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Overview
I. Motivation for Vehicular Traffic Systems

II. Particle Methods

• Motivation and why is the approach needed

• Taxonomy of methods for estimation

• General Sequential Monte Carlo method

• Sampling Importance Resampling Particle Filter

III. Particle Filters for Traffic Flow Estimation, vs. UKFs

IV. Parallelised Particle Filters for Traffic Flow Estimation

V. PFs for Weather Management in Traffic Systems

VI. Conclusions and Open Issues
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Motivation

• Traffic flow on motorways: complex nonstationary, nonlinear 
phenomenon, with different modes such as: free flow motion, 
congestions, stop-and-go waves.

• Changes are due to internal traffic dynamics , and external events
(e.g. accidents, road works, weather conditions).
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Traffic Modes
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Traffic Modes & Transitions
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Traffic Modes

• Example of two wide moving traffic jams propagating in parallel with constant speed 
through free and congested traffic and across three freeway intersections I1, I2, and I3. 
From Kerner, 2000a, 2000b; see also Kerner and Rehborn, 1996a; Kerner, 1998b.

D. Helbing, Traffic and related self-driven many particle systems, Review of Modern Physics, Vol. 73, pp. 1067-1141, 2002. 
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Traffic Flow Problems of Interest

* Analysis of traffic phenomena and modes, on-line detection

* Build up traffic and sensor models of traffic on motorways and in 
urban environment

- for real-time applications and in block processing

* Develop models and filters reflecting different weather 
conditions

* Predict the traffic evolution over space and time 

* Distributed methods for estimation

* Development of methods for traffic control, ameliorate traffic 
conditions, avoid congestions and jams
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Vehicular Traffic Models
• Microscopic (particle based)

• Macroscopic (fluid-dynamic models)

• Mesoscopic (gas-kinetic)
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Macroscopic Models Suitable for 
Real-Time Estimation/ Prediction

• First order models:

– Lighthill-Whitham (1955), Richards (1955), Daganzo (1984)

• Second order models, e.g., METANET, Papageorgiou et al. (1989, 
2004)

• Other models: Boel and Mihaylova (2004, 2006)

The Cell Transmission Model of Daganzo

• S. Hoogendoorn, P. Bovy, State-of-the-art of Vehicular Traffic Flow Modeling, Journal of Systems Control Engineer – Proceedings 
of the Institution of Mechanical Engineers, Part I, Vol. 215, No. 14, pp. 283-303, 2001.
• D. Helbing, Traffic and Related Self-driven Many-particle Systems, Review Modern Physics, Vol. 73, pp. 1067-1141, 2002.
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The Problem of Interest

• We are mainly interested in estimating the state x at time k
from the measurements up to time

k'=k (filtering ), 

and 

prediction k' > k

opposite to 

smoothingk' < k 

• No restrictions to linear processes or Gaussian noises
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• State transition (motion) equation
xk = f(xk-1,uk-1,vk-1)

f(.): evolution function (possibly nonlinear)

xk, xk-1∈ : current and previous state 

vk-1 ∈ : system noise (usually non-Gaussian)

uk-1: known input (control process, e.g.)

The state depends only on the previous step:  i.e. first order Markov process

• Measurement equation
zk = h(xk,nk)

zk ∈ : measurement

h(.): measurement function (possibly nonlinear)

nk : measurement noise (usually non-Gaussian)

The Dynamic System Model

xnℜ
vnℜ

znℜ

uℜ
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Main Methods for Estimation
• Methods with linear modelsand Gaussian noises

• the Kalman filter 

• the Extended KF: requires linearisation (difficult for the traffic 
models with interconnected components)

• derivative free filters: unscented KF, central differences filter, 
others (can work with nonlinear models)

• Mixtures of Gaussian models
• the Gaussian sum filter

• Nonparametric methods
• Particle filtering methods

• Models with partial linear structure (work with KF), nonlinear 
part solve with PFs: Rao-Blackwellisation (Karlsson et al, 2005, 
Mihaylova et al 2007)
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x1 x2

Why Sequential Monte Carlo Methods
p(x1,x2)

p(x1,x2)

x1
x2

Suitable for:
• nonlinear models(for traffic dynamics, measurement equation)
• non-Gaussiannoises, multimodalities, affords incorporation of constraints
• able to cope with different uncertainties (in the data, models)
• allows for fusing information from different measurement sources
• applicable to real-time problems, can be parallelised

Regions of high density
- many particles; large weights of particles
Discrete approximations of continuous pdf
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Bayesian Methodology

• X: state, D: data

• Prediction 

• Correction step

)Pr(

)Pr()|Pr(
)|Pr(

D

XXD
DX =

Bayes Rule

Posterior PDF  =  likelihood * prior
evidence
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Traffic State Estimation Within 
Bayesian Framework� The posterior state probability density function (PDF) is

estimated given a data set� The sensor information updates recursively the state
distribution.

Prediction :

Update :

The conditional state PDF is represented as a set of random
samples which are updated and propagated by a particle filter.
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The General Monte Carlo Method
• Method to solve intractable integrals, e.g., with complex PDF

• g(x): some function, p(x): a PDF with complex form

• Since this integral cannot be solved analytically, random 
samples are generated from p(x) by representing the PDF with 
random samples

• and the Monte Carlo approximation follows

Doucet et al (2001), Liu (2001)
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Update Step

• Prediction: p(xk|xk-1), from the transition prior, e.g., 
METANET or another traffic model

• Update: from the likelihood, based on the observation model 
– Usually concentrates the state PDF by combining the likelihood of 

current measurement with the predicted state.

• Evidence: the normalising term
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A Particle Filter for Traffic 
Flow Estimation

I. Initialisation : k = 0. 

Generate samples and initial weights w(i) = 1/N

II. For k = 1,2,…, 

(1) Prediction: sample according to the traffic model

for segments between two boundaries where measurements arrive

(2) Measurement processing step(only for tk ≡ ts on boundaries between segments 
where measurements are available

For l = 1,2,…, N,

Normalise the weights:

(3) Output: 

(4) Selection (resampling) step

(5) Increase k  and iterate to step 2.
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1. The system state can be represented by a probability distribution2. The system state equations describe how the dynamical system evolves with the passage of time and relate the states to the measurements. 3. Propagation typically diffuses and translates the prior distribution yielding the a priori distribution. 

1. p(xk | xk-1 , zk-1)  ~�(�k, �k)2. xk = Fk (xk-1 , ννννk)     ννννk ~�(0, Qk)3. xk ~�(Fk(�k-1), Fk�k-1 FkT +Qk)The Unscented 
Kalman Filter
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1. The UKF uses a set of weighted deterministically selected sample points to represent the prior distribution with mean and covariance P.2. Weights for each point to incorporate prior knowledge of the distribution. 3. 2N+1 sigma-points can be utilised to completely describe the second order statistics of a probability distribution. These statistics can be recovered by a weighted sum of the σ-points.
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2. The sigma points are propagated through the system state equations.3. The mean and covariance of the transformed distribution (a priori state estimate) can be calculated by a weighted sum of the transformed sample points. 1. The set of sigma points describe the sufficient statistics of the prior distribution 
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Results from the PF and UKF 
with Synthetic Data
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METANET 
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A Compositional Traffic Model
• Stochastic
• Dynamic sending and receiving functions
• Comprises an equation for the speed

Li,k

Segment i

Ni,k, vi,kNi-1,k, vi-1,k Ni+1,k, vi+1,k

Qi-1,k Qi,k

Sensor measurements in tk ≡ ts

1 2 i-1 i i+1 n-1 n

Qk
in, vk

in Qk
out, vk

out

n+1

z1,s
zj,s zm,s

L≥ vmax ∆t

Boel and Mihaylova (2004 and 2006)
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Sending and Receiving Functions
- Sending flow S:the volume of traffic that can leave a cell

- Receiving flow R: the volume of traffic that a cell can receive

- Capacity q_capacity: the theoretical maximal flow associated to the 
critical density  ≥

<
=

critcapacity

critflowfree
k forq
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S ρρ

ρρ
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Compositional 
Traffic Model

Boel & Mihaylova (2006, TRB)
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Measurement Equations
Consider msensors along the freeway stretch. Traffic states 

are measured at discrete time instants t1, t2, …, ts, …, 

Overall measurement vector: 

The measurement intervals ∆ts = ts+1 – ts is typically several 
times longer than the time update interval ∆tk = tk+1 – tk 
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Results from Modelling. Comparison with 
Real Data from Belgium (Gent-Antwerp)
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Results with Synthetic Data

0 50 100
0

1000

2000

3000

4000

5000

F
lo

w
, [

ve
h/

h]

Density, [veh/km]
0 1000 2000 3000 4000 5000

0

50

100

Flow,  [veh/h]

S
pe

ed
, [

km
/h

]

1 1.5 2 2.5 3
0

1000

2000

3000

4000

5000

F
lo

w
, [

ve
h/

h]

Time, [h]
1 1.5 2 2.5 3

0

50

100

S
pe

ed
, [

km
/h

]

Time, [h]

1 2 3 4 5 6 7 8

8
7

6

5

0 50 100
0

1000

2000

3000

4000

5000

F
lo

w
, [

ve
h/

h]

Density, [veh/km]
0 1000 2000 3000 4000 5000

0

50

100

Flow,  [veh/h]

S
pe

ed
, [

km
/h

]

 

 

1 1.5 2 2.5 3
0

1000

2000

3000

4000

5000

F
lo

w
, [

ve
h/

h]

Time, [h]
1 1.5 2 2.5 3

0

50

100

S
pe

ed
, [

km
/h

]

Time, [h]

1 2 3 4 5 6 7 8

8

7
6

5

Particle Filter Unscented Kalman Filter

Measurements: in segments 1 and 8



30

1 2 3
0

5

ρ 5

1 2 3

2

4

6

Root Mean Square Errors

v 5

1 2 3

100
200
300
400
500

q 5

 

 

1 2 3
0

5

ρ 6

1 2 3

2

4

6

v 6

1 2 3

100
200
300
400
500

q 6

1 2 3
0

5

ρ 7

1 2 3

2

4

6

v 7

1 2 3

100
200
300
400
500

q 7

1 2 3
0

5

ρ 8

Time, [h]
1 2 3

2

4

6

v 8

Time, [h]
1 2 3

100
200
300
400
500

q 8

Time, [h]

UKF
PF

Results with Synthetic Data

1 2 3
0

5

ρ 1

1 2 3

2

4

6

v 1
Root Mean Square Errors

1 2 3

100
200
300
400
500

q 1

 

 

1 2 3
0

5

ρ 2

1 2 3

2

4

6

v 2

1 2 3

100
200
300
400
500

q 2

1 2 3
0

5

ρ 3

1 2 3

2

4

6

v 3

1 2 3

100
200
300
400
500

q 3

1 2 3
0

5

ρ 4

Time, [h]
1 2 3

2

4

6

v 4

Time, [h]
1 2 3

100
200
300
400
500

q 4

Time, [h]

UKF
PF



31

Results with Real Data 
from the Particle Filter
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Results with Real Data from the 
Particle Filter

Segments 4-8

PF
PF estimates: solid line
Measured: dashed line UKF

UKF estimates: solid line
Measured: dashed line
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Parallelised Particle Filters for 
Freeway Traffic State Estimation

L. Mihaylova, A. Hegyi, A. Gning and R. Boel, Parallelized Particle and Gaussian Sum Particle 
Filters for Large Scale Traffic Systems, IEEE Transactions on Intelligent Transportation 
Systems, 2011, in press

A. Hegyi, L. Mihaylova, R. Boel and Z. Lendek, Parallelized Particle Filtering for Freeway Traffic 
State Tracking, Proc. of the European Control Conf., Greece, 2007, TuD15.3, pp. 2442-2449

L. Mihaylova, R. Boel, A. Hegyi, Freeway Traffic Estimation within Recursive Bayesian Framework, 
Automatica, 2007, Vol. 43, No. 2, pp. 290-300, February.
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Parallelised Particle Filters for 
Freeway Traffic State Estimation

Aims:
• Cope with the high computational demands. 

• For traffic state estimation the required number of particles 
grows exponentially with network size.

• Achieve:

– high accuracy

– deal with nonlinearities and non-Gaussian processes

Approach: Parallelise the traffic network
• Why parallelisation is possible:

– A traffic network can be simulated in parallel (limited 
interaction at subnetwork boundaries),

• Measurements are related to local states.
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Related Works

• G. Hendeby, R. Karlsson, F. Gustafsson, Particle Filtering: The Need for Speed, 
EURASIP Journal on Advances in Signal Processing, 2010.

• M. Bolic, P.M. Djuric, and S. Hong, Resampling Algorithms and Architectures for 
Distributed Particle Filters, IEEE Trans. Signal Processing, 53:2442-2450, 2005.

• S. Maskell, K. Weekes, and M. Briers, Distributed tracking of stealthy targets using 
particle Filters, Proc. of IEE Seminar on Target Tracking: Algorithms and 
Applications, pages 13-20. IEE, Birmingham, UK, March 2006.

• X. Sheng, Y. H. Hu, and P. Ramanathan. Distributed particle Filter with GMM 
Approximation for Multiple Targets Localization and Tracking in Wireless Sensor 
Network, Proc. of the 4th Intl. Conf. on Information Processing in Sensor Networks 
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Algorithms transmitting:

• particles and their weights between processing units (PUs)
• communicating statistical characteristics



36

Main Idea: Partition the Traffic 
Network into Subnetworks

•Applicable: when the whole traffic state vector can be partitioned into subsets of 
states and most interactions are within the subsets
•A traffic network can be simulated in parallel
• Divide the traffic network into sub-networks where each PU is responsible for 
one sub-network. 
• Variables of neighbouring segments are communicated
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The state and measurement vectors are 
partitioned into Ssubvectors

Partitioning the Traffic 
Network into Subnetworks

The vector           collects all neighbouring state variables that 
act as an input to subnetwork s.

Two types of states: 
Internal and boundary states
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Centralised Approach

• Global states and weights

• Communications only for measurements
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Approach I: Shared Particles

• The same as the centralised particle filter, but calculations 
are distributed over several processing units.

• Communication of states over boundaries

• Communication of weights to a central unit  

when resampling is necessary.
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Approach II: Separate Particles

• Neighbour combination: based on weights

• Communicate neighbouring states over the boundaries,

• No need of central unit for resampling.

• Assuming independence of state and measurement noise.
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Centralised Particle Filter

The posterior density at k is approximated as:

• Typically 
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Assumptions:
• Communicate only the variables that serve as an input to 

subnetwork s, not all states of neighbouring networks.

• Measurements in a subnetwork depend only on the state in that 
subnetwork. 

• Independent state noisesbetween the subnetworks

• Independent measurement noisesbetween the networks

Partitioning the Traffic 
Network into Subnetworks

Boundary states
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Approach II

Applying Monte Carlo sampling to the product

with a proposal distribution                          results in the 
approximation

: state variables at the boundaries
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Approach II
• By assumption the pdf of the communicated state variables is 

independent on          and then

• Taking one sample from                                   for each i and 
choosing
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Approach II

• There is no central PU

• Communications only between the neighbouring PUs: statistics of 
neighbouring states is exchanged

Advantages of Approach II over Approach I
• Requires less particles: the dimension of the state space is reduced 

by a factor S (if all subnetworks have the same number of states).

• For each subnetwork a different number of particles can be used

Disadvantage of Approach II
• An approximation is introduced in the interaction (joint pdf) of the 

local states with the states in neighbouring subnetworks. 



Gaussian Sum Particle Filters
for Traffic Flow Estimation

• Approximate the state filtering and state prediction probability density 
functions (pdfs) with sums of Gaussian pdfs

• Output estimate



A Parallelised Gaussian Sum PF
for Traffic Flow Estimation

• Communicates only the statistics (mean and 
covariance) of the states on the boundaries

• Similar to the parallelised PF with separate 
particles

• Transmit estimates of the boundary conditions 
between the boundaries of each subnetwork.
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Experimental Setup

• Motorway with a traffic jam

• Research questions:

• Compare the centralised filter and approaches 1 and 2 for several 
numbers of particles

– Tracking accuracy

– Computational complexity (CPU time) 

– Communication

• Each test executed 100 times.
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Experimental Setup

• Two links, two lanes, 10 segments in each link; 

• Measurements: at segments 1 and 10 every minute

• State update step: 10 seconds

• Boundary conditions estimated as part of the state vector

• Gaussian noises

• State vector = [ states, boundary states]

• METANET model for state update
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Scenario
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Results: Accuracy

Scenario with the shock wave, 
500 particles in the PFs
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CPU Time vs Number of Particles
Approach 1

Approach 2

Communications

Number of communicated real 
numbers as a function of the 
number of particles N



Centralised PF vs Centralised 
Gaussian Sum Particle Filters

• Parallelised PFs vs Parallelised GSPFs
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Integrating the 
Impact of Rain Into 
Traffic Management

Billot, El Faouzi, Sau, De Vuyst (2010)
• Based on the first order model of Lighthill and Whitham, 1955

- Precipitation data and traffic data



Summary

• Centralised and parallelised PFs and Gaussian Sum PFs are can give 
efficient traffic flow estimation

• The estimation accuracy of the parallelised PF 1 with shared particles: 
compared with the centralised PF

• The estimation accuracy of the parallelised PF 2 (separate particles) is 
higher than the accuracy of the parallelised PF 1 with shared particles

• The accuracy of the Gaussian Sum PFs (centralised and parallelised) -
higher than the accuracy of the PFs (centralised and parallelised)

• The Gaussian Sum PFs are more computationally efficient than the PFs 
because they require transmission of estimated boundary states and 
their covariances

• The proposed approach can be extended to other applications
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Conclusions and Open Issues
• Open issues: 

– distributed estimation, other techniques 

– algorithms robust to missing data and sensor failures

– what is the optimal configuration of the detectors (optimal 
sensor placement)

• Fusion of sensor data from different types of sensors (e.g., 
from radars and video cameras)

• Modelling traffic to reflect different weather conditions

• Prediction/ filtering of traffic behaviour, e.g., based on Markov 
linear jump models (for control purposes)

• Group object tracking: track the behaviour of a group as a 
whole

Thank you for your 
attention ☺ !



• http://conferences.theiet.org/target/committee/index.cfm

• The 9th IET Data Fusion & Target Tracking 
Conference 2012 (DF&TT'12)

• Algorithms and Applications, 16 - 17 May 2012 | CCT 
Venues-Smithfield, London, UK

• www.fusion2012.org

• International Conference on Information Fusion, Singapore, 

July 9-12, 2012

57


