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E: Ground State Degeneracy
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E: Fractional Statistics

Non-abelian

Classification of Abelian Topological Orders
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Topological Order:
Beyond the Landau’s Theory

 Novel phases at T=0: due to quantum effects
 No symmetry breaking
 NoO order parameter(s)

o Partly manifested by a topological number, that is
robust against weak disorders and interactions

Examples: fractional quantum Hall effect, frustrated
spin models, Mott insulators, etc.




Properties of FQHE

Manifested by an exotic topological number,
robust against weak disorders & interactions

Close relation between bulk and edge
Topology dependent GSD

(Ground State Degeneracy)
Fractionalization of quantum numbers
Fractional statistics of quasiparticles



Many-body Definition of Chern Number (I)
Niu, Thouless,Y.S. Wu (1985)

 k-space topology may not be appropriate for general many-body
systems.

« Many-body definition of Chern number: Twist boundary condition
 General Many-body Hamiltonian:
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Many-body Definition of Chern Number (1)

 Berry Phase gauge field in Parameter Space (4..6,,)
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 First Chern number: Total flux in Parameter Space.
 Well-defined for insulator without ground state degeneracy.
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defines a topological order,
which is stable against any
Parameter Space small local perturbation




Laughlin’s Gauge Argument (1981)

-

Adiabatically threading a unit flux 0—>d,
— Gauge invariance (AB period)
— Return to the original ground state
— Transport an integral number of electrons
—)> Integrally quantized Hall conductance




Ground State Degeneracy in FQHE

(Tao & Wu, 1984, Niu, Thouless, Wu, 1985)

Question: How is fractional topological number possible?
Answer: In Laughlin’s argument on a cylinder or torus,
after adiabatically threading a unit magnetic flux,
Gauge invariance == energy spectrum unchanged
But a ground state may go to another ground state,
not necessarily back to the original state
Then need to thread an integer multiple of flux quanta,
to return to the original ground state and
to transport an integral number of electrons
=== [ractionally quantized Hall conductance



Topology Dependent GSD
For Fractional Quantum Hall Effect

e Sphere: unique ground state (Haldane, 1983)
e Torus: degenerate GS (Yoshioka et al., 1984)

* Proof for any number of handles: (Wen &
Niu,1989)

Use Chern-Simons effective theory
Use Magnetic translation operators

e K-matrix Formulation of Multiple Abelian CS theory:
(Read, 1990; Wen, Zee, Frohlich, 1990-1991)



Fractional Charged Quasiparticles

« Laughlin wave function (1983)
] 1 .
\PO(Zl,""ZN) — H(Zi o Zj) exp{_gzzizi}
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* Berry’s Phase Argument:
(Avoras, Schrieffer, Wilczek, 1984)

= Move a quasiparticle along a loop

= Quasiparticle sees electrons as unit flux/ Q/

= Electron filling factor is fractional
— Quaispartilce charge is fractional




Fractional Statistics of Quasiparticles

* Hierarchy and Stabllity: (Halperin, 1983)
e Berry’'s Phase Argument:
(Avoras, Schrieffer, Wilczek, 1984)

= Move a quasihole around
the other one along a loop / @/
<= Exchange them twice

= (Quasihole sees the other as a defect
= Fractional Berry phase

—>  Fractional exchange phase




Classification of Abelian Topological Orders

e Use Many-Body Wave-Functions:
Laughlin 83; Haldane-Rezayi 85
o Early attempts for abelian FQH states:

v Effective Chern-Simons Theory:
Zhang, Hanson, Kivelson, 87; Niu and Wen, 88

v Multiple Abelian Chern-Simons Theory
(K-matrix formulation)
Read, 90; Wen, Zee and Frohlich: 90-91
o Attempts based on Braid Group and Gauge Invariance
Start with anyonic quasiparticles
Hatsugal, Kohmoto, Wu: 90-91
Sato, Kohmoto, Wu, 06



Anyons and Braid Group

 Anyons: Wilczek (Wave function, 1982) ¢ o
Charge-Flux Composite

Exchange phase | q
>

exp{ié} (O0/z=qd)

e Braid Group on a plane: Wu (Path Intergral,1984)

Generators: O;

(exchange counterclockwise) ; Q ,
Relations: . 1+1
0i0; =0;0; (I-1>1)
0i0i,10; = 0i10i0j4
1d Repres: o —elf

(Note: If add giz — 1, then it becomes the permutation group.)



Braiding of Three Anyons

Path dependence of exchange phases:
Enclosing the third particle or not

—s @if gr i3

Permuting wave function: not work

Generalizing usual commutation relation of

creation and annihilation operators: not work

Key point is to keep track of path dependence:
Path Integral or Monodromy

Necessary to study braid group on various topology



Braid Group on Sphere

(Thouless & Wu, 85)

The same set of generators

One more relations ,
010, ON4OyN_p " 0; =1

Consequence of spherical topology

Q @) @) @) " @) o

Constraint for anyons on the sphere (Shift):
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Relations on Cylinder (Annulus)

(Hatsugai, Kohmoto, Wu: 1990)

e More Generators:
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1D Repre. on a Cylinder

ADB period 1s determined by anyon charge.



Anyon Hopping Rule on a Cylinder
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Puzzle for the AB-period of Quasiparticles
(due to Gauge Invariance)

Known: The AB period of quasiparticle is hc/e" .
The AB period of constituentis hc/e .
Question: How come quasiparticles can have
a smaller AB period if € =e/n ?

Answer: (Hatsugai, Kohmoto, Wu, PRL; 1991)
Degenerate states of quasiparticlesis N .

Analytic Proof: Use braid group on a cylinder
Numerical Proof: Use anyon hopping rules



Gauge Invariance (A-B Period) of
Fractional Charged Anyons

A higher dimensional representation of BG:

p;(P) =exp{i20(j—1) +i27ze @ /hcjW

010
W=[j 1k
10 --- 0}

On a cylinder emerges a topological Z n symmetry
In topological phases with fractionalization,
requiring degenerate ground states
(related to gapless edge states?)



Numerical Evidence

WA

GSD iIs determined by fractional charge !



Braid Group on a Torus

(Enarsson, 1989)
e Generators:

O ; . Exchange operation

Pi - Translation operation

T along a nontrivial loop
i [




Braid Group on a Torus (Il)

e Relations: (J. Birman, 1965)
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Anyon Hopping on a Torus
(Wen, Dagotto, Fradkin, 90; Hatsugai, Kohmoto, Wu, 90)
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End of Flux (on Torus)

Cut B




Pattern of GSD on Torus

Assume fractional particle number: € /e=p/q
» In abelian FQH states (anyons)

GSD=q’ (g=1)
- In fractionalied liquids (bosons or fermions)
GSD =(a%)° (9=1)

Read, Sachdev 91: Senthil, Fisher, 01;
Balents, Fisher, Girvin, 02; ......

Question: gor ¢¢? on torus ?



Flux Insertion and Large Gauge

Transformations
U, : change A from 0 .
to 2z /eL
Relations:
I!ra-lj.-.lf.lé ."'If'!'“-?'- I!r.-lpu"'."é |"'."|;|! rlz., Dy
o Uy
A2 e
sz-i =€ z-|Ux
Automorphism of Braid Group: L I
o, = UyoiUY, 1l =UmiUlY, ol = UupiU; L.

—> o, p, and 7, satisfy same Braid Group relations



Abelian Topological Orders

Abelian quasiparticle statistics:

|‘T-l. i 'lH-_I_ .
Braid Group Relations =—>
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T,T,,U, ande act on many-body Hilbert space
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Fundamental Discrete Algebra

for Abelian Topological Order
(Sato, Kohmoto, Wu, PRL 06; cond-mat/0604506)

Fractional statistics(¢ =2z m/n) :

_ _—2mim/n
T,T, = e~ 2mm/vT T,

Fractional charge (€ /e=p/0) :
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Non-commutativity 4: (motivated by topol. invariant)
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Minimal GS Degeneracy

* Theorem: Given rational 0 and € /e, the GSD
is an integral multiple of nQ* .

Here szﬂm , E: . and
e

N

lfollko)

(N and Q coprime)




Example 1

If O=7x/n and e =e/n (Laughlin states with y=1/n )

Then, minimal GSD is just .

Realization of Minimal GSD: (with Ul = ¢ *™/"U, 1/, )

Pr—llane Talth. ‘
ol =G
FQH conductance
Here Spop = diagl 1,¢27/0 . @27n-1)/n1 gy |0 1e’
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Example 2

If & =0o0r 7 (quasiparticles are bosons or fermions)

Then minimal GSD is q° . (Oshikawa, Senthil, 2006)

Realization of Minimal GSD:
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In this realization,

f';,. and f-:., cormmutes with each other



More Examples

* For g and n coprime,

GSD = n¢?
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(4) n = Ng and m = 1. - Because of @ = 1, the
minimum degeneracy is n. A representation is given by

T;r— n. o ¢ Ty=Eﬂ-"£ﬂ1
U, = R 2, — SNF (25)

R4 A T =T
U, and Uy satisfy UpUy = E:—Eﬂ}-*fﬁg MU
(5) g = On. - In this case, N = 1, thus the least de-
generacy 1s nQ%. When @ and n are mutually prime and

p=m = |, we can construct the following representa-
101
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where k/n +1/Q =1/On (mod.1). In this case, Uxly =
p—2mik® /n U,Uy.




Physical Meaning of Parameter /]

Assume A=k/l :
i 27k /| oy |
uu,=e**"uu, U,U,=UU,)

Theorem (Generalizing Niu-Thouless-Wu)

Hall conductance is

I i :|
i ' e 1
"T.J-':'n' "IIT E Jri.n I,—} T :

=0

Here d is GSD. All | _have the same value |



Summary for This work

Characterization of the abelian topological orders
0y means of a discrete symmetry algebra which
nas a topological origin

Reveal the interplay between anyon statistics,
fractionalization and topological number

Determine minimal ground state degeneracy
without assuming relations between @ e and A

Can be generalized to higher genus surfaces
Generalization to gapless systems?

Generalization to non-Abelian topological order?
Mechanism underlying relations between 6,eand A ?




Non-Abelian Topological Order?

Pfaffin and generalized wave functions:

Moore and Read (1990)
Rezayi and Read (parafermion states) (1994)

Candidate state: v =5/2, 12/5?
Non-abelian anyons:
Higher dimensional representations
of braid groups ( also Nayak and Wilczek, 1994)

Good for Topological quantum computing
Kitaev, 1997; Project-Q, 2003; This workshop

Generalizations:
Wen and Wu (1994); S. Simon (this workshop)



Generalization to Non-abelian
Topological Order ?

Non-abelian anyons are described by
Modular tensor category (TQFT)

Still need to introduce more (and specific)
structures (like symmetries) to
accommodate rich physics

Relationship between translations p; and z;
and modular S-matrix ?

Relationship between flux insertions U , and U |
and the symmetry in Wang’s yesterday talk ?




Perspective In
Topological Quantum Computing

A New Chapter in Science!

CS

Math /\ Phys

More Excitements to Come!




Thank you!!
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