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Motivation A

« Traffic flow on motorways: complex nonstationary, nonlinear
phenomenon, with different modes such as: free flow motion,
congestions, stop-and-go waves.

 Changes are due taternal traffic dynamics, andexternal events
(e.g. accidents, road works, weather conditions).
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Example of two wide moving traffic jams propagatin parallel with constant speed
through free and congested traffic and across tineegvay intersections 11, 12, and 13.

From Kerner, 2000a, 2000b: see also Kerner and &tehth996a; Kerner, 1998b.
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D. Helbing, Traffic and related self-driven many particle systems, Review of Modern Physics, Vol. 73, pp. 1067-1141, 2002.



Traffic Flow Problems of Interhgftﬁv k

* Analysis of traffic phenomena and modes, on-line detection

* Build up traffic and sensor models of traffic on motorways and ir
urban environment

- for real-time applications and in block processing

* Develop models and filters reflecting different weather
conditions

* Predict the traffic evolution over space and time
* Distributed methods for estimation

* Development of methods for traffic control, ameliorate traffic

conditions, avoid congestions and jams
,



Vehicular Traffic I\/Iodels”m“%

e Microscopic (particle based)
« Macroscopic (fluid-dynamic models)
 Mesoscopic (gas-kinetic)
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Macroscopic Models Suitable féfA
Real-Time Estimation/ Prediction

e First order models:
— Lighthill-wWhitham (1955), Richards (1955), Daganzo (1984)

 Second order modelse.g., METANET, Papageorgiou et al. (1989,
2004)

« Other models: Boel and Mihaylova (2004, 2006)
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The Cell Transmission Model of Daganzo

* S. Hoogendoorn, P. Bovy, State-of-the-art of Vehicular Traffic Flow Modeling, Journal of Systems Control Engineer — Probeedings
of the Institution of Mechanical Engineers, Part I, Vol. 215, No. 14, pp. 283-303, 2001.
* D. Helbing, Traffic and Related Self-driven Many-particle Systems, Review Modern Physics, Vol. 73, pp. 1067-1141, 2002.



The Problem of Interest

«=i\\/e are mainly interested estimating the statex at timek
from the measurements up to time

K'=k (filtering ),
and
prediction k' > k

opposite to
smoothingk' < k

* No restrictions to linear processes or Gaussian noises

10



The Dynamic System Model

s=iState transition (motion) equation
X = (X1, U1 Vi)
f(.): evolution function (possibly nonlinear)
X %1 O™ :current and previous state
v,.; O1™: system noise (usually non-Gaussian)
u..: (1" known input (control process, e.g.)
The state depends only on the previous stepfirseorder Markov process

e Measurement equation
Z.= hX.ny)
z.0 O0": measurement
h(.): measurement function (possibly nonlinear)
n,: measurement noise (usually non-Gaussian) 11



Main Methods for EstimatiSha

Methods withlinear modelsandGaussian noises
 the Kalman filter

» the Extended KF: requires linearisation (difficult for the tcaff
models with interconnected components)

o derivative free filters: unscented KF, central differencesrfilt
others (can work with nonlinear models)

Mixtures of Gaussian models
e the Gaussian sum filter
Nonparametric methods
 Particle filtering methods

Models with partial linear structure (work with KF), nonlinear
part solve with PFs: Rao-Blackwellisation (Karlsson et al, 2005,
Mihaylova et al 2007)



Why Sequential Monte Carlo Methods #'%

Q(XL %) -
; ‘Classical )

Particle Filter

Xy Regions of high density
X . many particles; large weights of particles
Suitable for: Discrete approximations of continuous pdf

nonlinear models(for traffic dynamics, measurement equation)
non-Gaussiannoisesmultimodalities, affords incorporation afonstraints
able to cope with differentncertainties (in the data, models)

allows forfusing information from different measurement sources 13
applicable taeal-time problems, can bparallelised



Bayesian Methodology

Pr(D | X)Pr(X) o

Pr(X ‘ D) —
Pr(D)
« X: state, D: data Bayes Rule
e Prediction Posterior PDF = likelihood * prior
evidence

 Correction step

14



Traffic State Estimation With'Nv%%T%%A
Bayesian Framework

The posterior state probability density function (PDF) is
estimated given a data set

Zy =12 20 B}

The sensor Iinformation updates recursively the state
distribution.

Prediction:  P(X, | Zy1) = [ PO% [ Xet) P4t | Zuer) A%y

. _ P(Z [ %) P(X [ Zi4)
Update: pix |z, )= K
( k) P(Z | z)

The conditional state PDAP(X / Zy) IS represented as a set of random
samples which are updated and propagated by a particle filte 15




The General Monte Carlo Methoc &

 Method to solve intractable integrals, e.g., with complex PDF

E[x|= [909) p(x)dx

e ((x): some functionp(x): a PDF with complex form

« Since this integral cannot be solved analytically, random
samples are generated fromx)ddy representing the PDF with
random samples

1 -
p(x) =— > (x=x")
N =
« and the Monte Carlo approximation follows

el = [909P09dx= 900> dx-x")dx=-- > g(x")

Doucet et al (2001), Liu (2001)



Update Step A
P(Z | %) P(X | Z4y 1)

P(X [z, ) =
P(Z | Zy-1)
Posterior state PDF = likelihood * prior
evidence

 Prediction: p(x/x.,), from the transition prior, e.g.,
METANET or another traffic model

o Update: from the likelihood, based on the observation model

— Usually concentrates the state PDF by combining the likelihood of
current measurement with the predicted state.

* Evidence the normalising term

P(Z | Z4a) = [ P(Z %) PO | Zs) A% 1



A Particle Filter for Traffic
Flow Estimation

L. Initialisation: k = 0.
Generate samplegx{’} ~ p(x,), 1=12...,N  and initial weigit8 = 1/N

1. Fork=1,2,...,
(1) Prediction sample according to the traffic modek!" ~ p(x, | x{",
for segments between two boundaries where measote@eive

(2) Measurement processing s{@oly fort, =t, on boundaries between segments
where measurements are available

Forl =1,2,....N, w{” =w{"), p(z | x{")

Normalise the weights: W = w7 N w)
(3) Outpug, = 3L, wix{",
(4) Selection (resampling) step
(5) Increase k and iterate to step 2.

18
Mihaylova, Boel, Hegyi (2004, 2007, 2011)



The Unscentec
Kalman Filter s

S 3o~V (Rl e), B FTHQY
03 EET

I:IIE\-\'.-.-.-......._E....

1. The system state can be represented by a probability distribution

2. The system state equations describe how the dynamical system evolves with
the passage of time and relate the states to the measurements.
3. Propagation typically diffuses and translates the prior distribution yielding the a 19

priori distribution.



yi=[pn p-— ]f(*u"?)i w o+ ]f(x-"?)i]

1
wht=wf=—ono--v— i=1,....,2N_
! o2[N,+ A e
m_ _* 1 — {2 .
Wi = 2= a2 (N, )

wé + (1—a?+ B)

1. The UKF uses a set of weighted deterministically selected sample points to represent the prior
distribution with mean and covariance P.

2. Weights for each point to incorporate prior knowledge of the distribution.

3. 2N+1 sigma-points can be utilised to completely describe the second order statistics of a

probability distribution. These statistics can be recovered by a weighted sum of the o-points. 20
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1. The set of sigma points describe the sufficient statistics of the prior distribution

2. The sigma points are propagated through the system state equations.

3. The mean and covariance of the transformed distribution (a priori state estimate) can be calculated by a
weighted sum of the transformed sample points.
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Results from the PF and UKF
with Synthetic Data



METANET A

Discretised in space and time stochastic system model (METANET)

o (k+1) = p (k) + If—lt[qi_l(k) —q (k)] +71,(k), Law of conservation of vehicles

6. (k)= 2, () (K1,

— At _ At e _ _VAt[pi+1(k)_pi(k)
Vi (k+1) =V, (k) + =V (K)[vi (k) Vi(k)1+f{v Lo, (k)] Vi(k)}J TTLIAK +A] j+f7v(k),

anticipation

1
N

-~
~ )
convection term relaxation term

V[ o (K)] =V, exp{— 1 (’Oi (k)] n}
am locrit

o (k) traffic density yeh/km/lang number of vehicles per length unit per lane

vi (k) average speedin/H, g (k) traffic flow jeh/h/lang |i - the number ofJanes.



 Dynamic sending and receiving functions
 Comprises an equation for the speed

@ measurementstjnt,
Qk in, Vk 0 / l \ QkOUt’ Ykout
—> —>

1 2 i-1 i i+1 n-1 n n+1

., = s

Segment
L>v,.. At
max
Qlix Qix
N Vg -1 N Vig -1 Ni 110 Vieak
Lix
24

Boel and Mihaylova (2004 and 2006)



Sending and Receiving Functic“ﬂﬁ%”&
- Sending flow S:the volume of traffic that can leave a cell

- Receiving flow R the volume of traffic that a cell can receive

- Capacity g_capacity the theoretical maximal flow associated to the
critical density

S, = {qfree flows TOr O < Ot R = {qfree dows 1O P02 Pt
Aeapacity for P2 Pt Ueapacity for o < it

Ok = min{ S« Rk J QCapacity}

6000

S R | |
j‘> ‘ [ .:. [
4000 1 .*5!’?-,
e deterministic, static, a0 M.
. . . | 80 & 4 %
* N0 speed relationships $ P " P

Daganzo, 1994 0 50 100 150 200 25



Compositional
Trafflc Model

moving jams

//

=

52 /

2,1 12
1330 distance

6 [km]
time 15:30 0

z1k+1 = f1(QY Vi T1,k, 2,6, M1 1)

Zi k41 = fi @itk Ti ks Tit1 k5 Mi 1)

Ln k+1 = fn(mn 1,ksLn L#Qmit Gutvlnn F.,)
Ty = (ﬂ{kaﬂ?g,w v *mg,k)T

ik = (er'*ku'uz',k)ljl
Boel & Mihaylova (2006, TRB)

1. Foruward wave: forz=1,2,...,n

Six = maz (1 Dt | e N:k%) (4)
and set @, = St-,k. (5)
2. Backward wave: fori=n,n—1....,1

Rix = N1 — Nitt,k + Qit 1k, (6)
where N;19% = (Lit1fit1k)/(Ae + vig1 kta).

3 Sikx < Rigy Qik = Sik, (7)
else Qi,k = Ri,kn Vik = Qi._kLi//(Ni..k&tk)v (8}

3. Update the number of vehicles inside segments,

fore=12 ....7%

Nkt = Nigp + Qi1 — Qi (9)
4. Update the density, fori=1,2,....n
pik+1 = Nigy1/(Lili k41), (10)

antic

Pikt1 = apik+1 + (1 — a)pitt k1. (11)

5. Update of the speed, for:=1,2,....,n

ve 1 i1 ety e (N g —a)
interm { N; k11 5 for N»j’},:+1 ?"—' D?
UVik+1 = i

vy, otherwise,

v:"fﬂm = rnal(i:ﬁ*j’fﬂ Vinivi ) s
Viktl = 3k+11’:rfﬂm + (1 — Br+1)v" (s, ﬁﬁ) T Mg ke+1,
where

— iRl 2 PeRveshotd,

- S ti
Bk | = 8 : ik |p?-1-111.f:+l
T B otherwise.




Measurement Equationéﬁmﬁjk

Considem sensors along the freeway stretch. Traffic states
are measured at discrete time instanpts, ..., 1 ...,

Overall measurement vector:

Zs = (ZIS’ ZZ,S' " Z'-IT-"S)T

z =(Q v, i03={12...,n}

The measurement intervdl§ = t_,, —t.Is typically several
times longer than the time update inte¥gl t, ., —t,

Zs = N(Xs:$s)
where

Zj’sz[cj_j’sj-l_gj’s 27



Results from Modelling. ComparisonUN\/V\EfistF‘/K
Real Data from Belgium (Gent-Antwerp)
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Flow, [veh/h]

Particle Filter
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Results with Synthetic Data
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Results with Real Data ANCASTER
from the Particle Filter

PF estimates: solid line UKF estimates: solid line
PF Measured: dashed line UKF Measured: dashed line
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Results with Real Data fromttig
Particle Filter

PF estimates: solid line UKF estimates: solid line
PF Measured: dashed line UKF Measured: dashed line
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Parallelised Particle Filters for
Freeway Traffic State Estimation

L. Mihaylova, A. Hegyi, A. Gning and R. Boel, Parallelized Particle and Gaussian Sum Particle
Filters for Large Scale Traffic Systems, IEEE Transactions on Intelligent Transportation
Systems, 2011, in press

A. Hegyi, L. Mihaylova, R. Boel and Z. Lendek, Parallelized Particle Filtering for Freeway Traffic
State Tracking, Proc. of the European Control Conf., Greece, 2007, TuD15.3, pp. 2442-2449

L. Mihaylova, R. Boel, A. Hegyi, Freeway Traffic Estimation within Recursive Bayesian Frarr?gwork,
Automatica, 2007, Vol. 43, No. 2, pp. 290-300, February.



parallelised Particle Filters for™™)\
Freeway Traffic State Estimation

Aims:
o Cope with the high computational demands.

 For traffic state estimation the required numidgrarticles
grows exponentially with network size.

e Achieve:

— high accuracy

— deal with nonlinearities and non-Gaussian progesse
Approach: Parallelise the traffic network
 Why parallelisation is possible:

— A traffic network can be simulated in paralleiited
Interaction at subnetwork boundaries),

e Measurements are related to local states.

34
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Main ldea: Partition the Traffic wess AK
Network into Subnetworks

subnetwork 1~
subnetwork 2

"~ subnetwork 4

:

|
2 ==
i

—— roadway
----- subnetwork boundary
,,,,,,,,, boundary variables

*Applicable: when the whole traffic state vector can be partitionedsunbsets of
states and most interactions are within the subsets

A traffic network can beimulatedin parallel

* Divide the traffic network into sub-networks where each PU is responsible f
one sub-network. 36

* Variables of neighbouring segments are communicated



Partitioning the Traffic
Network into Subnetworks

The state and measurement vectors
partitioned intdS subvectors

subne'thkwlq,,
subnetwork 2 =~
. 'xASUbnethﬂ( 4

xe= ()", 0q) o () T
T T T
%= 1) @ @
xfi — fkT (Xi—l :fﬁi—l y Vi—l)? Two types of states:

S 1.S[{.S S Internal and boundary states
o = I (X 1),

The vectort;,_; collects all neighbouring stariables that
act as an input to subnetwask 3



Centralised Approach

w,, x, particle 1

! ' ]
Wy, X, particle /

complete network

one central CPU

* Global states and weights

 Communications only for measurements 38



Approach |: Shared Particles

subnetwork s—1

CPU s—1

s—1,1 ,s—1.1 | s, 1 s,1
Wk :xk | Wk :Xk
|
I
|
Wsﬂxsh | WSIXSI
k s N e - k Mk

subnetwork s

CPU s

W,

s+1, 1

s+1 1

‘ particle 1

s+1.i
Wy

s+1.1
» Xk

particle j

subnetwork s+1

CPU s+1

 The same as the centralised particle filter, but calculations
are distributed over several processing units.

e Communication of states over boundaries

 Communication of weights to a central u

when resampling Is necessary.

) g
i 1 8.0
Wy o< Wiy I | W

5—1



s—1.1 s—1,1

s.1

s, 1
:Xk

Wy

s+1.1

s+1.1
Wy

1xk

We . Xy
s—1.i ,s—1,
We Xk

s.i

S,
:Xk

W

S+1,i

s+1,/
Wy

:xk

subnetwork s—1

CPU s—1

subnetwork s

CPUs

subnetwork s+1

CPU s+1

Neighbour combination: based on weights
Communicateneighbouring states over the boundaries,
No need of central unit for resampling.

Assuming independence of state and measuremesﬁ.nojo



X = f(Xe—1,vk—1),

zr = h(xg, ng),
Pzl p (|21 —1)
p(z|z1a-1)
{xb i M, {xg:k,li =0,....0} {wl,i=0,...,1}
The posterior density ktisfapproximated as:

P(Xk\lek) —

p(Xox|zik) ~ Z 1‘1”;;5()50% _XB:k)

=1
; ; P(Zk‘x;()p(x;(‘x;(_l)
Wi < Wi il
q (X% 2)

« Typically q(xil iy, 2) = plxelxi_y)

I

Wy o< Wi—lp(zk‘xir)



Partitioning the Traffic A
Network into Subnetworks

Assumptions:

Communicate only the variables that serve as jaunt o
subnetworks, not all states of neighbouring networks.

Measurements in a subnetwork depend only on #te st that
subnetwork.

Independent state noisebetween the subnetworks
Independent measurement noisesetween the networks

Boundary states

S
P (k| X1 :H (X 1% 1)

p(zilxe) = | | p(z]x) »

H:m



Approach |

("‘:”"":M ) {F'( |H 3 ‘Eﬁ ])F‘(H ]‘H ]H’iﬁfi-&
Applying Monte Carlo sampling to the product
RNATRN g \ RN
P 1 X )Py 1)

with a proposal distributioq(£]_{1x," ;) results in the
approximation

: . p(-ﬁ':? R . ﬁk:j l )p(fi LS l)
Sy s\ _ _ _
p('lff *k—l)’”z AS ]S
J Q(“"k _1)

AS .1 . .
X,_: state variables at the boundaries 43



Approach |

By assumption the pdf of the communicated stat@bkes Is
|ndependento¢k | and then

AS, ] Asj)

P( 1‘“‘%_1 P(M_l

Taking one sample frou;fl ~ p(ﬁi_l) for each and
choosing

Q(i;( : 1 ‘J’“}(: — P(«fziil)

oS5 Ji

px ) = p L0

s.1 s.1 p(zﬁ':f‘xﬁ':f ( ‘“‘”k—l Xﬁ’i j!l )
Wi = Wi AS.Ji g
q(x; ‘“’“k—l 57002) *



Approach Il

e There is no central PU

« Communications only between the neighbouring Rtiistics of
neighbouring states is exchanged

Advantages of Approach Il over Approach |

* Requires less particles: the dimension of theesphce Is reduced
by a factorS (if all subnetworks have the same number of states)

* For each subnetwork a different number of paician be used
Disadvantage of Approach Il

e An approximation is introduced in the interact(gmnt pdf) of the
local states with the states in neighbouring swoous.

45



Gaussian Sum Particle Filter )K&
for Traffic Flow Estimation

o Approximate the state filtering and state prediction probability densi

functions (pdfs) with sums of Gaussian pdfs
&

IJ(Xk|Zl:k) = Z u-“k,gN(Xk: Hx, g Exk,g)

g=1

P(XElZ1E—1) = /IJ(Xka1)p(Xk1|Z1:k1)ka1

G
E/Zmk_lﬂgN(Xk_l:ﬁk—l,gfZxk_Lg)p(XkX,I;_l)d}{k_l
g=1

G
= ) " Wk-i,g fN(Xk—l:ﬁk1,g~2xk1,9)1J(kak—1Jka—1

g=1
G

e Output estimate &k = » _ wk gftx

G
5 5 5 T
zxkzz 'wk.g[zx;c,g + (Xk - H’k,g)(xk _ p’k,g) ]
g=1



A Parallelised Gaussian Sum P
for Traffic Flow Estimation

LANCASTER)K
UNIVERSITY

Initialize: pt, o Yy g. Wog=57F.9=1...., G, at k=0 The state predictive density is approximated as
gfor k=1,2,... K, G _ _
for s =1 : 5 (for each subnetwork) P(Xk|zl-.k—1]=z Wi, o N (Xp; P, g+ Sixx;g)-
—— g=1
Prediction Measurement Update
forg=1,..., Q. draw for g =1,::3; .G, draw samples
) ) {..” N -
e Y N s {XR‘I le Fiud ..'l\h EXL_ .Ll:x g7 Exﬁ',_ }.
{Zli = ~ p(¥i1) (3D end ? ) '
{XL " y}:f |~ J“'-.-'"{x;k._l;;txk_hg, Y i) (32) forg=1,....G.j=1,..., N compute the weights
W} J g XP (zi:|x}. ) where the likelihood p(z,g]xh I
end is -:a]-:u]ated from (2).
for g = 1{.—' .., &, sample _ end
{xtgbim1 ~ P(Xe |5y oo X2 /). from (1) for g=1,.::; G, j=1,...,N estimate the mean and
end covariance from (27) and (28)
forg=21,...; .G, update weights W g = wi_1 4. €nd end
forg=1%,...; .G. from {xj } ;"21 obtain sample mean - Normalize the weights
fix, . and sample covariance Yx, g Output: the state estimate and its covariance are
end” calculated respectively from (24) and (23).

Communicates only the statistics (mean and
covariance) of the states on the boundaries
Similar to the parallelised PF with separate
particles

Transmit estimates of the boundary condition
between the boundaries of each subnetwork.

Resampling
- Resample the weights wy. 4

- Set wi,g = #. end
end // of S loop (for each subnetwork)
S -Setk—1— k&




Experimental Setup

high density
travel direction shock wave

Motorway with a traffic jam
Research questions:

Compare the centralised filter and approaches 1 and 2 for several
numbers of particles

— Tracking accuracy

— Computational complexity (CPU time)

— Communication

Each test executed 100 times. 48



Experimental Setup

travel direction
e

freeway link m

— m— e— m— e—— e o . e e e m—— e e e e e e mm— E—

R (I R E

P segment 1 ... " segmenti ~ ... segmentNy:
L”?

Two links, two lanes, 10 segments in each link;
Measurements: at segments 1 and 10 every minute
State update step: 10 seconds

Boundary conditions estimated as part of the stetéor
Gaussian noises

State vector = [ states, boundary states]

— [pl (k) o :pN(k): V] (k) ey VN(/(), Vo(k)?qo(kLpN""l}T
METANET model for state update *



segment index

10

L]

|
|

Shock wave — speed (kim/h) Forward wave — speed (kim/h)

0 |l 1100
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-
o 3 185
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1 | 60

52 104 155 206 257 309 360 1 52 104 155 206 257 309 360
time step k time step k

Fig. 3. The shock wave (left) and the forward wave (right) scenario, used
for the evaluation of the filters. The travel direction i1s from segment 1 to
10. The colors indicate the speed. Please note the difference in color bar
scales: the shock wave scenario includes a wider range of speed since it
also contains congested traffic.



Performance Performance

Performance

Results: Accuracy

ergeqv , centralized

Performance

10°
Number of particles

10°

erse,v approach 1

Performance

10°
J MNumber of particles
rmse,V approach 2

10°

Performance

10°
Number of particles

10°

Jl‘mse,p centralized

0 JI'

10° 10°

Number of particles

mse, p approach 1

10°
Number of particles

10

i Jmlse,p approach 2

10°
Number of particles

10

(Pik — Pik)?

erse, p —

KNp,

Scenario with the shock wave,
500 particles in the PFs



ASTER

CPU Time vs Number of Particles

1

0.8¢

CPU time per particle (s/part)

107

CPU time per particle (s/part)

— — 1

i -t
-

10°
Number of particles

10°

Approach 1

centralized

————— sublink 1
------- sublink 2
= = = central PU

Approach 2

centralized
''''' sublink 1

------ sublink 2

A

Communications

N | Centralized PF | PPF1 | PPE2
20 4 124 44
50 4 304 104
100 4 604 204
200 4 1204 404
500 4 | 3004 1004
1000 4 | 6004 | 2004

Number of communicated real

numbers as a function of the
number of particlesl

G Centralized GSPF: | PGSPF
as the Centralized PF
1 4 12
3 4 28
8 4 68
16 4 132
24 4 196
32 4 260
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Measured flow (Veh/mn) loop 4

Integrating the
Impact of Rain Into
Traffic Management

=
=
=
]
=
=
- i
A 42 (highway) Geneva
1@
20
30
LYON RD383
(ring road) e Studied Section: 8 double-loop sensors
(6]
60
87 (€]
@
M ilfe
- rseile g A43 (highway)
"‘ Chambery

Km4.50 Km 5.58 Km 6.06 Km 7.26 Km 8.10 K 8.85 Km 9.63 Km 10011

A A A A A A A A
s Cell 1 Cell 2 Cell 3 Cell Cell 5 Cell 6 Cell 7 —p

» Based on the first order model of Lighthill and Whitham, 1955 y
Billot, El Faouzi, Sau, De Vuyst (2010) - precipitation data and traffic data



Summary

Centralised and parallelised PFs and Gaussian Sum PFs are can give
efficient traffic flow estimation

The estimation accuracy of the parallelised PF 1 with sharediesirtic
compared with the centralised PF

The estimation accuracy of the parallelised PF 2 (separatelgsris
higher than the accuracy of the parallelised PF 1 with shared patrticles

The accuracy of the Gaussian Sum PFs (centralised and parallelised)
higher than the accuracy of the PFs (centralised and parallelised)

The Gaussian Sum PFs are more computationally efficient than the PFs
because they require transmission of estimated boundary states and
their covariances

The proposed approach can be extended to other applications



Conclusions and Open Isstig8/\

Open issues
— distributed estimation, other technigues
— algorithms robust to missing data and sensorréslu

— what is the optimal configuration of the detect@stimal
sensor placement)

Fusion of sensor data from different types of senge.g.,
from radars and video cameras)

Modelling traffic to reflect different weather oditions

Prediction/ filtering of traffic behaviour, e.dpased on Markov
linear jump models (for control purposes)

Group object tracking: track the behaviour of augr as a

whole
Thank you for your
attention © !



e http://conferences.theiet.org/target/committee/index.cfm

 The 9th IET Data Fusion & Target Tracking
Conference 2012 (DF&TT'12)
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Venues-Smithfield, London, UK

o www.fusion2012.org
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