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Scalable ion trap quantum computer: The Dream



Ion trap quantum computer: The Reality





• The future does not necessarily belong to the ion trappers: for example, 
electron spins in quantum dots, superconducting qubits, ultracold neutral 
atoms are all making impressive progress.

• But ion traps have a head start, and some serious effort has been devoted 
to conceiving scalable architectures. 

• “Ion trap chips look well placed to create useful computers before other 
methods.” – Andrew Steane

• “There is progress, but it’s still very slow.” – Chris Monroe

• “I’d say almost any prediction about what a quantum computer will look like 
will, with high probability, be wrong. Ion trappers are encouraged because we 
can at least see a straightforward path to making a large processor, but the 
technical problems are extremely challenging. It might be fair to say that ion 
traps are currently in the lead; however, a good analogy might be that we’re 
leading a marathon race, but only one meter from the start line.”

– Dave Wineland

Quantum hardware:



• Error correction and fault tolerance will be essential in the operation of 
large-scale quantum computers, both to prevent decoherence and to control 
the accumulating effects of small errors in unitary quantum gates.

• Topological quantum computing is the elegant approach, in which the 
“hardware” is intrinsically robust due to principles of local quantum physics (if 
operated at a temperature well below the mass gap). We hope it will work, but 
a physical realization of a topological quantum computer may be hard to 
achieve.

• There is also a “standard” approach to fault-tolerant quantum computing, 
which uses clever circuit design to overcome the deficiencies of quantum 
hardware. It, too, works in principle, if the hardware is not too noisy.

• Either approach (or perhaps a combination of the two) might eventually lead 
to quantum computers capable of solving hard problems. Which path we 
eventually follow will depend on which turns out to be more feasible 
technologically, and we don’t know that yet. 

Quantum fault tolerance: Topological vs. “Brute force”



Robust quantum computation

1. Quantum error-correcting codes
2. Fault-tolerant quantum computing
3. Quantum accuracy threshold theorem
4. New developments:

a) subsystem codes
b) local gates
c) slow measurements
d) postselected simulation

5. Questions:
a) high-frequency noise
b) asymmetric noise
c) 3D topological order



Quantum computer: the standard model

(1) Hilbert space of n qubits: 
(2) prepare initial state:
(3) execute circuit built from set of 
universal quantum gates:
(4) measure in basis 

| 0 | 000 0n⊗〉 = 〉…

{ }1 2 3, , ,
GnU U U U…

{ }| 0 ,|1〉 〉

2n

H=C

The model can be simulated by a classical computer with access to a 
random number generator. But there is an exponential slowdown, since the 
simulation involves matrices of exponential size… Thus we believe that 
quantum model is intrinsically more powerful than the corresponding 
classical model. 

Our goal is to simulate accurately the ideal quantum circuit model using the 
imperfect noisy gates that can be executed by an actual device (assuming 
the noise is not too strong).



Errors
The most general type of error acting on n qubits can be 
expressed as a unitary transformation acting on the qubits and 
their environment:

|ψ 〉
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Errors
The most general type of error acting on n qubits can be 
expressed as a unitary transformation acting on the qubits and 
their environment:
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:| | 0 | |E a Ea
U E aψ ψ〉⊗ 〉 → 〉⊗ 〉∑

The states of the environment are neither normalized 
nor mutually orthogonal. The operators are a basis for 
operators acting on n qubits, conveniently chosen to be “Pauli
operators”:

where

The  errors could be “unitary errors” if or 
decoherence errors if the states of the environment are 
mutually orthogonal.



Errors

Our objective is to recover the (unknown) state of the 
quantum computer. We can’t expect to succeed for arbitrary 
errors, but we might succeed if the errors are of a restricted 
type. In fact, since the interactions with the environment are 
local, it is reasonable to expect that the errors are not too 
strongly correlated.

Define the “weight” w of a Pauli operator to be the number of 
qubits on which it acts nontrivially; that is X,Y, or Z is applied to w
of the qubits, and I is applied to n-w qubits. If errors are rare and 
weakly correlated, then Pauli operators       with large weight 
have small amplitude

|ψ 〉

aE
.|| | ||Ea〉

:| | 0 | |E a Ea
U E aψ ψ〉⊗ 〉 → 〉⊗ 〉∑



Error recovery
We would like to devise a recovery procedure that acts on the 
data and an ancilla:

which works for any

Then we say that we can “correct t errors” in the block of n
qubits.  Information about the error that occurred gets 
transferred to the ancilla and can be discarded:      
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Error recovery

Errors entangle the data with the environment, producing 
decoherence. Recovery transforms entanglement of the 
data with the environment into entanglement of the ancilla
with the environment,  “purifying” the data. Decoherence
is thus reversed. Entropy introduced in the data is transferred to 
the ancilla and can be discarded --- we “refrigerate” the data at 
the expense of “heating” the ancilla. If we wish to erase the 
ancilla (cool it to so that we can use it again) we need to 
pay a power bill.
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Quantum error-correcting code
We won’t be able to correct all errors of weight up to t for 
arbitrary states But perhaps we can succeed 
for states contained in a code subspace of the full Hilbert space,

If the code subspace has dimension 2k, then we say that k
encoded qubits are embedded in the block of n qubits.

How can such a code be constructed? It will suffice if 

are mutually orthogonal.

If so, then it is possible in principle to perform an (incomplete) 
orthogonal measurement that determines the error Ea (without 
revealing any information about the encoded state). We recover 
by applying the unitary transformation Ea

-1.

qubits .| nψ 〉 ∈H

code  qubits .n∈H H

{ }{ }code Pauli operators of weight,a aE E t∈ ≤H



5-qubit code
Suppose we would like to encode k=1 protected qubits in a 
block of n qubits, and be able to correct all weight-1 errors. 
How large must n be?

There are two mutually orthogonal “codewords”
that span the code subspace. Furthermore
all should be mutually orthogonal.

If n=5, then there are 3×5+1=16 Pauli operators of weight ≤ 1, 
and the Hilbert space of 5 qubits has dimension 25=32. 
Therefore, for n=5, there is just barely enough room: 16×2 ≤
25=32 .

To see that the code really exists, we can construct it 
explicitly.

| 0 , | 1〉 〉

| 0 , | 1a bE E〉 〉



5-qubit code
The code is the simultaneous eigenspace with eigenvalue 1 of 
4 commuting check operators (stabilizer
generators):

All of these stabilizer generators square
to I; they are mutually commuting  because 
there are two collisions between X and Z.

The other three generators are obtained from the first by cyclic
permutations. (Note that  M5  = Z Z X I X = M1 M2 M3 M4 is not 
independent.) Therefore, the code is cyclic (cyclic 
permutations of the qubits preserve the code space).

Claim: no Pauli operator E of weight 1 or 2 commutes with all 
of the check operators. Weight 1: each column contains an X
and a Z. Weight 2: Because the code is cyclic, it suffices to 
consider ??I I I and ?I ?I I ….

M1 = X Z Z X I = +1
M2  = I X Z Z X = +1
M3  = X I X Z Z = +1
M4  = Z X I X Z = +1



5-qubit code
-- k=1 protected qubit
-- corrects t=1 error
The code is the simultaneous 
eigenspace with eigenvalue 1 of 
4 commuting check operators:
M1 = X Z Z X I = +1
M2  = I X Z Z X = +1
M3  = X I X Z Z = +1
M4  = Z X I X Z = +1
By these operators, we can 
distinguish all possible weight-
one errors. Each “syndrome”
points to a unique Pauli
operator of weight 0 or 1.

M1 M2 M3 M4

X1 + + + -
Y1 - + - -
Z1 - + - +
X2 - + + +
Y2 - - + -
Z2 + - + -
X3 - - + +
Y3 - - - +
Z3 + + - +
X4 + - - +
Y4 - - - -
Z4 - + + -
X5 + + - -
Y5 + - - -
Z5 + - + +
I + + + +



5-qubit code How do we measure the stabilizer 
generators without destroying the 
encoded state?

M1 = X Z Z X I
M2  = I X Z Z X
M3  = X I X Z Z
M4  = Z X I X Z

Measure X

M

| 0 |1A A〉 + 〉 | 0 |1A AM〉 + 〉

Apply M
conditioned on 
value of an 
ancilla qubit.

M1

X
Z

Z
X=

X=1  Eigenstate:



Fault tolerance
• The measured error syndrome (i.e., the eigenvalues
of the check operators) might be inaccurate.

• Errors might propagate during syndrome 
measurement.

• We need to implement a universal set of quantum 
gates that act on encoded quantum states, without 
unacceptable error propagation.

• We need codes that can correct many errors in the 
code block.



Fault-tolerant error correction
Fault: a location in a circuit where a gate or storage error occurs.
Error: a qubit in a block that deviates from the ideal state.

Error
Correction

Error
Correction

X
X

X

If input has at most one error, and 
circuit has no faults, output has no 
errors.

If input has no errors, and circuit has at 
most one fault, output has at most one 
error.

Error
Correction

Error
Correction

Error
Correction

A quantum memory fails only if two faults occur in some “extended rectangle.”

X

X



Fault-tolerant quantum gates
Fault: a location in a circuit where a gate or storage error occurs.
Error: a qubit in a block that deviates from the ideal state.

Quantum 
Gate

Quantum
Gate

X
X

X

If input has at most one error, and 
circuit has no faults, output has at most 
one error in each block.

If input has no errors, and circuit has at 
most one fault, output has at most one 
error in each block.

Each gate is preceded by an error correction step. The circuit 
simulation fails only if two faults occur in some “extended rectangle.”

X

Error
Correction

Quantum 
Gate

Error
Correction

X

X Quantum 
Gate



Fault-tolerant quantum gates

If we simulate an ideal circuit with L quantum gates, and faults occur 
independently with probability ε at each circuit location, then the probability of 
failure is 2

fail maxP LA ε≤
where Amax is an upper bound on the number of pairs of circuit locations in each 
extended rectangle. Therefore, by using a quantum code that corrects one error 
and  fault-tolerant quantum gates, we can improve the circuit size that can be 
simulated reliably to L=O(ε −2), compared to L=O(ε −1) for an unprotected 
quantum circuit. 

Error
Correction

Quantum 
Gate

Error
Correction

X

X Quantum 
Gate

Each gate is followed by an error correction step. The circuit 
simulation fails only if two faults occur in some “extended rectangle.”



Recursive simulation
In a fault-tolerant simulation, each (level-
0) ideal gate is replaced by a 1-Rectangle: 
a (level-1) gate gadget followed by (level-
1)  error correction on each output block. 
In a level-k simulation, this replacement is 
repeated k times --- the ideal gate is 
replaced by a k-Rectangle.

A 1-rectangle is built 
from quantum gates.

A 2-rectangle is built 
from 1-rectangles.

A 3-rectangle is built 
from 2-rectangles.

(1) The computation is accurate if the faults in a level-k simulation are sparse.
(2) A non-sparse distribution of faults is very unlikely if the noise is weak.

There is threshold of accuracy. If the fault rate is below the threshold, then an 
arbitrarily long quantum computation can be executed with good reliability.



Simulated measurements
and preparations 
are correct if: 

Level Reduction: “coarse-grained” computation
Simulated gate is correct if:

propagate
decoders to 
the left

imaginary 
ideal decoder

imaginary 
ideal gate

gate gadget error correction

create
decoders

annihilate
decoders

Decoders sweeping from right to left transform a level-1 computation to an 
equivalent level-0 computation. Each “good” level-1 extended rectangle (with no 
more than one fault) becomes an ideal level-0 gate, and each “bad” level-1 
extended rectangle (with two or more faults) becomes a faulty level-0 gate. If our 
noise model is stable under level reduction, the coarse-graining can be repeated 
many times.



(1) 2 2
0 0 0/ ( / )ε ε ε ε ε ε≤ =

For local stochastic noise with strength ε , the sum of the probabilities 
of all fault paths such that r specified gates are faulty is at most ε r. 
(For each fault path, the operations at the faulty locations are chosen by the 
adversary.)

After one level reduction step, the circuit is still subject to local stochastic 
noise with a “renormalized” strength: 

( ) 2
0 0( / )

kkε ε ε ε<

The constant ε0 is estimated by counting the number of “malignant” pairs of 
fault locations that  can cause a 1-rectangle to be incorrect. If level reduction 
is repeated k times, the renormalized strength becomes:

Local Stochastic Noise

Noisy Circuit = Σ “Fault Paths”
time

sp
ac

e



Accuracy Threshold
Quantum Accuracy Threshold Theorem: Consider a 
quantum computer subject to local stochastic noise with 
strength ε . There exists a constant ε0 >0 such that for a fixed ε
< ε0 and fixed δ > 0, any circuit of size L can be simulated by a 
circuit of size L* with accuracy greater than 1-δ, where, for 
some constant c, 

( )* log cL O L L⎡ ⎤= ⎣ ⎦
Aharonov, Ben-Or (1996)
Kitaev (1996)

The numerical value of the accuracy threshold ε0 is of practical 
interest!

parallelism, fresh ancillas (necessary assumptions) 

nonlocal gates, fast measurements, fast and accurate classical 
processing, no leakage (convenient assumptions). 

ε0 > 2.73 × 10-5

assuming:

Aliferis, 
Gottesman, 
Preskill (2005).



Four noteworthy developments
1) Improved thresholds with subsystem codes – Aliferis,  

Cross (2006)
2) Threshold for local gates in 2D – Svore, DiVincenzo, Terhal

(2006)
3) Threshold when measurements are slow – DiVincenzo, 

Aliferis (2006)
4) Threshold for postselected computation – Reichardt (2006), 

Aliferis, Gottesman, Preskill (2007)

Three questions
1) Threshold in terms of noise power spectrum?
2) Threshold for asymmetric noise?
3) Self-correcting quantum memory (finite-temperature 

topological order)?



Subsystem codes
Hilbert space decomposes as:

( ) ( )s s

s
⊗⊕= L TH H H

syndrome “logical”
subsystem

“gauge”
subsystem

• A subsystem code becomes a standard stabilizer code when the gauge 
subsystem is trivial (e.g., if we “fix the gauge”).

• But there is no need to fix the gauge, as errors acting on gauge qubits
do not damage the protected information.

• Maintaining the gauge freedom reduces the number of check operators. 

• Syndrome information can be extracted by measuring the gauge qubits, 
and for some codes the gauge-qubit operators have lower weight than 
the stabilizer generators, so it is easier to measure the gauge operators 
fault tolerantly.



3 μ 3 “Bacon-Shor code”

check
operators:

logical 
operators:

XX XX

ZZ

ZZ

XX

XXXX XX

ZZ

ZZ

ZZ ZZ

These weight-two gauge Pauli operators 
commute with the logical operations, and 
measuring them determines the check operators 
in the stabilizer. Because only weight-two 
operators are measured, error correction is 
efficient and easily made fault tolerant. 

ZX

Shor (1995)
Bacon (2005)

corrects
one error



XX XX

ZZ

ZZ

XX

XXXX XX

ZZ

ZZ

ZZ ZZ

The optimal threshold estimate is found using the 
5 X 5 Bacon-Shor code (which corrects two errors):

ZX

4
0 1.9 10ε −≥ ×

Aliferis, Cross (2006)

3 μ 3 “Bacon-Shor code” Shor (1995)
Bacon (2005)

corrects
one error

check
operators:

logical 
operators:



Logical Qubit in a 2D Lattice
Svore, DiVincenzo, Terhal (2006)

One logical qubit is stored in a 6 X 8 lattice cell. The cell contains a 7-
qubit code block (d) , a 7-qubit ancilla block (a), and 3 qubits (v) that are 
used for ancilla verification; the rest (O) are “dummy qubits” that serve as 
communication channels.  We include a (noisy) swap in our gate set at 
each level of the recursive hierarchy. There are 61 time steps in the 
CNOT extended rectangle.



When the gates are required to be local rather than nonlocal, the 
threshold worsens from 3.61 X 10-5 to 1.85 X 10-5, assuming that the 
storage fault rate is 1/10 the fault rate for gates, measurements, and 
preparations. For a two-rung “qubit ladder”, Stephens, Fowler, Hollenberg
(2007) find 1.97 X 10-6. Further improvements may be achieved with 
subsystem codes.

Logical Qubit in a 2D Lattice
Svore, DiVincenzo, Terhal (2006)



Fault tolerance with slow measurements
In some systems (e.g., spins in quantum dots) measurements take much 

longer than gates. Yet fast measurements are desirable because:

1) Measurements extract the error syndrome (the measurements can be
done “coherently” but the threshold suffers).

2) Measurements verify ancillas used for error correction.

3) Measurements allow “teleportation” of gates that are needed to 
complete a universal fault-tolerant gate set.

But …
1) Don’t wait for the syndrome, or apply recovery operations. The 

syndrome, once known, can be propagated through subsequent 
gates by an efficient classical computation.

2) Decode the ancilla, measure it eventually, and infer encoded errors 
that propagated through the circuit.

3) Teleport only at high levels in the recursive hierarchy, where encoded 
gates take as long as measurements.

The threshold is little effected even if measurements take ~ 1000 times longer 
than gates.   -- DiVincenzo and Aliferis (2006)



entangled
encoded 
ancilla

Using Bacon-Shor codes, we obtain a lower bound on the accuracy 
threshold (for adversarial independent stochastic noise, nonlocal gates)
ε0 > 1.9 × 10-4

We can improve the threshold further if we can simulate gates with εeff < ε0 

using gates with ε > ε0 .

Accuracy threshold using error-detecting codes 

Bell
meas.

Knill’s idea (2004):

Prepare suitable ancillas offline 
and teleport gates. Encoded error 
rate εeff < ε0 can be achieved if 
the errors in the ancilla are nearly 
independent and have error rate 
below e.g. 5%.

time

sp
ac

e
error detect decodeProtect the ancilla-preparation 

circuit using a (recursive) error-
detecting code and accept the 
ancilla only if no errors are 
detected. Errors occurring during 
decoding are independent.

encoded
data in

encoded
data out

gate to be
simulated



Fault-tolerant gadgets

Error
Correction

Quantum 
Gate

Error
Correction

X

X Quantum 
Gate

Each gate is followed by an error correction step. The circuit simulation fails only if two 
faults occur in some “extended rectangle.” If faults occur with probability ε, then the 
gadget fails with prob O(ε2).

If we use a (distance-three) quantum error-correcting code:

Error
Detection

Quantum 
Gate

Error
Detection

X

X Quantum 
Gate

Each gate is followed by an error detection step, and the computation is aborted if an 
error is detected. The circuit simulation fails only if two faults occur in some “extended 
rectangle.” If faults occur with probability ε, then the gadget fails with prob O(ε2). 

If we use a (distance-two) quantum error-detecting code:



We can boost the reliability by building a hierarchy 
of gadgets within gadgets --- the fault-tolerant circuit 
simulates the ideal circuit if the faults are sparse.

However … to assess the reliability of the 
postselected circuit, we must estimate the 
probability that it fails conditioned on global 
acceptance --- i.e., acceptance by every error 
detection in the entire circuit.

To obtain a threshold theorem 
for postselected computation, 
we must disallow correlations in 
the noise that could be tolerated 
if error correction were used 
instead. Otherwise, the devil 
could enhance greatly the 
conditional probability of failure 
in one part of the circuit by 
turning off faults elsewhere.

circuit fails here

Devil turns off faults elsewhere to 
enhance probability of failure 
conditioned on global acceptance.

Threshold for postselected quantum computation



Threshold for postselected quantum computation

We need a noise model that

a) Limits the adversary’s global control.
b) Is stable under level reduction.

Local stochastic noise has (b) but 
not (a). Independent noise has (a) 
but not (b).

in between is locally correlated stochastic noise:

time

sp
ac

e

- different adversaries control
each noisy operation,

- adversaries can communicate
only “locally,”

- messages are erased by
ideal gates.

circuit fails here
Devil turns off faults elsewhere 
to enhance probability of failure 
conditioned on global
acceptance.



Threshold for postselected quantum computation
The bad gadgets in the postselected circuit form connected clusters, surrounded by 
error detections with no faults. Thus the clusters (which typically contain just one or a 
small number of bad gadgets) are isolated from one another, enabling us to relate the 
probability of failure of a gadget conditioned on local acceptance (within the cluster) 
to its probability of failure conditioned on global acceptance. This means that error 
detection and (global) postselection improves reliability, and we can show by an 
inductive step that the probability of failure in a recursive simulation gets arbitrarily 
small if the noise is sufficiently weak..

good
bad

bad
bad

bad

bad

Counting the ways for error-detecting gadgets to fail, we find ε0,ED > 1.04 × 10-3

(Aliferis-Gottesman-Preskill 2007, Reichardt 2006). This is the best rigorously 
established lower bound on the accuracy threshold so far, but still a factor of 30 below 
Knill’s estimate based on simulations. Note that the overhead cost of postselected
simulation may be prohibitive for ε close to ε0,ED (but acceptable for ε > ε0 ).



Local non-Markovian noise

Non-Markovian noise 
with a nonlocal bath. System Bath System BathH H H H −= + +

Data

Bath

Time
× ×× × ×

×

( )

    terms  acting 
locally on the system

System Bath

a
System Bath

a
H H

−− = ∑where

Then

( )
0max

System Bath

aH tε
−

=

time to 
execute 
a gate

From a physics perspective, it is natural to formulate the noise model in 
terms of a Hamiltonian that couples the system to the environment.

Terhal, Burkard (2004)
Aliferis, Gottesman, Preskill (2005)
Aharonov, Kitaev, Preskill (2005)

USB = Σ “Fault Paths”
For local noise with strength ε , the norm of the sum of all fault paths 
such that r specified gates are faulty is at most ε r. 

over all times 
and locations



Fault-tolerant recursive simulation
Non-Markovian noise with a nonlocal bath. 

System Bath System BathH H H H −= + +
Quantum error correction works as long as the 
coupling of the system to the bath is local (only a 
few system qubits are jointly coupled to the bath) 
and weak (sum of terms, each with a small 
norm). Arbitrary (nonlocal) couplings among the 
bath degrees of freedom are allowed.

A hierarchy of “gadgets 
within gadgets” is reliable 

if the faults are sparse.

Data

Bath

Time

We find a rigorous upper bound on the norm of the sum of all “bad” diagrams (such 
that the faults are not sparsely distributed in spacetime). Actually, this works even for 
interactions among the system qubits that decay algebraically with distance…

× ××
×

×
×



Local non-Markovian noise

E.g., this noise strength is not directly measurable in experiments, and 
furthermore in the case of a bath of harmonic oscillators, the norm is infinite.

Data

Bath

Time
× ××

×
×

×

( )
0 0System Bath

aH t ε
−

<

It would be more natural, and more broadly applicable, if we could express 
the threshold condition in terms of the correlation functions of the bath. 

Data
Time

× ××
× ××

However, expressing the 
threshold condition in terms 
of the norm of the system-bath 
coupling has disadvantages. 



Local non-Markovian noise

The norm condition constrains the very-high-frequency fluctuations of the 
bath (the time-correlators at very short times). Intuitively, fluctuations with a 
time scale much shorter than the time it takes to execute a quantum gate 
should average out. 

The threshold condition should be formulated in terms of an effective 
description of the noise, with high frequencies integrated out. If expressed in 
terms of e.g. the power spectrum of the noise, this criterion could be more 
directly applied to real systems (and to e.g. the spin-boson model, where the 
norm condition is not useful).

(Low-frequency noise, on the other hand, can be addressed with other 
methods, such as spin echoes, composite pulses, “decoherence-free 
subsystems” …)

( )
0 0System Bath

aH t ε
−

<Data
Time

× ××
× ××



Example: 1D Ising model (repetition code)

0    0    0    0    1    1    1    1    0    0    0

When a connected (one-dimensional) droplet of 
flipped spins arises due to a thermal fluctuation, 
only the (zero-dimensional) boundary of the droplet 
contributes to the energy; thus the energy cost is 
independent of the size of the droplet. 

Therefore, thermal fluctuations disorder the spins at 
any nonzero termperature. A one-dimensional 
ferromagnet is not a robust (classical) memory.



2D Ising model (repetition code)
This memory is a repetition code, but 
with redundant (hence robust) parity 
checks.

Again, droplets of flipped
spins arise as thermal fluctuations. But 
now the energy cost of a (two-
dimensional) droplet is proportional to 
the length of its (one-dimensional) 
boundary.

Therefore, droplets with linear size L are 
suppressed at sufficiently low nonzero 
temperature T by the Boltzman factor 
exp(-L / T), and are rare.

The probability of a memory error becomes exponentially small when the 
block size is large. (Actual storage media, which are robust at room 
temperature, rely on this physical principle.)



Toric Code
When a connected (one-dimensional) 
chain of flipped qubits arises due to a 
thermal fluctuation, only the (zero-
dimensional) boundary of the chain 
contributes to the energy; thus the 
energy cost is independent of the 
length of the chain. 

Therefore, thermal fluctuations disorder 
the system at any nonzero 
termperature. A two-dimensional 
topological medium is not a robust 
quantum memory.

On the other hand, if we continuously observe the defect gas, then at low 
temperature the chain segments are typically short, and the defect positions are 
strongly correlated.  Therefore, it is easy to guess how to “pair” the defects and to 
infer when encoded errors occur. The probability of an encoded error is e-O(L) on an 
L X L torus if in each round, the probability of a qubit error and of a syndrome 
measurement error are both below 3%.   Dennis, Kitaev, Landahl, Preskill (2001). 



Toric code in four dimensions
-- Qubits are on plaquettes (2-cells):

-- 6-qubit X and Z check 
operators at edges and cubes
(dual links):

-- Logical operations: 
homologically nontrivial 
2-surfaces of lattice 
and dual lattice:

-- Defects are closed loops of string, 
(or dual loops) which bound 
droplets of flipped qubits:



Topological order at finite temperature

Question: Is “finite-temperature topological order” possible in 3D? 

In the 3D toric code, we can choose to have point defects at the boundary 
of 1D bit-flip error chains and string defects at the boundary of 2D phase-
error droplets, or the other way around. 

Absence of an obvious exactly solvable model (corresponding to an RG 
fixed point) makes one suspect that robust 3D topological memory is not 
possible.

But what about the 3D compass model. (Note that a gap may not be
necessary --- Cf. Bacon 2005.)

L
In the 4D toric code, the energy cost of a 2D droplet of 
flipped qubits is proportional to the length of its 1D 
boundary.

To cause encoded errors, Droplets of linear size L, which 
could cause encoded errors, are suppressed at sufficiently 
low nonzero temperature T by the Boltzman factor 
exp(-L / T), and are rare.



Four noteworthy developments
1) Improved thresholds with subsystem codes – Aliferis,  

Cross (2006)
2) Threshold for local gates in 2D – Svore, DiVincenzo, Terhal

(2006)
3) Threshold when measurements are slow – DiVincenzo, 

Aliferis (2006)
4) Threshold for postselected computation – Reichardt (2006), 

Aliferis, Gottesman, Preskill (2007)

Three questions
1) Threshold in terms of noise power spectrum?
2) Threshold for asymmetric noise?
3) Self-correcting quantum memory (finite-temperature 

topological order)?



John Preskill, Caltech
27 February 2007
http://www.iqi.caltech.edu/
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