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• 1935 — Schrödinger introduces `Verschränkung’ as
   key notion in quantum mechanics.

Interpreting entanglement

``… I would not call that one but rather the
characteristic trait of quantum mechanics, the
one that enforces its entire departure from
classical lines of thought. By the interaction the
two representatives [the quantum states] have
become entangled.’’



• 1935 — Schrödinger introduces `Verschränkung’ as
   key notion in quantum mechanics

• since 1980s — entanglement recognized as key
  resource for quantum communication and quantum
  computation

• since 1990s — entanglement measures considered
  for characterizing nature of quantum states of matter

Interpreting entanglement



• measure of mutual entanglement between parts of
  quantum system

- system partitioned into A and B blocks
- B degrees of freedom traced out:
- entropy defined as

• example: two spins 1/2

Bipartite entanglement entropy
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• for spatial partitioning: expect in general that
  entanglement entropy will be proportional to area
  separating the A and B blocks, leading to

• exceptions to the area law, as well as sub-leading
  corrections, are tell-tale of the quantum many-body
  state

Area law for bipartite entanglement entropy
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Bipartite entanglement entropies of a quantum
many-body state can shed light on

• quantum criticality

• topological order

• correlations

• …

Many-body entanglement



1D critical systems

      Holzhey-Larsen-Wilczek 1994
                    Vidal-Latorre-Rico-Kitaev 2003

Calabrese-Cardy 2004

Entanglement and criticality

2D critical systems: subleading logarithm in area law

Fradkin-Moore 2006
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Topological order in a 2D system is captured by a
sub-leading term in the dependence of spatial
entanglement entropy on the radius LA of the A block

Topological entanglement entropy
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The topological entanglement entropy is related o the
total quantum dimension according to
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Subleading terms in entanglement entropy for
particle partitioning                               hold clue to
correlation effects and exclusion statistics.

Entanglement and correlations
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For the ν=1/m Laughlin states



How entangled is a fqH state?

• entanglement among spatial regions?

• entanglement among constituent particles?
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• N fermions in spherical geometry,
  filling factor ν=1/m
• monopole at center provides magnetic
  field; total flux

• eigenstates of orbital angular momentum
  localized on latitude lines → Lowest Landau Level orbitals

•    -th orbital,                           localized at distance
   from north pole
•  spherical projection onto plane gives standard Laughlin
   wavefunction

Laughlin wave functions
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• orbital partitioning
     A-block — orbitals

     B-block — orbitals

• boundary between orbitals            and        located

   at              ;  expect asymptotic behavior

Orbital partitioning
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LLL orbitals
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LLL orbitals
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Orbital partitioning



extrapolating

for fixed       at m=3

Orbital partitioning -- extrapolating N → ∞
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Orbital partitioning -- extracting γ

best fit to
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• orbital partitioning
     A-block — orbitals

     B-block — orbitals

• combination

  gives topological entanglement entropy if

Orbital partitioning, II
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• if sufficient accuracy can be achieved,
  the method allows the extraction of
  the total quantum dimension from
  finite-size wave-functions

•  particularly interesting for wavefunctions
   obtained from exact diagonalization of
   realistic potentials:

- direct probe of (universal) topological order
- alternative to overlap with model wavefns

• work in progress [Haque, Zozulya, KjS]

Perspective
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• particle partitioning
     A-block —        particles

     B-block —    particles

• maximal entropy for       fermions in                orbitals

• correlations in the many-body state lead to reduced
  value of

Particle partitioning, I
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• example:
   m=3, N particles, 3N-2 orbitals, 1-particle states carry orbital
   angular momentum

   → possible states at of                fermions:

   → total number of states

   → of these the multiplet at                   is absent, reducing the
       total number of states to

Particle partitioning, II
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• general:
  using quasi-hole counting results [Read-Rezayi,1996]
  we improved the upper bound

• interpretation in terms of exclusion statistics:
  the reduced number of states is precisely equal to the number
  of ways        particles can be put into             orbitals,
  observing a minimal distance of m between adjacent occupied
  orbitals

Particle partitioning, III
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particle partitioning for                 particles

 [                free fermion bound,                     improved bound]

Particle partitioning, IV
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• further interpretation:
  comparing with the free fermion bound we have a
  expansion

• in this concrete case, the leading correction term can be
  traced to the short distance behavior of the 2-body correlator

• more generally, the leading           term is a global measure for
  the leading correlations in a state of interacting fermions

Particle partitioning, V
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• for the Moore-Read state at ν=1/m, m even

   rigorous upper bounds

Particle partitioning, VI

! 

S
A
" ln

N# +1

n
A

$ 

% 
& 

' 

( 
) * "

1

N
2

3

4
n
A
(n

A
"1) (n

A
" 2)+O(

1

N
3
) for m = 2

"
1

N

m " 2

m
n
A
(n

A
"1)+O(

1

N
2
) for m > 2



conclusions

Bipartite entanglement entropy with orbital partitioning reveals
topological order in a given LLL wave function. Practical use of
this hinges on the accuracy that can be achieved with finite
size wavefunctions.

Bipartite entanglement entropy with particle partitioning reveals
correlations and exclusion statistics properties satisfied by fqH
wave functions.


