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Introduction

One recurring theme that has emerged at this conference is the need for
better subgrid modeling in multiscale transport simulations. We saw this
in modeling radiation transport through clouds, forest canopies, oceans,
and astrophysical media, in modeling neutron transport through pebble-
bed reactors, and in modeling neutrino transport in proto neutron stars.

This fundamental problem will challenge the creativity of all our communi-
ties for the foreseeable future. Addressing it will require new models and
algorithms. It therefore provides an ideal focus for future interdisciplinary
workshops involving the larger transport simulation community. This will al-
low each of our disciplinary communities to quickly benefit from advances
in other communities.



Subgrid/Multiscale Modeling

� We can use precomputed and tabulated parametric constitutive rela-
tions. (Think of LTE EOS, averaged nuclear cross sections, atomic
mix, etc.)

� We can compute constitutive relations “on the fly” from subgrid sim-
ulations. (Think of non-LTE, fractal clouds models, canopy models,
stochastic mix simulations, gap-tooth simulations, etc.)

� We can use analytic models for unresolved scales. (Think of homoge-
nization, renormalization, stochastic averaging, etc.)

� We can use combinations of the above.



Gap-Tooth Simulations

� Subgrid simulations are carried out “on the fly” at each node and time
level of a “macroscopic” simulation. These are coupled only through
the macroscopic simulation.

� The subgrid simulations are run with stochastically generated data
based on parameters from the macroscopic simulation. (Think of a
fractal clouds models or a canopy model)

� The subgrid simulation is run past its initial layer. The results are av-
eraged and used to provide constitutive relations used to advance the
macroscopic simulation.



Transport through Stochastic Mixtures

� Mix models need to be as simple as possible (but no simpler), de-
pending on a limited number of parameters that can be measured with
confidence. (Think of volume fraction, correlation length, mean parti-
cle size, etc — not particle size distribution, chord distribution, etc.)

� Transport is usually described by a coupled system of transport equa-
tions that must be analytically and numerically tractable. (Think of �

coupled equations for an � component mixture.) This is the stochastic
analog of homogenization.

� Identify asymptotic regimes that reduce the size of this system, hope-
fully to a single effective equation. (This can be useful in identifying
preconditioners.)



Example: � Component Absorbing Mixtures

� The mix model is an � state plane Poisson process characterized by

� volume fractions (summing to one) plus a correlation length. Other
models were developed for slab (layered) mixtures.

� Stochastically averaging over this model, stationary transport is de-
scribed by a coupled system of � transport equations:
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where� � is the expected kinetic density in component � .

� There is a single effective transport equation when mix components
with relatively thick regimes are rare.



Example: � Component Mixtures with Scattering

� The mix model is an � state plane Poisson process characterized by

� volume fractions (summing to one) plus a correlation length.

� Dynamic transport is approximated (sometimes badly) by a coupled
system of � transport equations:
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� There is a single effective transport equation when mix components
with relatively thick regimes are rare. There is a single effective diffu-
sion equation when there is enough of one thick component to make
the� � ’s isotropic.



Improvements Needed in Foregoing Example

� A larger zoo of practical mix models needs to be developed. For ex-
ample, one could allow small fluctuations about a mean for each com-
ponent.

� Even for the Poisson model, we need to develop a system that cor-
rectly describes stationary or dynamic transport through a scattering
mixture. To treat scattering one needs the � -point correlations.

� Better (parallel!) numerical schemes need to be developed.

� Such models can also be used for an “on the fly” subgrid simulation.



New Focus: Quantifying Uncertainty

� We need to estimate variances as well as means. As mentioned
above, this can be done naturally with some stochastic models. It
needs to be developed when subgrid simulations are used.

� We need to estimate sensitivity to the subgrid model. Adjoint methods
can be used to compute sensitivities to parameters in the computed
model and to parameters in any model that contains the computed
model.

� Runs with an ensemble of models are far better at quantifying uncer-
tainty than runs of one model with an ensemble of data. We need to
identify ensembles of models suited to this task.


