiton by iteration.

Periodic case

\[\rho^+, u^+ \]

\[\rho^-, u^- \]

\[U = s + c \]

\[s[\rho] = [u\rho] \]
\[s[u\rho] = [u^2 \rho + p] \]

jamiton length = \(O(\tau) \)
Experiment: Jamitons on circular road [Sugiyama et al.: New J. of Physics 2008]
A Jamiton on a Circular Road \(t=0s \)
Infinite road; lead jamiton gives birth to a chain of “jamitinos”.

Flynn, Kasimov, Nave, Rosales, Seibold
Comparison of ARZ & PW solutions. Can you tell which one is which?

- Model #1, $t=0s$
 - PDE solution
 - Traveling wave

- Model #2, $t=0s$
 - PDE solution
 - Traveling wave
Recall: continuity equation
\[\rho_t + (u\rho)_x = 0 \]

Traveling wave ansatz
\[\rho = \rho(\eta), \quad u = u(\eta), \text{ where } \eta = \frac{x-st}{\tau}, \]
yields
\[\rho_t + (u\rho)_x = 0 \]
\[-\frac{s}{\tau}\rho' + \frac{1}{\tau}(u\rho)' = 0 \]
\[(\rho(u-s))' = 0 \]
\[\rho(u-s) = m \]
\[q = m + s\rho \]

Hence: Any traveling wave is a line segment in the fundamental diagram.

A jamiton in the FD

- Plot equilibrium curve \(Q(\rho) = \rho U(\rho) \)
- Chose a \(\rho_S \) that violates the SCC
- Mark sonic point \((\rho_S, Q(\rho_S)) \) (red)
- Set \(m = \rho_S c(\rho_S) \) and \(s = U(\rho_S) - c(\rho_S) \)
- Draw maximal jamiton line (blue)
- Other jamitons with the same \(m \) and \(s \) are sub-segments (brown)
Construction of jamiton FD

For each ρ_S that violates the SCC: construct maximal jamiton.

Temporal aggregation of jamitons

At fixed position \bar{x}, calculate all possible temporal average ($\Delta t = \alpha \tau$) densities

$$\bar{\rho} = \frac{1}{\Delta t} \int_0^{\Delta t} \rho(\bar{x}, t) \, dt.$$

Average flow rate: $\bar{q} = m + s\bar{\rho}$.

This reduces the spread in the FD.

Conclusions

- Set-valued FDs can be explained via traveling waves in second-order traffic models.
- No fundamental difference between ARZ and PW in terms of jamitons.
Overview

1. **Background**

2. **Are Second-Order Models Closer to Reality than LWR?**

3. **Jamitons in Second-Order Models**

4. **Does Real Data Actually Favor ARZ over PW?**

5. **Macroscopic Limits of Microscopic Models**

6. **Pressure-Hesitation Models and Non-Convexity**
Macroscopic fields from NGSIM data

- NGSIM: all vehicle trajectories on 500m highway over 45 minutes.
- Construct macroscopic fields via kernel density estimation:

 Using Gaussian kernels $G(x) = Z^{-1}e^{-(x/h)^2}$, define

 $\rho(x) = \sum_j G(x - x_j)$ and $q(x) = \sum_j \dot{x}_j G(x - x_j)$ and

 $u(x) = q(x)/\rho(x)$. [Fan, S: Transportat. Res. Rec. 2013]

Idea

- PW vehicle acceleration field

 $a = u_t + uu_x = -\frac{p'(\rho)}{\rho} \rho_x + \frac{1}{\tau}(U(\rho) - u) = A_{PW}(\rho, u, \rho_x)$

 is independent of u_x.

- ARZ vehicle acceleration field

 $a = u_t + uu_x = \rho h'(\rho) u_x + \frac{1}{\tau}(U(\rho) - u) = A_{ARZ}(\rho, u, u_x)$

 is independent of ρ_x (same structure for GARZ).

- No model reproduces data exactly, but:

 If ARZ is a better model than PW, then true acceleration field should depend substantially more strongly on u_x than on ρ_x.
Idea

- PW acceleration field $u_t + uu_x$ is independent of u_x.
- (G)ARZ acceleration field $u_t + uu_x$ is independent of ρ_x.
- Does true acceleration field depend more strongly on u_x than on ρ_x?

Smoothing of vehicle trajectories

Note: macroscopic acceleration is very different from vehicle acceleration.
Does Real Data Actually Favor ARZ over PW?

Structural Comparison of ARZ vs. PW

Idea

- PW acceleration field $u_t + uu_x$ is independent of u_x.
- (G)ARZ acceleration field $u_t + uu_x$ is independent of ρ_x.
- Does true acceleration field depend more strongly on u_x than on ρ_x?

Approach

- Consider 100 positions (5m) along road, and 4500 time steps (0.6s). Yields 450,000 data points.
- At each data point (in x–t domain), evaluate fields ρ, u, ρ_x, u_x, a.
- Divide 4-dimensional domain (ρ, u, ρ_x, u_x) into boxes ($20 \times 20 \times 20 \times 20$). For each box that contains data points, assign the average a-value.
- For each (ρ, u, ρ_x), look at all boxes in u_x-direction. Calculate variation $\max a - \min a$ over this strip. Then average these a-variations over all strips with at least 2 a-values.
- Same idea: for each (ρ, u, u_x), look at boxes in ρ_x-direction; calculate variation $\max a - \min a$ over strip; then average.
- Result: ρ_x-variation: 0.4697 ft/s2; u_x-variation: 0.4909 ft/s2.

Data shows no strong preference for ARZ vs. PW.
Overview

1. Background

2. Are Second-Order Models Closer to Reality than LWR?

3. Jamitons in Second-Order Models

4. Does Real Data Actually Favor ARZ over PW?

5. Macroscopic Limits of Microscopic Models

6. Pressure-Hesitation Models and Non-Convexity
Follow-the-leader (FTL) model

[Gazis, Herman, Rothery, Operat. Res. 1960]

\[\dot{x}_j = b \frac{\dot{x}_{j+1} - \dot{x}_j}{x_{j+1} - x_j} \]

Divers equilibrate velocities.

Optimal velocity model (OVM)

[Bando et al., PRE 1995]

\[\ddot{x}_j = a \cdot \left(U \left(\frac{\Delta X}{x_{j+1} - x_j} \right) - \dot{x}_j \right) \]

\(\Delta X \) is reference distance, s.t. \(\frac{\Delta X}{x_{j+1} - x_j} \) is a normalized density.

Macro limit of combined FTL-OVM model

\[\ddot{x}_j = b \frac{\dot{x}_{j+1} - \dot{x}_j}{x_{j+1} - x_j} + a \cdot \left(U \left(\frac{\Delta X}{x_{j+1} - x_j} \right) - \dot{x}_j \right) \]

converges to ARZ model (with \(h(\rho) \propto b \log(\rho) \)) as \(\Delta X \to 0 \) and number of vehicles \(N \propto 1/\Delta X \to \infty \).

Proof: Show equivalence of forward Euler discretization of the microscopic model and a Godunov discretization of ARZ in Lagrangian variables.

Problem

Argument fails for pure OVM (case \(b = 0 \)): ARZ becomes pressureless gas eqns. (always unstable), while OVM is stable if \(a \) is sufficiently large.
Stability of uniform flow in optimal velocity model

OVM: $\dot{x}_j = a \cdot (U\left(\frac{\Delta X}{x_{j+1} - x_j}\right) - \dot{x}_j)$

Base flow: $\bar{x}_j(t) = d\Delta X j + V(d)t$, where spacing d given

Perturbed flow $x_j = \bar{x}_j + y_j$ yields: $\ddot{y}_j = a \cdot \left(\frac{-\rho^2 U'(\rho)}{\Delta X}(y_{j+1} - y_j) - \dot{y}_j\right)$

Basic waves $y_j = e^{zt + i\xi d\Delta X j}$ yield stability, iff $\frac{-\rho^2 U'(\rho)}{\Delta X} < \frac{1}{2} a$.

Proper scaling

- If a fixed, then the OVM becomes always unstable as $\Delta X \to 0$ (consistent with pressureless gas limit of ARZ)
- When scaling $a = \frac{A}{\Delta X}$, then we have stability condition, $-\rho^2 U'(\rho) < \frac{1}{2} A$, that persists in the macroscopic limit ($\Delta X \to 0$).
- Now the pressureless gas equation

\[
\begin{align*}
\rho_t + (\rho u)_x &= 0 \\
u_t + uu_x &= a \cdot (U(\rho) - u)
\end{align*}
\]

is not a proper macroscopic limit.
Scaled OVM

$$\ddot{x}_j = \frac{A}{\Delta X} \cdot (U(\frac{\Delta X}{x_{j+1}-x_j}) - \dot{x}_j)$$ is stable if

$$-\rho^2 U'(\rho) < \frac{1}{2} A.$$

Macroscopic limit

- Pressureless gas limit is obtained when interpreting

$$\frac{\Delta X}{x_{j+1}-x_j} \approx \rho(x_j, t).$$

- Now interpret

$$\frac{\Delta X}{x_{j+1}-x_j} \approx \rho(x_{j+\frac{1}{2}}, t), \text{ where } x_{j+\frac{1}{2}} = \frac{1}{2}(x_j + x_{j+1})$$

is midpoint between vehicles.

- Taylor expansion leads to:

$$\frac{\Delta X}{x_{j+1}-x_j} \approx \rho(x_j)$$

$$\downarrow$$

$$\frac{\Delta X}{x_{j+1}-x_j} \approx \rho(x_j) + \rho_x(x_j) \frac{x_{j+1}-x_j}{2} \approx \rho(x_j) + \rho_x(x_j) \frac{1}{2\rho(x_j)} \Delta X$$

and thus:

$$U(\frac{\Delta X}{x_{j+1}-x_j}) \approx U(\rho(x_j)) + U'(\rho(x_j))\rho_x(x_j) \frac{1}{2\rho(x_j)} \Delta X$$

- Leads to Payne-Whitham model:

$$\begin{cases}
\rho_t + (\rho u)_x = 0 \\
u_t + uu_x + a\Delta X \frac{-U'(\rho)}{2\rho} \rho_x = a \cdot (U(\rho) - u)
\end{cases}$$
Scaled OVM

\[\ddot{x}_j = \frac{A}{\Delta X} \cdot \left(U \left(\frac{\Delta X}{x_{j+1} - x_j} \right) - \dot{x}_j \right) \]
is stable if \(-\rho^2 U'(\rho) < \frac{1}{2} A\).

Macroscopic limit: Payne-Whitham model

\[
\begin{align*}
\rho_t + (\rho u)_x &= 0 \\
u_t + uu_x + A \frac{-U'(\rho)}{2\rho} \rho_x &= \frac{A}{\Delta X} \cdot (U(\rho) - u)
\end{align*}
\]
has char. velocities \(\lambda_{1,2} = U(\rho) \pm \sqrt{-\frac{1}{2} AU'(\rho)}\). Hence, it is stable (SCC satisfied) if \(\rho^2 (-U'(\rho)) < \frac{1}{2} A\). Exactly matches OVM stability.

Note: shock behavior strongly affected by relaxation term.

FTL-OVM model

Same approach yields pressure-hesitation model as macroscopic limit

\[
\begin{align*}
\rho_t + (\rho u)_x &= 0 \\
u_t + uu_x - \rho h'(\rho) u_x - A \frac{U'(\rho)}{2\rho} \rho_x &= \frac{A}{\Delta X} \cdot (U(\rho) - u)
\end{align*}
\]

First-order limit (viscous LWR)

If SCC is satisfied (OVM is stable), an asymptotic expansion \((\Delta X \ll 1)\) of the PW model leads to

\[
\rho_t + (\rho U(\rho))_x = \Delta X \left(D(\rho)(\rho)_x \right)_x
\]
with \(D(\rho) = -U'(\rho)\left(\frac{1}{2} + \frac{1}{A} \rho^2 U'(\rho)\right)\).
First-order limit (viscous LWR)

If SCC is satisfied (OVM is stable), an asymptotic expansion ($\Delta X \ll 1$) of the PW model leads to

$$\rho_t + (\rho U(\rho))_x = \Delta X \left(D(\rho)(\rho)_x \right)_x$$

with

$$D(\rho) = -U'(\rho)\left(\frac{1}{2} + \frac{1}{A} \rho^2 U'(\rho)\right).$$

Connection:

OVM stability \iff PW SCC \iff $D(\rho) > 0$.

Moreover:

Natural transfer of bounded acceleration from micro \rightarrow PW \rightarrow viscous LWR.

One key message

Real traffic is microscopic. Ideally, accurate macroscopic models should not focus on the limit $N \rightarrow \infty$, but represent the solution with true #vehicles N. PW-type pressures play an important role in this.
Overview

1. Background
2. Are Second-Order Models Closer to Reality than LWR?
3. Jamitons in Second-Order Models
4. Does Real Data Actually Favor ARZ over PW?
5. Macroscopic Limits of Microscopic Models
6. Pressure-Hesitation Models and Non-Convexity
Key messages

- Second-order models have clear advantages over LWR in terms of reproducing data and modeling (multi-valued FDs).
- Phantom jam phase transition and jamiton behavior are very reasonable with PW (as with other second-order models). Bad shocks do not persist.
- Trajectory data does not favor the (G)ARZ structure over a PW structure.
- The PW pressure arises naturally when studying macroscopic limits of microscopic descriptions of traffic flow.

Suggestion

Consider pressure-hesitation models with density- and velocity-driven pressures:

\[
\begin{align*}
\rho_t + (\rho u)_x &= 0 \\
u_t + uu_x - \alpha(\rho, u)u_x + \beta(\rho, u)\rho_x &= \frac{1}{\tau}(U(\rho) - u)
\end{align*}
\]

Example: GARZ-PW model

\[
\begin{align*}
\rho_t + (\rho u)_x &= 0 \\
w_t + uw_x + \frac{p(\rho)x}{\rho} &= \frac{1}{\tau}(U(\rho) - u) \quad \text{where } u = V(\rho, w)
\end{align*}
\]
Modeling discussion

- Information traveling faster than vehicles (in PW): Are drivers really unaffected by a big truck approaching in the rear-view mirror?
- Aw&Rascle argue that, when traffic ahead is denser but faster, that drivers should speed up, rather than slow down *(argument neglects relaxation term)*. Does that make sense, when traffic ahead is only a bit faster, but highly dense?
- Bad shocks in PW appear not to arise dynamically. Still, they can be produced via i.c. However, the microscopic reality of traffic should disallow too large ρ_x in i.c.
- Negative velocities. Density-driven pressure should (in some way) vanish as $u \to 0$. Note: macroscopic description in the creeping regime ($u < 2m/s$) is challenging anyways.
- New phenomenon: more complex shock laws; even if $p(\rho)$ and $h(\rho)$ convex, pressure-hesitation models may have composite waves.
 \[\rightarrow \text{ cf. non-convex flux functions (capacity drop)} \]
 \[\rightarrow \text{ cf. traffic models with non-convexity [Li, Liu: Comm. Math. Sci. 2005]} \]
 \[\rightarrow \text{ non-convexity near jamming density [Fan, S: arxiv.org/abs/1308.0393]} \]
Pressure-Hesitation Models and Non-Convexity

Flow rate curves for the NGSIM FD data

- $\rho_{\text{max}} = 133$ veh/km/lane
- sensor data
- LWR flow rate curve $Q(\rho)$
- ARZ family of curves $Q_w(\rho)$

Flow rate curves for the NGSIM FD data

- $\rho_{\text{max}} = 90$ veh/km/lane
- sensor data
- LWR flow rate curve $Q(\rho)$
- ARZ family of curves $Q_w(\rho)$

Model prediction at center for NGSIM data with stagnation density 133 veh/km/lane

- Measurement data (density)
- Prediction LWR (density)
- Prediction ARZ (density)

Model prediction at center for NGSIM data with stagnation density 90 veh/km/lane

- Measurement data (density)
- Prediction LWR (density)
- Prediction ARZ (density)
Non-convexity near jamming

Physical $\rho_{\text{max}} \approx 133$ veh/km/lane can only be reached by $Q(\rho)$ if inflection point near $u = 0$ is inserted.

Final words

- When modeling real traffic flow, the Payne-Whitham pressure should be considered.
- In light of autonomous vehicles, PW-pressure may become even more relevant. Should autonomous vehicles take into account traffic behind them? If so, how would that affect the macroscopic behavior?