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opological Quantum Computation
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opological Quantum Computation

(

_ l
-

)

>

1 alM

a
i

Matrix depends only on the topology of the braid swept out by
quasiparticle world lines!
Robust quantum computation?
(Kitaev ‘97; Freedman, Larsen and Wang ‘01)



SU(2), Nonabelian Particles

Describe quasiparticle excitations of the Read-Rezayi
“Parafermion” states at level k (up to Abelian phases).

Read and Rezyai, 1999
Slingerland and Bais, 2001

Are universal for guantum computation for k=3 and k > 4.
Freedman, Larsen, and Wang, 2001

But before SU(2),, there was just plain old SU(2)....



Particles with Ordinary Spin: SU(2)

1. Particles have spins =0, 1/2,1, 3/2, ...

©® € 3pin=%

2. “Triangle Rule” for adding angular momentum:
s, ®s, :\sl—52\69(\51—32\+1)69---€r>sl+32

For example: %@% =01

=» Two @ particles can have total spin 0 or 1.

Numbers label total spin of particles inside ovals




Hilbert Space
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Hilbert Space

Paths are states
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Exchange-Based Quantum Computing

Compute by turning on and off the exchange interaction between
neighboring spin-1/2 particles for some time <, splitting the energy
of the total spin 0 and total spin 1 sectors by &.
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Encoded Universality
J. Kempe, D. Bacon, D.A. Lidar, and K.B. Whaley (2001)
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4 spin encoding:
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Encoded Qubit Space
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Universal Set of Gates
M.Hsieh, J. Kempe, S. Myrgren and K.B. Whaley (2003)

Single Qubit Gates
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Controlled-NOT gate
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Particles with Ordinary Spin: SU(2)

1. Particles have spins =0, 1/2,1, 3/2, ...
©® € 3spin=%

2. “Triangle Rule” for adding angular momentum:
5, ®5, =[5, —5,| @[5, — 5, +1 )@+ D5, +5,

For example: %@% =01

=» Two @ particles can have total spin 0 or 1.
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Nonabelian Particles: SU(2),

1. Particles have topological charges =0, 1/2, 1, 3/2, ..., k/2

@ <—— topological charge = %

2. “Fusion Rule” for adding topological charge:

S, ®5, =[5, —5,|®([s,—5,[+1)®---@®min[s, +5,,5,+5, —k/2 ]

For example: %@% =01

=» Two @ particles can have total topological charge O or 1.
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k=3

c 1 2 3 4 5 6 7 8 9 10 11 12
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Exchange-Based Quantum Computing

Compute by turning on and off the exchange interaction between
neighboring spin-1/2 particles for some time <, splitting the energy
of the total spin 0 and total spin 1 sectors by &.
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Topological Quantum Computing

Compute by braiding quasiparticles around one another.

R matrix
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TOPOLOGICAL QUANTUM COMPUTATION

MICHAEL H. FREEDMAN, ALEXE] KITAEY, MICHAEL 1. LARSEN,
AND ZHENGHAN WANG

4 particle encoding:




Encoded Qubit Space
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Let’s focus on k=3 first.

For k=3, If we only have particles with topological charge 1,
the fusion rules are simply:

0®0=0; 0®1=1®0=1 1®1=0®1

The remaining k=3 fusion rules, such as

2 2 2 2 2 2 2 2
Imply that the 3/2 particle is effectively abelian (it has non-
branching fusion rules) and the braiding properties of particles

with topological charges 1/2 and 1 are equivalent (up to a phase).

Fibonacci anyon: @ < topological charge 1 in SU(2);



Braiding Matrices for 4 Fibonacci anyons




Braiding Matrices for 4 Fibonacci anyons
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Single Qubit Operations
General rule: Braiding inside an oval does not change the total
topological charge of the enclosed particles.

Important consequence: As long as we braid within a qubit,
there Is no leakage error.

Q)

0

Can we do arbitrary single qubit rotations this way?



Single Qubit Operations are Rotations

The set of all
single qubit
rotations lives in a
solid sphere of

radius 2.
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Brute Force Search

4 -2

2

-2
1

2 -4

2

-2

-2 - - 4 2 = 2 4 - - 4 . 2 2
o,%c,"0,0,°0/0,0, °0,0,°0,0 /0,00

0 1

0'1202720'1_2 — [ j+0(103)
1 O

A e oy e e e e I e e

Brute force searching rapidly becomes infeasible as
braids get longer.

Fortunately, a clever algorithm due to Solovay and
Kitaev allows for systematic improvement of the
braid given a sufficiently dense covering of SU(2).



Solovay-Kitaev Construction

0 1 /
(Actual calculation) ( . 0] +0(107*)
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Two Qubit Gates

Problems:
1. We are pulling quasiparticles out of qubits: Leakage error!

2. 168 dimensional search space (as opposed to 3 for three-particle
braids). Straightforward “brute force” search is not feasible.
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Two Qubit Gates

O

ab=00 01 10 11
Q1 Qip Sz g 4 x 4 block acting on the
Ay Ay Aoz Ay logical qubit space. In

U two—qubit = <+ . "
Wo-qublt | o 9. 4. 4 general this matrix is not
31 32 33 34 .
unitary due to leakage error.

A4 Ay g3 Ay




Two Qubit Controlled Gates

<4 Control Qubit

< Target Qubit

Utwo—qubit —




Two Qubit Controlled Gates

<= Key ldea: “Weave” this pair (the control pair) of
particles around the particles in the target qubit.

Utwo—qubit —




Two Qubit Controlled Gates

o)

d
@ <= Key ldea: “Weave” this pair (the control pair) of

particles around the particles in the target qubit.

0@6@0'

Utwo—qubit —




Two Qubit Controlled Gates

Utwo—qubit —




Two Qubit Controlled Gates

_ 5 - | Important Rule: Braiding an
0 0 O object with topological charge 0
10 0 does not induce any transitions.

<= Only a=1 sector is nontrivial.

U —qubi e
two—qubit O O a33 a34
0 0
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Two Qubit Controlled Gates

Utwo—qubit —

___________________________

Another idea: Weave control
pair around pairs of particles in
the target qubit. If b = 0 this braid
again produces no transition.

<= Only ab = 11 sector is nontrivial.




Two Qubit Controlled Gates

D
DID

0 ?
Q) A /- Q)
1 \/ 1
0 ?
ab =00 01 10 11 | Apother idea: Weave control
1 0.0 O pair around pairs of particles in
0 1:0 O the target qubit. If b = 0 this braid
U two—qubit = —————————————— again produces no transition.

0 0 1
0 0 0 auleonlyab =11 sector is nontrivial.




Two Qubit Controlled Gates
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For Fibonacci anyons this is equivalent to finding a single
gubit rotation!
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Result of brute force search
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Two Qubit Controlled Gates
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Utwo—qubit — ““‘““‘“—;L ——————————————————————— Controlled-Phase Gate




Solovay-Kitaev Improved Controlled-phase gate




Universal Set of Gates
M.Hsieh, J. Kempe, S. Myrgren and K.B. Whaley (2003)

Single Qubit Gates
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Controlled-NOT gate
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Universal Set of Gates

Single Qubit Gates
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Controlled-NOT gate
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What about k > 3?



k=3

k=2

k=5

k=4



k=3
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Does this construction work for k>47?

Utwo—qubit —

___________________________

10 11
0O O
0O O
1 0
0 s

<= Only ab = 11 sector is nontrivial.




In principle yes, but not efficient.

0
For k>3, finding approximate gates —~
requires Solovay-Kitaev in SU(3). c=0, 1’<v)
/

This is feasible, but it is more
efficient to break the problem into
smaller SU(2) problems.

New label occurs for k > 3




OK, try weaving through top two particles




OK, try weaving through top two particles
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Aqgalin, If a=0, nothing happens, so only the a=1
case Is relevant.



OK, try weaving through top two particles

:
d WA




OK, try weaving through top two particles

These three matrix elements
must be equal for there to be no
leakage error.




Try weaving through top two particles

=l

Useful fact: For braids with zero

do=01 10 11 21 “winding” determinant of each

(1o 0 o block must be 1
U= 0 L0 0 =% Only braid which does not lead
0:0 0 to leakage error gives the identity
OO 0 hl operation.




What if we don’t bring the blue pair back?

o)
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<R A Because the three b=1 matrix
< |
OOFO elements are equal, when b=1 this
U - 0:1 0:0 operation simply swaps the blue
oo Y 0 pair with the pair.
0:0 0(1
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If b=0, the fusion rules imply that the overall label of “injected”
target must be 1



If b=1, we simply swap the blue pair with the green pair, and
the overall label of “injected” target remains O.
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k=5 Controlled-Phase Gate

two—qubit — _""""_T"__ _________ + O(107)




Universal Set of Gates for k=5

Single Qubit Gates
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Controlled-NOT gate
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