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Mathematical Problems in Optical
Tomography

Optical Tomography consists in reconstructing absorption and scattering

properties of human tissues by probing them with Near-Infra-Red photons

(wavelength of order 1µm; mean free path of order 1− 10mm).

What needs to be done:

• Modeling of forward problem using equations that are easy to solve:

photons strongly interact with underlying tissues.

• Devising reconstruction algorithms to image tissue properties from

boundary measurements of photon intensities.
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Applications in Near-Infra-Red Spectroscopy

Imaging of human brains.
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Applications in Near-Infra-Red Spectroscopy

Imaging of human brains (from A.H. Hielscher, biomedical Engineering,

Columbia).
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Applications in Near-Infra-Red Spectroscopy

Detection of arthritis in finger joints.
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Applications in Near-Infra-Red Spectroscopy

Reconstructed Finger Absorption using different forward models.
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An example of modeling difficulty:
Clear layers embedded in scattering tissues
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Typical path of a detected photon
in a DIFFUSIVE REGION

Source Term

Detector
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Same typical path in the presence of
a CLEAR INCLUSION

Source Term

Detector
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Same typical path in the presence of
a CLEAR LAYER

Source Term

Detector
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Modeling of Forward Problem:

To derive macroscopic equations that model photon
propagation both in the diffusive and non-diffusive domains.

Outline:

1. Brief recall on the derivation of diffusion equations
2. Modified equations in the presence of Embedded Objects
3. Generalized equations in the presence of Clear Layers
4. Numerical simulation of transport and diffusion models
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Transport Equation and Scaling

The phase-space linear transport equation is given by

1

ε
v · ∇uε(x, v) +

1

ε2
Q(uε)(x, v) + σa(x)uε(x, v) = 0 in Ω× V,

uε(x, v) = g(x, v) on Γ− = {(x, v) ∈ ∂Ω× V s.t. v · ν(x) < 0}.

uε(x, v) is the particle density at x ∈ Ω ⊂ IR3 with direction v ∈ V = S2.

The scattering operator Q is defined by

Q(u)(x, v) = σs(x)
(
u(x, v)−

∫
V

u(x, v′)dµ(v′)
)
.

The mean free path ε measures the mean distance between successive

interactions of the particles with the background medium.

The diffusion limit occurs when ε → 0.
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Volume Diffusion Equation

Asymptotic Expansion: uε(x, v) = u0(x) + εu1(x, v) + ε2u2(x, v) . . .

Equating like powers of ε in the transport equation yields

Order ε−2 : Q(u0) = 0
Order ε−1 : v · ∇u0 + Q(u1) = 0
Order ε0 : v · ∇u1 + Q(u2) + σau0 = 0.

Krein-Rutman theory:

Order ε−2 : u0(x, v) = u0(x)

Order ε−1 : u1(x, v) = −
1

σs(x)
v · ∇u0(x),

Order ε0 : −divD(x) · ∇u0(x) + σa(x)u0(x) = 0 in Ω

where the diffusion coefficient is given by D(x) =
1

3σs(x)
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Diffusion Equations with Boundary
Conditions

The volume asymptotic expansion does not hold in the vicinity of bound-

aries. After boundary layer analysis we obtain

−divD(x) · ∇u0(x) + σa(x)u0(x) = 0 in Ω

u0(x) = Λ(g(x, v)) on ∂Ω.

Λ is a linear form on L∞(V−).

We obtain in any reasonable sense that

uε(x, v) = u0(x) + O(ε).
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Generalization to the case of a
Clear Embedded Object of size O(1)

Source Term

Detector
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Diffusion Equation with Non-Local equilibrium

Let ΩC be the Clear Inclusion and ΩE = Ω\ΩC. The transport equation

is

1

ε
v · ∇uε(x, v) +

1

ε2
Q(uε)(x, v) + σa(x)uε(x, v) = 0 in ΩE × V

uε(x, v) = g(x, v) on Γ−
v · ∇uc

ε(x, v) + Qc(uc
ε)(x, v) + εσa1uc

ε(x, v) = 0 in ΩC × V

uε(x, v) = uc
ε(x, v) on ∂ΩC × V.

The solution uε(x, v) converges to u0(x) strongly in L2(ΩE × V ), where

−divD(x) · ∇u0(x) + σa(x)u0(x) = 0 in ΩE

u0(x) = Λ(g(x, v)) on ∂Ω,

and

u0(x) = Constant on ∂ΩC∫
∂ΩC

D(x)νE · ∇u0 dσ(x) + u0|∂ΩC

∫
ΩC

σa1(y)dy = 0.
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Explanation for result

Diffusion
Equilibrium

The local diffusion equilibrium is replaced by a non-local equilibrium.
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Generalization to an Extended Object
of small thickness (Clear Layer)

Σ

Σ

Σ

E

IΩ
C

Thickness = 2l εLΩ

Geometry of the Clear Layer ΩC of boundary

{
ΣE = Σ + lLεν(x),
ΣI = Σ− lLεν(x),

where ν(x) is the outgoing normal to Σ at x ∈ Σ.
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Modified Equilibrium

We denote by Rc
ε the response operator that maps the incoming condi-

tions on ΓC
− to the outgoing distribution on ΓC

+.

u

uE

I

Postulate: The clear layer is thin enough so as not to modify the

diffusion equilibrium at order O(1), i.e.,

Rc
ε = Iε + εRc

1ε.
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Generalized Diffusion Equations with
non-local interface conditions

Assume that Rc
1ε is O(1) for smooth functions. The solution uε is then

approximated, up to an error of order ε, by the solution of the following

ε-dependent diffusion equation with non-local interface conditions:

−divD(x) · ∇uε
0(x) + σa(x)uε

0(x) = 0 in Ω\ΩC
ε

uε
0(x) = Λ(g(x, v)) on ∂Ω

[[uε
0]] = 0 on ΣE

[ν ·D∇uε
0] = Kε(uε

0) on ΣE,

[[u]](xE) = u(xE)− u(xI) and [u](xE) = u(xE)− J(xI)u(xI),

Kεu(xE) =
∫
v·νE(xE)>0

v · νE(xE) (Rc
1εu)(xE, v)dµ(v)

+ J(xI)
∫
v·νI(xI)>0

v · νI(x
I) (Rc

1εu)(xI , v)dµ(v) xE ∈ ΣE,

where the Jacobian of x 7→ x+2lLεν(x) is J(x) = | det(I +2lLε∇xν(x))|.
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Application to Straight Clear Layers
It remains to verify when the corrector Rc

1ε is of order 1. In the case

of a non-scattering clear layer with constant absorption, solving the free

transport equation yields

Rc
εu(x, v) = e−σc

aεt(x, v)u(x̄, v).

Here, t(x, v) is the travel time, and x̄ = x̄(x, v) = x− t(x, v)v ∈ ∂ΩC
ε .

u

uE

I

After calculations, we obtain that Rc
1ε is of order 1 if Lε and σc

aε verify

Lε
2| lnLε| = ε and σc

aε =
ε

Lε
σc

a.
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Numerical Application

Clear Layer

Lε

Object
(fictitious)

Source

Ω

Vσ

Hσ

The domain is diffusive except within the clear layer.

The mean free path ε = 0.01 and the thickness Lε = 0.1.
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Horizontal cross-section of the solution
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Horizontal cross section of the velocity average of the transport solution

(solid line) and the generalized diffusion model (dashed line), the classical

diffusion model (circles), and two models that neglect the clear layer.
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Localization of interface conditions

The non-local interface conditions render the generalized diffusion model

still computationally expensive.

We can localize the interface conditions as follows:

KεU(x) = −∇⊥dc∇⊥U(x) + σc
aU(x) + smaller terms.

Here, ∇⊥ is the tangential gradient operator along Σ.
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Local Generalized Diffusion Model

The generalized diffusion model takes then the form (assuming the clear

layer is non-absorbing)

−∇ ·D(x)U(x) + σa(x)U(x) = 0 in Ω\Σ

U(x) + 3L3εD(x)ν(x) · ∇U(x) = Λ(g(x, v)) on ∂Ω

[U ](x) = 0 on Σ

[ν ·D∇U ](x) = −∇⊥dc∇⊥U,

The approximation (w.r.t. transport solution) is of order
√

ε when Σ has

positive curvature and can be as bad as | ln ε|−1 for straight clear layers.
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Numerical simulations

Geometry of domain with circular/spherical clear layer.
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Two-dimensional Numerical simulation
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Outgoing current for clear layers of 2 and 5 mean free paths.
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Two-dimensional Numerical simulation

h 0.01 0.02 0.03 0.04 0.05 0.06 0.07

dC
theory 0.0124 0.0455 0.0971 0.166 0.253 0.355 0.475

dC
best fit 0.0129 0.0465 0.0983 0.167 0.253 0.356 0.474

EGDM (%) 1.17 1.56 1.43 1.09 0.81 0.56 0.60
EBF (%) 0.73 0.65 0.57 0.49 0.46 0.47 0.46
EDI (%) 3.3 10.2 17.7 24.5 30.2 35.3 39.8

Tangential diffusion coefficients and relative L2 error between the trans-

port Monte Carlo simulations and the various diffusion models for several

thicknesses of the clear layer.
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Three-dimensional Numerical simulation
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Outgoing current for clear layers of 3 and 6 mean free paths.
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Conclusions

• We have a macroscopic model that captures particle propagation both

in scattering and non-scattering regions, such as embedded objects and

clear layers.

• The generalized diffusion model is computationally only slightly more

expensive than the classical diffusion equation (essentially, one term is

added in the variational formulation) and much less expensive than the

full phase-space transport model.

• The accuracy of the macroscopic equation is sufficient to address the

inverse problem where absorption and scattering cross sections are re-

constructed from boundary measurements.


