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d-isotopic quantum loop gases and dimer model
implementations

generalized RK points - Monte Carlo sampling for ground
and excited states

dimer model implementation on triangular lattice

realization of extended Hubbard Hamiltonian approximate
representation on surrounding Kagome lattice with trapped
atoms/molecules



Exotic phases and critical points in lattice
models of loops and string-nets:

® certain quantum loop gas models sit on
quantum critical points that are related
to a class of non-Abelian topological
phases

Freedman, Nayak, Shtengel, Walker, Wang Ann. Phys
310 428 (2004); Fendley, Fradkin PRB 72 024412
(2005)

® string-net models can realize a variety of
topological phases with Abelian and non-
Abelian quasi-particles

Levin,Wen PRB 71 045110 (2005)



d-isotopic Quantum Loop Gases (QLG) |:
(Freedman, Nayak, Shtengel, Walker, Zhang)

e Hilbert space of closed, non- Q

intersecting loops 6 - m x d
® configurations related by isotopy are O Vi

given equal weight
® configurations related by the addition {a} Uo] = d¥ [{a}]

of a contractible loop are given a
relative weight of the parameter d



d-isotopic Quantum Loop Gases |l

ground state: |¥g) = Y d"it|a)
{a}

norm of the ground state wavefunction is equivalent to the
partition function of the self-dual Potts Model and O(n)
model:

<\IJO|\IJO> — ZO(n:d2) — ZPotts(q:d4)

for 1 < d < /2, d-isotopic quantum loop gas (QLG) lives
on a critical line with gapless w ~ k? excitations

Freedman, Nayak, Shtengel PRL 94 147205 (2005); cond-mat/0508508



d-isotopic Quantum Loop Gases ll:

® the critical line has been conjectured to be described by
the SU(2) analog of the critical U(/) gauge theory that is
seen at the RK point on bipartite lattices

® Rokhsar-Kivelson (RK) :V =1

H=) V(I N +21Z)
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RK point in dimer models:

® bipartite lattices: |

e the Rokhsar-Kivelson (RK) (V =t)
point is described by a critical U(/)
gauge theory

| |
columnar | plaquette 1 staggered — >
1 1 >
T T

T
-0.2 0 1 \Y /t
transverse field point RK point

Moessner, Sondhi, Chandra PRB64 | |

® non-bipartite lattices:

e RK point is adjacent to a H=> V{na+120Z)
topological phase described by Z> -

gauge theory —t(124 W+ h. <)
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d-isotopic Quantum Loop Gases |l

® the d-isotopy condition is related to the Wilson loop algebra
of doubled SU(2)x Chern-Simons theories for particular
values of d

d = 2 cos (k:L—kQ)

® has been conjectured that there may be proximate phases
with related topological order

Freedman, Nayak, Shtengel PRL 94, 147205 (2005)



d-isotopic QLG’s as generalized RK points:

® the square norm of the ground state wave function is
equivalent to the partition function of the classical
model

® exact zero energy ground state is a superposition of
classical configurations (e. g.,a dimer or loop covering of
the lattice)

® cach classical configuration is weighted by the square
root of the Boltzmann weight of a corresponding
classical model

® this point may be an isolated quantum critical point, or
adjacent to a related phase (topological?)



Strategy for study of topological phases
and related critical points in microscopic
lattice models

|. characterize ground state and excitations of d-isotopic
QLG at generalized RK points

® classical Monte Carlo

2. look at effects of perturbations (e.g., loop surgeries...),
opening of gap, nature of excitations ...

® quantum Monte Carlo

3. use dimer Hamiltonian on triangular lattice that has an
extended Hubbard Hamiltonian approximation on

surrounding Kagome lattice (Freedman, Nayak, Shtengel PRL 94,
066401 (2005))



Quantum dynamics from classical
Monte Carlo |

C.L.Henley, ] Phys Cond Mat 16,5891 (2004)

Generalized RK Hamiltonians: H = Zv(u DA+ 1))
O

(|20 )+ h. <)

classical partition function: 7, = Z e~ KES
K=1/T «

RK Hamiltonian: Hex = Y V(e KEE)2|0) (o] + X (FS-E5)/2|5)(5)
{(e})

—t(|a)(B] + h.c.)

exact zero energy ground state:  |§,) = % Z e KEL /2|0

(87

Qt=V



Quantum dynamics from classical

Monte Carlo Il

: dp., _
master eqn: di (7) = Wag pg (7) Wag =
T Weoe =

T cl . cl
similarity transform: Wag = €™ %a /2W,ge™ 5 /2

~

Waﬂ ~ HRK

eigenvalues of the classical MC master equation are
proportional to the eigenvalues of the quantum
Hamiltonian

min (1, e_K(Egl_Egl))

_ZWO‘B

B#a



Quantum dynamics from classical
Monte Carlo |l

sampling the classical model related to the quantum ground
state => sampling the quantum ground state

low lying excitations of the quantum Hamiltonian can be
extracted from dynamic correlation functions of a classical
Metropolis walk that samples the exact GS using the
quantum dynamics:

C (i — jl,7) ~ (O] (1) 0; (0))
C(k,7) x e AHF)7



Dimer model implementation of d-isotopic
quantum loop gas (QLG)

coverings of the triangular lattice

e Hilbert space: fully packed dimer ' | AA
VNVAAV.
/ |

® red bonds are a fixed background

dimerization -- transition graph ,
with dimer covering forms fully ‘V‘V

packed loop covering

® dimers living on red bonds are
considered minimal loops with
length 2

Freedman, Nayak, Shtengel PRL 94, 066401 (2005)



Dimer model QLG dynamics

VAV QVAVS
® Plaquette flips correspond
to isotopy (|), d-isotopy (1) N —» N

(2,3,4), and surgery (0)
moves (2) e —> e

® Surgeries (0) are forbidden;

for ergodicity in a single >
winding sector three and (3) & & (3)

four dimer moves (3,4) are

needed (4) C j/ (4))




Dimer model Hamiltonian

H = ZV<1><1| + 1)) +d[2)(2] + 2\2@(2’\ +e <d2|3><3\ n %|3/><3/|) b (d3\4><4l N %4/“4,))

—t<1><1’ + 12)(2| + €1|3)(3'] + e2]4)(4'| + h. c.)

® fine tuned to the RK line ( ¢t = V') of loop gas Hamiltonian,
such that the zero energy ground state is a d-isotopic QLG

® one parameter (d) class of Hamiltonians

® d=I| w/surgeries corresponds to RK point of the pure
triangular lattice dimer model

® (a,¢)are smallness parameters that do not affect the GS

Freedman, Nayak, Shtengel PRL 94, 066401 (2005); cond-mat/0309120



Numerical methods

® Metropolis sampling of the ground state wavefunction
® |oop dynamics are critical => inefficient sampling

® pure dimer dynamics (i.e., with surgeries) on triangular
lattice are not critical, can be used for more efficient
sampling of ground state

® non-local moves can also be used

® |ow-lying excitations can be extracted from the dynamic
correlation function (classical sampling corresponding to
quantum Hamiltonian) evaluated at generalized RK points
with loop dynamics (surgeries switched off during
averaging)



<length>

d-isotopic ground state calculations:
Global Properties

Average loop length occupation of bonds by color
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- transition from longer to shorter loops on average as d increases
- dimers on red bonds are minimal loops, dominate at large d



d-isotopic ground state calculations:
Correlation Functions

parallel dimer correlations (L = 32)

* * * * * * *
* d=1.0

d=1.4
* d=1.8
*x d=22

parallel dimer-dimer
correlations from a red site:

(drd(r))

red bonds occur at »=2,4,6...

residual ordering on red
bonds persists for d > 1

no correlations to black
bonds, even where finite
black occupation persists



Fraction of dimers

d-isotopic ground state calculations:
Loop Statistics

Fraction of dimers on a loop of length | (d =1.4) )

Fraction of dimers on a loop of length | (L=32) 0.05¢
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d-isotopic ground state calculations:
“Long” vs.“Short” loops

0.02fractionofdimersonIoopoflengthl(L:C’,Z) [ ) at a” d’ exponentia”y decaying peal(
oors] — o at short lengths persists
® can fit and subtract “short”

0 loops under exponential
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Future work:

static intra-loop correlation functions (critical exponents);
fractal dimension ...

imaginary time dynamics of loop gas at generalized RK
points —> excitations (dispersion, gap ...)

® test consistency with conjectured SU(2) gauge theory

add perturbations to Hamiltonian, use Quantum Monte
Carlo instead of Metropolis walks

® |ook at neighboring phases, ground and excited states -
topological?

effects of disorder
® restore criticality for large d values?

other loop models



Extended Hubbard model representation of QLG

. P--Q- - @ - -Q -9 --Q -9
@ The QLG dimer model can be OO O Y
effectively implemented by a R S AR AN
Hubbard-like Hamiltonian on a X X X X »
Kagome lattice ST
(cond-mat/0309120) AA AN ANA
| A Nl SR Sy St S R

e Complicated Hamiltonian, . S .
interactions not easy to implement e

@ Need anisotropic interactions, with H=>pini+Ug > 0t +U > mn
. g i i (i,j)eo
very specific ranges
ysp . . g . . + Z Vijnin; — Z t (c;rcj- + cjlfc,-)
@ We are investigating optical lattice (i) €p (i)

implementations



Neutral atom implementation

“ ?

L]

@ particle = atom in state |B), vacancy = atom in state |A)

o effective tunneling: atoms switching places, ~ aibgagbl

@ Hexagon interaction: State-selective tunneling by state-|B)
atoms to auxiliary site in center of hexagon, virtual interaction
= energy penalty

@ Bowtie interaction: Similar to hexagon interaction, virtual
interaction at auxiliary site above every regular site

@ Problems: leakage, virtual interactions via auxiliary sites very
weak



Spin-spin coupling with dipolar molecules

@ Localized dipolar molecules

didy-3(d,8,) (¢,d2)
3

Vaa =

e Can implement arbitrary (almost, maybe) spin models using
dipolar molecules in optical lattices (Micheli et al., Nature
Physics 2, 341 (2006))

@ Use diatomic molecules with permanent dipole moment and
one net electron spin (e.g. alkali-earth monohalides)

@ Create effective spin-spin coupling through intramolecular
spin-rotation and intermolecular dipole-dipole coupling



Hamiltonians for dipolar molecules and electron spin

@ Single molecule: rotational energy and spin-orbit coupling
H; = BN? + yN; - S,
@ Two molecules: dipole-dipole coupling

d2
Haa = 53 (Di Dy + Dy DY +2D; D3)

Couples rotational states of the two molecules

o Ground state, (N7 4+ N2)2 = 0: No net dipole moment, only
weak interaction to second order, ~ 1/r°



Dipole coupling in Ny,: = 1 subspace

@ Hamiltonian can be diagonalized
analytically "

@ Interaction between two molecules
~ 1/r? obtained with laser tuned
close to an Nt = 1 level &’
@ Spin-orbit coupling results in
effective laser-induced spin-spin 15

coupling between electron spins 0
(selectively distance dependent)

e 3 (871 Yo X0 O0) Vi )

i,F(r) hw = E(X(r))

hQ &
— uitl Z 0% Aagol  for each intermediate level |A(r))

a,3=0

1

lgr) (il




Extended Hubbard model with spins

@ Represent particle present by |1),
absence by |])

o Tunneling through SYSY + S753
spin-swap

@ Repulsive interactions between
particles through (Sy+1/2)(55 +1/2)

(Works well for bowties and most hexagon

sites, but not for furthest hexagon site)

@ Add spins at auxiliary sites; but
interactions must be non-symmetric
(must use different molecules or
magnetic fields)




Summary

QLG simulation via classical Monte Carlo at generalized RK
points

ground state loop properties easily accessible
excitations in progress ...
extension to perturbed QLG’s with QMC

implementation of extended Hubbard approximation to
lattice QLG with trapped dipolar molecules





