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How to build a quantum computer

QUANTUM

ABACUS

Requirements:

• well-defined qubits

• single qubit rotations

• read out of computational results

• one universal two-qubit gate

• communication between computers

Problems: • vulnerability to parameter fluctuations

• spontaneous decay rates can lead to dissipation

Solutions: • topological quantum computing

• quantum error correction

• measurement-based quantum computing



Where are now?

Ion trap experiments have succeeded in entangling up to eight ions with a
relatively high fidelity.



I

Read out of atomic qubits



The read out of a single qubit

An ideal measurement:

According to the projection postulate, a quantum mechanical measurement
of the qubit state |ψ〉 = α |0〉+ β |1〉 requires the projection

2

|ψ> = α |0> + β |1>

|0> with probability 

|1> with probability 

|α|

|β|

2

The result should be visible macroscopically on a measurement device.



Experimental setup

Level scheme:
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No-photon time evolution: 1,2

Hcond = 1
2~Ω |1〉〈2|+ H.c.− i

2~Γ |2〉〈2|

1Cook, Phys. Scr. T21, 49 (1988).

2Beige and Hegerfeldt, Phys. Rev. A 53, 53 (1996).



Basic idea

• The no-photon evolution damps away population in |1〉.
• The measurement result is indicated by no or many photons.
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Advantages: • simple and precise
• works even when using real photon detectors
• independent of concrete size of Ω and Γ



II

Macroscopic quantum jumps



Historical debate on quantum jumps

Schrödinger asserted that the application of QM to single systems would
necessarily lead to nonsense such as quantum jumps. Bohr argued in
response that the problem lay with the physics experiments of the time.1,2

1Bohr, Philos. Mag. 26, 476 (1913).

2Blatt and Zoller, Eur. J. Phys. 9, 250 (1988).



Macroscopic quantum jumps
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The existence of a random fluorescence telegraph signal in the fluorescence
of single ions, was predicted as early as 1975 by Dehmelt.1 About ten years
later several groups verified them experimentally.2

1Dehmelt, Bull. Am. Phys. Soc. 20, 60 (1975).

2Nagourney et al., PRL 56, 2797 (1986); Sauter et al., PRL 57, 1696 (1986); Bergquist et al., PRL 57, 1699 (1986).



Quantum jump description

The no-photon evolution: Hcond = 1
2~Ωb

[
|b〉〈e|+ |g〉〈b|+ H.c.

)
− i

2~Γd

[
|b〉〈b|+ |d〉〈d|+ 2 |e〉〈e|

]
− i

2~Γb

[
|b〉〈b|+ |e〉〈e|

]
Reset Operators: Rd = |d〉〈e|+ |g〉〈d|+ |b〉〈e|+ |g〉〈b|

Rb = |b〉〈e|+ |g〉〈b|

Characteristic time scales:

Tdark =
1
Γd

, Tlight =
3 + 2x2 + x4

Γd
, Tem =

3 + 2x2 + x4

(2 + x2)Γb

with x ≡ Γb/Ωb and for Γd � Γb , Ωb ≈ Γb .



Transition into a dark period

0 10 20 30 40
0

0.5

1

t × Γ
b

Ph
ot

on
em

is
si

on
s

0

0.2

0.4

0.6

0.8

1

 

D
ar

k 
st

at
e 

po
pu

la
tio

n

Possible trajectory of the four-level toy model for Ωb = Γb and Γd = 10−2 Γb.
The upper figure shows the population in the dark state |b〉; the vertical
lines mark photon emissions. The population in |b〉 eventually reaches one.



Photon emissions within a light period
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Again, the spontaneous emission of a photon results in the build up of
population in |b〉. This time, another photon is emitted before the dark state
population reaches one. The system remains in a macroscopic light period.



III

Entangled pair generation 1

1Metz, Trupke, and Beige, PRL 97, 040503 (2006).

2Metz and Beige, Macroscopic quantum jumps and entangled state preparation, quant-ph/0702095.



Experimental setup to entangle two atoms

The successful generation of a maximally entangled atom pair is triggered
on a macroscopic dark period. The laser should be turned off once the
cavity emission stops.



Effective level scheme

An adiabatic elimination of the excited states due to a large detuning ∆
shows that the atoms remain mainly in their ground states.



Comparison with toy model
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The level scheme of the combined atom-cavity system resembles the previ-
ously considered four-level toy model.



Macroscopic quantum jumps
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Quantum jump simulation of the light and dark periods of the atom-cavity
system for ∆ = 50κ, Γ = 0.05κ, g = ΩL = κ, ΩM = 0.05κ and η = 1.



The characteristic time scales

Tcav = (3 + 4x2) · κ∆2

4g2Ω2
L

≈ 3κ∆2

4g2Ω2
L

Tlight =
3 + 16x2 + 16x4

(3 + 8x2)Γ
· 16∆2

Ω2
L

≈ 16∆2

ΓΩ2
L

=
64g2

3κΓ
Tcav

Tdark =
16∆2

3ΓΩ2
L

=
64g2

9κΓ
Tcav

for ΩM < g, κ, Γ, ΩL � ∆, Γ0 = Γ1 = 1
2Γ and x ≡ Ω2

L/4∆ΩM � 1

Crucial for the ability to distinguish a light from a dark period is that Tdark is
sufficiently longer than Tcav. Turning off the laser field ΩL within a dark period
is enough to complete the state preparation.



Fidelity of the prepared state
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Achieving fidelities above 0.9 is possible even when using a relatively modest
cavity with C ≡ g2/κΓ is as low as 10 and when using a real-life single
photon detector with an efficiency as low as η = 0.2.



Finite detector efficiency
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Advantages and disadvantages

Advantages:

• no coherent control required

• robust against parameter fluctuations

• relatively large decay rates are allowed

• finite detector efficiencies are allowed

• deterministic

Disadvantages:

• symmetry is important

• scaling by placing more atoms into cavity
is feasible but complicated



IV

Cluster state growth
with parity measurements 1

1Browne and Rudolph, Phys. Rev. Lett. 95, 010501 (2005).



Fusion of clusters via parity measurements

Fusion of entangled pairs
into linear clusters:

The projection P01 + P10 = |01〉〈01|+ |10〉〈10| combined with a Hadamard
rotation can be used to fuse two shorter cluster states into a larger one.



Fusion of linear cluster states into 2D clusters
for one-way quantum computing:

Once a 2D cluster state has been build, a one-way quantum computation
can be performed without having to create additional entanglement, using
only single-qubit rotations and measurements.



V

Parity measurements
with classical fluorescence signals 1

1Metz, Schön, and Beige, Atomic cluster state build up with classical fluorescence signals (in preparation).



Experimental setup to realise a parity measurement

Basic idea:

(a) (b)

(c)

Atomic levels:

The successful completion of the projection P01 + P10 is indicated by the
emission of photons as if there is only one emitting atom inside the resonator.



Atom chip experiments in London

Miniaturised quantum optics experiments:

For example, Ed Hinds’ group in London helped to develop a new atom chip
technology and mounted optical cavities on a chip.

(a) (b)

Chip substrate



Relatively low emission rate
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Maximum emission rate
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Fidelity of the desired final state
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The parity measurement does not destroy the correlations with the atoms
outside the cavity and can be used to build cluster states.



Finite detector efficiencies

Fidelity of the final state for C = 20 for different detector efficiencies for an
optimised version of the proposed protocol.



Advantages and disadvantages

(a) (b)

(c)

Advantages:

• no coherent control required

• robust against parameter fluctuations

• relatively large decay rates are allowed

• finite detector efficiencies are allowed

Disadvantages:

• 50 % success rate

• symmetry is important

• projection not on 1D but 2D subspace



VI

Final remarks



Measurement-based quantum computing 1

... ...

... ... ...

input, qubits
computational

output, qubits
computational

in certain states
ancilla qubits

measure−
ments

linear
operations

Examples: • quantum computing using dissipation (Beige; Pachos; Franson)

• one-way quantum computing (Raussendorf & Briegel)

• linear optics quantum computing (KLM; Leung; Nielsen)

1Lapaire, Kok, Dowling, and Sipe, PRA 68, 042314 (2003).



Final remarks 1,2,3

(a) (b)

(c)

• Easily available measurements can be
used to perform entangling operations
with a very high fidelity.

• Such measurements do not require
ideal photon detectors and are feasible
with current technology.

•We employed symmetry proper-
ties, hybrid character and dissipa-
tion of the system.

1Metz, Trupke, and Beige, PRL 97, 040503 (2006).

2Metz and Beige, Macroscopic quantum jumps and entangled state preparation, quant-ph/0702095.

3Metz, Schön, and Beige, Atomic cluster state build up with classical fluorescence signals (in preparation).


