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ABSTRACT

We review the q-deformed spin network approach to Topological Quantum Field Theory and apply these methods
to produce unitary representations of the braid groups that are dense in the unitary groups.
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1. INTRODUCTION

This paper describes the background for topological quantum computing in terms of Temperely – Lieb Recoupling
Theory. This is a recoupling theory that generalizes standard angular momentum recoupling theory, generalizes
the Penrose theory of spin networks and is inherently topological. Temperely – Lieb Recoupling Theory is based
on the bracket polynomial model for the Jones polynomial. It is built in terms of diagrammatic combinatorial
topology. The same structure can be explained in terms of the SU(2)q quantum group, and has relationships with
functional integration and Witten’s approach to topological quantum field theory. Nevertheless, the approach
given here will be unrelentingly elementary. Elementary, does not necessarily mean simple. In this case an
architecture is built from simple beginnings and this archictecture and its recoupling language can be applied
to many things including: colored Jones polynomials, Witten–Reshetikhin–Turaev invariants of three manifolds,
topological quantum field theory and quantum computing.

In quantum computing, the application is most interesting because the recoupling theory yields represen-
tations of the Artin Braid group into unitary groups U(n). These represententations are dense in the unitary
group, and can be used to model quantum computation universally in terms of representations of the braid
group. Hence the term: topological quantum computation.

In this paper, we outline the basics of the Temperely – Lieb Recoupling Theory, and show explicitly how
unitary representations of the braid group arise from it. We will return to this subject in more detail in
subsequent papers. In particular, we do not describe the context of anyonic models for quantum computation
in this paper. Rather, we concentrate here on showing how naturally unitary representations of the braid group
arise in the context of the Temperely – Lieb Theory. For the reader interested in the relevant background in
anyonic topological quantum computing we recommend the following references {1–5, 10, 11, 13, 14 }.

Here is a very condensed presentation of how unitary representations of the braid group are constructed via
topological quantum field theoretic methods. For simplicity assmue that one has a single (mathematical) particle
with label P that can interact with itself to produce either itself labeled P, or itself with the null label ∗. When
∗ interacts with P the result is always P. When ∗ interacts with ∗ the result is always ∗. One considers process
spaces where a row of particles labeled P can successively interact, subject to the restriction that the end result
is P. For example the space V [(ab)c] denotes the space of interactions of three particles labeled P. The particles
are placed in the positions a, b, c. Thus we begin with (PP )P. In a typical sequence of interactions, the first two
P ’s interact to produce a ∗, and the ∗ interacts with P to produce P.

(PP )P −→ (∗)P −→ P.

Further author information: L.H.K. E-mail: kauffman@uic.edu, S.J.L. Jr.: E-mail: lomonaco@umbc.edu
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Quantum Mechanics in a Nutshell

1. (measurement free) Physical processes  
are modeled by unitary transformations

 applied to the state vector: |S> -----> U|S> 

0.  A state of a physical system 
corresponds to a unit vector |S> in a 

complex vector space.

2. If |S> = z1|e1> + z2|e2> + ... + zn|en>
in a measurement basis {e1,e2,...,en}, then
measurement of |S> yields |ei> with 

probability |zi|^2.
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Quantum Gates
are unitary transformations 

enlisted for the purpose of computation.

1 0 0 0

0 0 0

0 0 0

0 0 0

1

1

1
CNOT =

CNOT|00> = |00>
CNOT|01> = |01>
CNOT|10> = |11>
CNOT|11> = |10>



Universal Gates

S =





1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1





Compositions of solutions of the (Braiding) Yang-Baxter Equation with the
swap gate S are called solutions to the algebraic Yang-Baxter equation. Thus
the diagonal matrix P is a solution to the algebraic Yang-Baxter equation.

2.1 Universal Gates

A two-qubit gate G is a unitary linear mapping G : V ⊗ V −→ V where V is
a two complex dimensional vector space. We say that the gate G is universal
for quantum computation (or just universal) if G together with local unitary
transformations (unitary transformations from V to V ) generates all unitary
transformations of the complex vector space of dimension 2n to itself. It is
well-known [44] that CNOT is a universal gate.

A gate G, as above, is said to be entangling if there is a vector

|αβ〉 = |α〉 ⊗ |β〉 ∈ V ⊗ V

such that G|αβ〉 is not decomposable as a tensor product of two qubits.
Under these circumstances, one says that G|αβ〉 is entangled.

In [6], the Brylinskis give a general criterion of G to be universal. They prove
that a two-qubit gate G is universal if and only if it is entangling.

The reader will also be interested in the paper [5] and the url

http : //www.physics.uq.edu.au/gqc/,

wherein the practical algorithm in [5], for expressing entangling gates in terms
of CNOT and local transformations, is implemented online.
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A gate G is universal
iff 

G is entangling.



An Entangled State



It follows at once from the Brylinski Theorem that the matrices R, R′, and
R′′ are universal gates, except for certain specific choices of parameters in
R′ and R′′. In a sequel to this paper [13] we will give a complete catalogue
of universality for two-qubit gates that are solutions to the Yang-Baxter
equation. In this paper, we shall concentrate on specific examples and their
properties.

Remark. A two-qubit pure state

|φ〉 = a|00〉 + b|01〉 + c|10〉 + d|11〉

is entangled exactly when (ad − bc) #= 0. It is easy to use this fact to check
when a specific matrix is, or is not, entangling.

Theorem 0. Let D denote the phase gate shown below. D is a solution to
the algebraic Yang-Baxter equation (see the earlier discussion in this section).
Then D is a universal gate.

D =





1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1





Proof. It follows at once from the Brylinski Theorem that D is universal.
For a more specific proof, note that CNOT = QDQ−1, where Q = H ⊗ I,
H is the 2 × 2 Hadamard matrix. The conclusion then follows at once from
this identity and the discussion above. We illustrate the matrices involved
in this proof below:

H = (1/
√

2)

(
1 1
1 −1

)

Q = (1/
√

2)





1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1
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An Entanglement Criterion
R′ =





a 0 0 0
0 0 b 0
0 c 0 0
0 0 0 d





R′′ =





0 0 0 a
0 b 0 0
0 0 c 0
d 0 0 0





where a,b,c,d are unit complex numbers.
For the purpose of quantum computing, one should regard each matrix

as acting on the stamdard basis {|00〉, |01〉, |10〉, |11〉} of H = V ⊗ V, where
V is a two-dimensional complex vector space. Then, for example we have

R|00〉 = (1/
√

2)|00〉 − (1/
√

2)|11〉,

R|01〉 = (1/
√

2)|01〉 + (1/
√

2)|10〉,
R|10〉 = −(1/

√
2)|01〉 + (1/

√
2)|10〉,

R|11〉 = (1/
√

2)|00〉 + (1/
√

2)|11〉.
The reader should note that R is the familiar change-of-basis matrix from
the standard basis to the Bell basis of entangled states.

In the case of R′, we have

R′|00〉 = a|00〉, R′|01〉 = c|10〉,

R′|10〉 = b|01〉, R′|11〉 = d|11〉.
Note that R′ can be regarded as a diagonal phase gate P , composed with a
swap gate S.

P =





a 0 0 0
0 b 0 0
0 0 c 0
0 0 0 d
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The Bell States



Braiding and the Yang-Baxter Equation

tensor product of the vector space V to itself, as required by the algebraic
equation quoted above. The pattern of placement of the crossings in the
diagram corresponds to the factors R⊗ I and I ⊗R. This crucial topological
move has an algebraic expression in terms of such a matrix R. Our main ap-
proach to relate topology, quantum computing, and quantum entanglement
is through the use of the Yang-Baxter equation. In order to accomplish this
aim, we need to study solutions of the Yang-Baxter equation that are unitary.
Then the R matrix can be seen either as a braiding matrix or as a quantum
gate in a quantum computer.

=

RIR I

RI

RI

RI

R I

R I

R I

Figure 1 The Yang-Baxter Equation -
(R ⊗ I)(I ⊗ R)(R ⊗ I) = (I ⊗ R)(R ⊗ I)(I ⊗ R).

8

an embedding of a collection of circles, taken up to topological equivalence.
Braids form a group under concatenation, where the concatenation of two
braids is obtained by attaching the bottom strands of the first braid to the
top strands of the second braid.

A class of invariants of knots and links called quantum invariants can
be constructed by using representations of the Artin braid group, and more
specifically by using solutions to the Yang-Baxter Equation [3], first discov-
ered in relation to 1+1 dimensional quantum field theory, and 2 dimensional
statistical mechanics. Braiding operators feature in constructing representa-
tions of the Artin Braid Group, and in the construction of these invariants
of knots and links.

A key concept in the construction of quantum link invariants is the as-
sociation of a Yang-Baxter operator R to each elementary crossing in a link
diagram. The operator R is a linear mapping

R: V ⊗ V −→ V ⊗ V

defined on the 2-fold tensor product of a vector space V, generalizing the
permutation of the factors (i.e., generalizing a swap gate when V represents
one qubit). Such transformations are not necessarily unitary in topological
applications. It is a motivation for our research to understand when they can
be replaced by unitary transformations for the purpose of quantum comput-
ing. Such unitary R-matrices can be used to make unitary representations
of the Artin Braid group.

A solution to the Yang-Baxter equation, as described in the last para-
graph is a matrix R, regarded as a mapping of a two-fold tensor product of
a vector space V ⊗ V to itself that satisfies the equation

(R ⊗ I)(I ⊗ R)(R ⊗ I) = (I ⊗ R)(R ⊗ I)(I ⊗ R).

From the point of view of topology, the matrix R is regarded as representing
an elementary bit of braiding represented by one string crossing over another.
In Figure 1 below, we have illustrated the braiding identity that corresponds
to the Yang-Baxter equation. Each braiding picture with its three input lines
(below) and output lines (above) corresponds to a mapping of the three fold

7
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Abstract

This paper explores of the role of unitary braiding operators in quantum com-
puting. We show that a single specific solution R (the Bell basis change
matrix) of the Yang-Baxter Equation is a universal gate for quantum com-
puting, in the presence of local unitary transformations. We show that this
same R generates a new non-trivial invariant of braids, knots, and links.
Other solutions of the Yang-Baxter Equation are also shown to be universal
for quantum computation. The paper discusses these results in the context of
comparing quantum and topological points of view. In particular, we discuss
quantum computation of link invariants, the relationship between quantum
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Figure 2 - Braid Generators and Relations

The problem of finding solutions to the Yang-Baxter equation that are
unitary turns out to be surprisingly difficult. Dye [12] has classified all such
matrices of size 4 × 4. A rough summary of her classification is that all
4× 4 unitary solutions to the Yang-Baxter equation are similar to one of the
following types of matrix:

R =





1/
√

2 0 0 1/
√

2
0 1/

√
2 −1/

√
2 0

0 1/
√

2 1/
√

2 0
−1/

√
2 0 0 1/

√
2
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R′ =





a 0 0 0
0 0 b 0
0 c 0 0
0 0 0 d





R′′ =





0 0 0 a
0 b 0 0
0 0 c 0
d 0 0 0





where a,b,c,d are unit complex numbers.
For the purpose of quantum computing, one should regard each matrix

as acting on the stamdard basis {|00〉, |01〉, |10〉, |11〉} of H = V ⊗ V, where
V is a two-dimensional complex vector space. Then, for example we have

R|00〉 = (1/
√

2)|00〉 − (1/
√

2)|11〉,

R|01〉 = (1/
√

2)|01〉 + (1/
√

2)|10〉,
R|10〉 = −(1/

√
2)|01〉 + (1/

√
2)|10〉,

R|11〉 = (1/
√

2)|00〉 + (1/
√

2)|11〉.
The reader should note that R is the familiar change-of-basis matrix from
the standard basis to the Bell basis of entangled states.

In the case of R′, we have

R′|00〉 = a|00〉, R′|01〉 = c|10〉,

R′|10〉 = b|01〉, R′|11〉 = d|11〉.
Note that R′ can be regarded as a diagonal phase gate P , composed with a
swap gate S.

P =





a 0 0 0
0 b 0 0
0 0 c 0
0 0 0 d
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D =





1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1





QDQ−1 = QDQ =





1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



 = CNOT

This completes the proof of the Theorem. !

Remark. We thank Martin Roetteles [46] for pointing out the specific fac-
torization of CNOT used in this proof.

Theorem1. The matrix solutions R′ and R′′ to the Yang-Baxter equation,
described above, are universal gates exactly when ad−bc "= 0 for their internal
parameters a, b, c, d. In particular, let R0 denote the solution R′ (above) to
the Yang-Baxter equation with a = b = c = 1, d = −1.

R0 =





1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 −1





Then R0 is a universal gate.

Proof. The first part follows at once from the Brylinski Theorem. In fact,
letting H be the Hadamard matrix as before, and

σ =

(
1/
√

2 i/
√

2
i/
√

2 1/
√

2

)

, λ =

(
1/
√

2 1/
√

2
i/
√

2 −i/
√

2

)

µ =

(
(1 − i)/2 (1 + i)/2
(1 − i)/2 (−1 − i)/2

)

.

Then
CNOT = (λ ⊗ µ)(R0(I ⊗ σ)R0)(H ⊗ H).

This gives an explicit expression for CNOT in terms of R0 and local unitary
transformations (for which we thank Ben Reichardt in response to an early
version of the present paper). !
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√

2)|00〉 + (1/
√

2)|11〉.
The reader should note that R is the familiar change-of-basis matrix from
the standard basis to the Bell basis of entangled states.

In the case of R′, we have

R′|00〉 = a|00〉, R′|01〉 = c|10〉,

R′|10〉 = b|01〉, R′|11〉 = d|11〉.
Note that R′ can be regarded as a diagonal phase gate P , composed with a
swap gate S.

P =





a 0 0 0
0 b 0 0
0 0 c 0
0 0 0 d
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Representative Examples of
Unitary Solutions to the 

Yang-Baxter Equation that are Universal Gates.

Bell Basis Change Matrix

Swap Gate
 with Phase



Issues

1.  Giving a Universal Gate that is 
topological does not create

“topological quantum computing”
because the U(2) local operations 
have not been made topological.

2. Nevertheless, Yang-Baxter 
gates are interesting to 

construct and 
help to discuss

Topological Entanglement 
versus 

Quantum Entanglement.



Quantum Entanglement and 
Topological Entanglement

73.2

Figure 1. The Hopf link.

and gives a specific example of a unitary braiding operator, showing that it does entangle quantum
states. Section 3 ends with a list of problems. Section 4 discusses the link invariants associated
with the braiding operator R introduced in the previous section. Section 5 is a discussion of the
structure of entanglement in relation to measurement. Section 6 is an introduction to the virtual
braid group, an extension of the classical braid group by the symmetric group. We contend
that unitary representations of the virtual braid group provide a good context and language for
quantum computing. Section 7 is a discussion of ideas and concepts that have arisen in the course
of this research. An appendix describes a unitary representation of the three-strand braid group
and its relationship with the Jones polynomial. This representation is presented for contrast since
it can be used to detect highly non-trivial topological states, but it does not involve any quantum
entanglement.

2. The temptation of tangled states

It is quite tempting to make an analogy between topological entanglement in the form of
linked loops in three-dimensional space and the entanglement of quantum states. A topological
entanglement is a non-local structural feature of a topological system. A quantum entanglement
is a non-local structural feature of a quantum system. Take the case of the Hopf link of linking
number one (see figure 1). In this figure we show a simple link of two components and state its
inequivalence to the disjoint union of two unlinked loops. The analogy that one wishes to draw
is with a state of the form

ψ = (|01〉 − |10〉)/
√

2

which is quantum entangled. That is, this state is not of the form ψ1 ⊗ ψ2 ∈ H ⊗ H where
H is a complex vector space of dimension two. Cutting a component of the link removes its
topological entanglement. Observing the state removes its quantum entanglement in this case.

An example of Aravind [1] makes the possibility of such a connection even more tantalizing.
Aravind compares the Borromean rings (see figure 2) and the GHZ state

|ψ〉 = (|β1〉|β2〉|β3〉 − |α1〉|α2〉|α3〉)/
√

2.

The Borromean rings are a three-component link with the property that the triplet of
components is indeed topologically linked, but the removal of any single component leaves
a pair of unlinked rings. Thus, the Borromean rings are of independent intellectual interest as
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Abstract
A review is first presented of the Hall–Post inequalities relating N -body to (N −1)-body energies of quantum bound states. These inequalities

are then applied to delimit, in the space of coupling constants, the domain of Borromean binding where a composite system is bound while

smaller subsystems are unbound.

I. INTRODUCTION

There are many examples, at various scales, of compos-

ite systems at the edge between binding and non-binding.

In nuclear physics, a proton–proton or neutron–neutron pair

misses binding by a small margin, while a proton and a neu-

tron form a rather weakly bound deuteron. The existence of a

near-threshold state can induce dramatic consequences, for in-

stance on fusion probabilities [1]. A pair of charmed mesons

is presumably near the border separating stability from spon-

taneous dissociation [2]. Atoms such as 4He were for a long

time believed to be unable to merge into a molecule. Recent

studies indicates a tiny binding of the order of 1 mK for 4He2.

However, if one replaces one of the 4He by an atom contain-

ing the lighter isotope 3He, then the 3He4He is unbound. For

a recent review on 3HeN
4HeM systems, see, e.g., Refs. [3, 4].

An intriguing question is whether it is easier to bind three or

more components than to form a mere two-body bound state.

An answer is provided by the study of halo nuclei, which con-

tain peripheral neutrons. Consider for instance the 6He nu-

cleus. It is stable against any dissociation, while the lighter
5He spontaneously decays into a neutron and a 4He. In the

(reasonable) approximation where the structure of the core is

neglected, this means that the (α, n, n) three-body system is

bound, while neither (α, n) nor (n, n) have a discrete spec-

trum.

This property of 3-body binding without 2-body binding

was astutely named Borromean [5], after the Borromean rings,

FIG. 1: Borromean rings

∗Dedicated to my colleague and friend Vladimir Belyaev at the occasion of

his 70th birthday

which are interlaced in a subtle topological way (see Fig. 1)

such that if any one of them is removed, the two other become

unlocked. The adjective Borromean is nowadays broadly ac-

cepted in the field of quantum few-body systems.

Borromean binding is intimately related to two other fas-

cinating properties of few-body quantum systems. The Efi-

mov effect [6] indicates that when the two-body energy van-

ishes (e.g., by tuning the strength of the potential), a myriad

of weakly-bound states show up in the three-body spectrum.

This implies that the three-body ground-state already exists

at this point. Slightly above the onset of two-body binding,

the ratio E2/E3 of two-body to three-body binding energies

is very small. By rescaling, one can reach a situation with a fi-

nite 2-body energy, and a 3-body energy that becomes infinite

when the range of the potential is made shorter and shorter:

this is the Thomas collapse [7].

This review is organised as follows. In Sec. II, the Hall-Post

inequalities are briefly recalled. They are applied in Sec. III to

constraint the domain of coupling constants leading to Bor-

romean binding for bosons interacting through short-range

forces. The difficulties arising in the case of fermions are de-

scribed in Sec. IV. Borromean binding with Coulomb forces

is the subject of Sec. V, before the conclusions.

II. HALL–POST INEQUALITIES

A number of inequalities can be written down for binding

energies in quantum mechanics if one splits the Hamiltonian

into pieces (each piece being hermitian). Thus, for example,

H = A + B + · · · ⇒ E(H) ≥ E(A) + E(B) + · · · , (1)

in an obvious notation where E(H) is the ground-state energy

of H . Saturation is obtained if A, B, etc., reach their mini-

mum simultaneously. If, for instance, H = p2 − 1/r + r2/2
describes the motion of a particle feeling both a Coulomb and

an harmonic potential, then E(H) ≥ (−1/2) + (3/2), cor-

responding to an equal share of the kinetic energy. A slight

improvement is obtained by writing H =
[
αp2 − 1/r

]
+[

(1 − α)p2 + r2/2
]
, and optimising α.

The reasoning can be applied to obtain a lower bound on

3-body energies in terms of 2-body energies. This has been

discovered independently by several authors working on the

stability of matter [8] or baryon spectroscopy in simple quark

1
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superficial?!



We bring up their work to point out that the notion of a “quantum knot” has existed in the physics literature
for some time. In the case of the work of Rasetti and Regge, the details of the classical knot corresponding to
the quantum vortex are extracted by a collection of operators that are applied to the quantum state. It is quite
possible that there will also be a multiplicity of classical knots associated with a given quantum circumstance. In
the examples we have shown for the Aravind Hypothesis there is not enough physical substance to the quantum
side of the picture to single out any given knot or link, or even a collection of knots and links that would
correspond to the quantum states. Nevertheless, the Aravind idea can be regarded as an abstraction of the more
physical context of quantum knots in the sense of Regge and Rasetti. Quantum knots in this physical sense are
to be regarded as the results of an experimentalist attempting to elucidate the embedding geometry/topology of
a vortexing phenomenon that occurs on such a small scale that it cannot be seen directly in a classical manner.
The resulting knots are then descriptions of some aspects of the quantum state and possibly dependent upon
choices of measurement apparatus.

Another sort of quantum knot has been discussed by Sir Michael Berry and his collaborators.3 Berry’s knot
is the set of zeros of a wave function defined on three dimensional space. The set can contain knotted curves,
and Berry shows that this is indeed the case for certain states of the hydrogen atom. Such quantum knots are
the exact opposite of the Rasetti-Regge quantum knots. Berry’s knotted zeros are the places where nothing can
be observed! They are the loci of destructive interference, not the loci of vortex action. Clearly more work needs
to be done in understanding quantum knotting at this physical level.

5.1. Quantum Entanglement and Probabilistic Knots

Continuing the Aravind Analogy, we now point out that there are quantum states whose entanglement after an
observation is a matter of probability (via computation of quantum amplitudes).

Consider the state

|ψ〉 = (1/2)(|000〉+ |001〉+ |101〉 + |110〉).

Observation in any coordinate yields an entangled or an unentangled state with equal probability. For example

|ψ〉 = (1/2)(|0〉(|00〉 + |01〉) + |1〉(|01〉 + |10〉)

so that projecting to |0〉 in the first coordinate yields an unentangled state, while projecting to |1〉 yields an
entangled state, each with equal probability.

If we wish to have a link,B′, analogous to the Borrommean rings, that models this state, we will need
something new. The result of cutting a component of B′ will have to yield up either a linked link or an unlinked
link with probability 1/2 for each. One can imagine a mechanical scenario for this, as illustrated in Figure 7.
In that Figure we show a copy of the Borrommean rings with extra influences of each component on one of
the crossings in the link. When a component is cut, this extra influence causes the corresponding crossing to
switch with probability 1/2. Should we say that the state |ψ〉 above corresponds, by Aravind Hypothesis, to the
probabilistic link of Figure 7? If we follow this line, then there will be a complexity of matching probability
amplitudes for quantum states with essentially classical probabilities for a class of links with extra structure.
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e.g.

First coordinate measurement
gives 

|00> + |01> and 
|01> + |10>

with equal probability.



Do we need Quantum Knots?
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3. WHAT IS A QUANTUM KNOT?
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Figure 2 - Observing a Quantum Knot

Definition. A quantum knot is a linear superposition of classical knots.

Figure 2 illustrates the notion that a quantum knot is an enigma of possible knots that resolves into particular
topological structures when it is observed (measured).

For example, we can let K stand for the collection of all knots, choosing one representative from each
equivalence class. This is a denumerable collection and we can form the formal infinite superposition of each of
these knots with some appropriate amplitude ρ(K)eiθ(K) for each knot K ∈ K, with ρ(K) a non-negative real
number.

Q = ΣK∈Kρ(K)eiθ(K)|K〉.

We assume that
ΣK∈Kρ(K)2 = 1.

Q is the form of the most general quantum knot. Any particular quantum knot is obtained by specializing the
associated amplitudes for the individual knots. A measurement of Q will yield the state |K〉 with probability
ρ(K)2.

An example of a more restricted quantum knot can be obtained from a flat diagram such that there are two
choices for over and under crossing at each node of the diagram. Then we can make 2N knot diagrams from the
flat diagram and we can sum over representatives for the different classes of knots that can be made from the
given flat diagram. In this way, you can think of the flat diagram as representing a quantum knot whose potential
observed knots correspond to ways to resolve the crossings of the diagram. Or you could just superimpose a few
random knots.

Observing a Quantum Knot

a|K> + b|K’>

K: probability |a|^2

K’:probability |b|^2
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Theorem. If g = a + bu and h = c + dv are pure unit quaternions,then,
without loss of generality, the braid relation ghg = hgh is true if and only if
h = a + bv, and φg(v) = φh−1(u). Furthermore, given that g = a + bu and
h = a+ bv, the condition φg(v) = φh−1(u) is satisfied if and only if u ·v = a2−b2

2b2

when u != v. If u = v then then g = h and the braid relation is trivially
satisfied.

Proof. We have proved the first sentence of the Theorem in the discussion
prior to its statement. Therefore assume that g = a + bu, h = a + bv, and
φg(v) = φh−1(u). We have already stated the formula for φg(v) in the discussion
about quaternions:

φg(v) = gvg−1 = (a2 − b2)v + 2ab(v × u) + 2(v · u)b2u.

By the same token, we have

φh−1(u) = h−1uh = (a2 − b2)u + 2ab(u×−v) + 2(u · (−v))b2(−v)

= (a2 − b2)u + 2ab(v × u) + 2(v · u)b2(v).

Hence we require that

(a2 − b2)v + 2(v · u)b2u = (a2 − b2)u + 2(v · u)b2(v).

This equation is equivalent to

2(u · v)b2(u− v) = (a2 − b2)(u− v).

If u != v, then this implies that

u · v =
a2 − b2

2b2
.

This completes the proof of the Theorem. !

An Example. Let
g = eiθ = a + bi

where a = cos(θ) and b = sin(θ). Let

h = a + b[(c2 − s2)i + 2csk]

where c2 +s2 = 1 and c2−s2 = a2−b2

2b2 . Then we can reexpress g and h in matrix
form as the matrices G and H. Instead of writing the explicit form of H, we
write H = FGF ∗ where F is an element of SU(2) as shown below.
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Another significant structure related to knots and links is the Artin Braid
Group. A braid is an embedding of a collection of strands that have their ends
top and bottom row points in two rows of points that are set one above the
other with respect to a choice of vertical. The strands are not individually
knotted and they are disjoint from one another. See Figures 3, 4 and 5 for
illustrations of braids and moves on braids. Braids can be multiplied by at-
taching the bottom row of one braid to the top row of the other braid. Taken
up to ambient isotopy, fixing the endpoints, the braids form a group under this
notion of multiplication. In Figure 3 we illustrate the form of the basic gener-
ators of the braid group, and the form of the relations among these generators.
Figure 4 illustrates how to close a braid by attaching the top strands to the
bottom strands by a collection of parallel arcs. A key theorem of Alexander
states that every knot or link can be represented as a closed braid. Thus the
theory of braids is critical to the theory of knots and links. Figure 5 illustrates
the famous Borrowmean Rings (a link of three unknotted loops such that any
two of the loops are unlinked) as the closure of a braid.

2 SU(2) Representations of the Artin Braid
Group

The purpose of this section is to determine all the representations of the three
strand Artin braid group B3 to the special unitary group SU(2) and concomit-
tantly to the unitary group U(2). One regards the groups SU(2) and U(2) as
acting on a single qubit, and so U(2) is usually regarded as the group of local
unitary transformations in a quantum information setting. If one is looking
for a coherent way to represent all unitary transformations by way of braids,
then U(2) is the place to start. Here we will show that there are many rep-
resentations of the three-starnd braid group that generate a dense subset of
U(2). Thus it is a fact that local unitary transformations can be ”generated
by braids” in many ways.

We begin with the structure of SU(2). A matrix in SU(2) has the form

M =

(
z w
−w̄ z̄

)

,

where z and w are complex numbers, and z̄ denotes the complex conjugate of
z. To be in SU(2) it is required that Det(M) = 1 and that M∗ = M−1 where
Det denotes determinant, and M∗ is the conjugate transpose of M. Thus if
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g = a + bu
h= a + bv

u v = (a^2 - b^2)/2b^2
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G =

(
eiθ 0
0 e−iθ

)

F =

(
ic is
is −ic

)

This representation of braiding where one generator G is a simple matrix of
phases, while the other generator H = FGF ∗ is derived from G by conjugation
by a unitary matrix, has the possibility for generalization to representations of
braid groups (on greater than three strands) to SU(n) or U(n) for n greater
than 2. In fact we shall see just such representations constructed later in this
paper, by using a version of topological quantum field theory. The simplest
example is given by

g = e7πi/10

f = iτ + k
√

τ

h = frf−1

where τ 2+τ = 1. Then g and h satisfy ghg = hgh and generate a representation
of the three-strand braid group that is dense in SU(2). We shall call this the
Fibonacci representation of B3 to SU(2).

Density. Consider representations of B3 into SU(2) produced by the method
of this section. That is consider the subgroup SU [G, H] of SU(2) generated by
a pair of elements {g, h} such that ghg = hgh. We wish to understand when
such a representation will be dense in SU(2). We need the following lemma.

Lemma. eaiebjeci = cos(b)ei(a+c) + sin(b)ei(a−c)j. Hence any element of SU(2)
can be written in the form eaiebjeci. for appropriate choices of angles a, b, c. In
fact, if u and v are linearly independent unit vectors in R3, then any element
of SU(2) can be written in the form

eauebvecu

for appropriate choices of the real numbers a, b, c.

Proof. Then

eaiebjeci = (cos(a) + isin(a))(cos(b) + jsin(b))(cos(c) + isin(c))

= (cos(a)cos(b)+jcos(a)sin(b)+isin(a)cos(b)+ksin(a)sin(b))(cos(c)+isin(c))

= cos(a)cos(b)cos(c)+jcos(a)sin(b)cos(c)+isin(a)cos(b)cos(c)+ksin(a)sin(b)cos(c)

+icos(a)cos(b)sin(c)−kcos(a)sin(b)sin(c)−sin(a)cos(b)sin(c)+jsin(a)sin(b)sin(c)
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by a pair of elements {g, h} such that ghg = hgh. We wish to understand
when such a representation will be dense in SU(2). We need the following
lemma.

Lemma. eaiebjeci = cos(b)ei(a+c)+sin(b)ei(a−c)j. Hence any element of SU(2)
can be written in the form eaiebjeci. for appropriate choices of angles a, b, c. In
fact, if u and v are linearly independent unit vectors in R3, then any element
of SU(2) can be written in the form

eauebvecu

for appropriate choices of the real numbers a, b, c.

Proof. Then

eaiebjeci = (cos(a) + isin(a))(cos(b) + jsin(b))(cos(c) + isin(c))
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{g,h} represents 3-strand braids,
generating a dense subset of SU(2).



We shall see that the representation
labeled “SU(2) Fibonacci Model”

in the last slide
extends beyond SU(2) to

representations of many-stranded
braid groups rich enough

to generate quantum computation.





But first, a digression:
We show how to make a 

quantum computation of the
the trace of a unitary matrix.

This is

1. A good example of a quantum algorithm.

2. Useful for the quantum computation of 
knot polynomials such as the Jones polynomial.
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Note that the traces of these matrices are given by the formulas tr(U1) =
tr(U2) = d while tr(U1U2) = tr(U2U1) = 1. If b is any braid, let I(b) denote the
sum of the exponents in the braid word that expresses b. For b a three-strand
braid, it follows that

Φ(b) = AI(b)I + Π(b)

where I is the 2 × 2 identity matrix and Π(b) is a sum of products in the
Temperley-Lieb algebra involving U1 and U2. Since the Temperley-Lieb algebra
in this dimension is generated by I,U1, U2, U1U2 and U2U1, it follows that the
value of the bracket polynomial of the closure of the braid b, denoted < b >,
can be calculated directly from the trace of this representation, except for the
part involving the identity matrix. The result is the equation

< b >= AI(b)d2 + tr(Π(b))

where b denotes the standard braid closure of b, and the sharp brackets denote
the bracket polynomial. From this we see at once that

< b >= tr(Φ(b)) + AI(b)(d2 − 2).

It follows from this calculation that the question of computing the bracket
polynomial for the closure of the three-strand braid b is mathematically equiv-
alent to the problem of computing the trace of the unitary matrix Φ(b).

The Hadamard Test
In order to (quantum) compute the trace of a unitary matrix U , one can use

the Hadamard test to obtain the diagonal matrix elements 〈ψ|U |ψ〉 of U. The
trace is then the sum of these matrix elements as |ψ〉 runs over an orthonormal
basis for the vector space. We first obtain

1

2
+

1

2
Re〈ψ|U |ψ〉

as an expectation by applying the Hadamard gate H

H|0〉 =
1√
2
(|0〉+ |1〉)

H|1〉 =
1√
2
(|0〉 − |1〉)

to the first qubit of

CU ◦ (H ⊗ 1)|0〉|ψ〉 =
1√
2
(|0〉 ⊗ |ψ〉+ |1〉 ⊗ U |ψ〉.

28

Quantum Computation of the Trace
of a Unitary Matrix
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Here CU denotes controlled U, acting as U when the control bit is |1〉 and the
identity mapping when the control bit is |0〉. We measure the expectation for
the first qubit |0〉 of the resulting state

1

2
(H|0〉 ⊗ |ψ〉+ H|1〉 ⊗ U |ψ〉) =

1

2
((|0〉+ |1〉)⊗ |ψ〉+ (|0〉 − |1〉)⊗ U |ψ〉)

=
1

2
(|0〉 ⊗ (|ψ〉+ U |ψ〉) + |1〉 ⊗ (|ψ〉 − U |ψ〉)).

This expectation is

1

2
(〈ψ| + 〈ψ|U †)(|ψ〉+ U |ψ〉) =

1

2
+

1

2
Re〈ψ|U |ψ〉.

The imaginary part is obtained by applying the same procedure to

1√
2
(|0〉 ⊗ |ψ〉 − i|1〉 ⊗ U |ψ〉

This is the method used in [1], and the reader may wish to contemplate its
efficiency in the context of this simple model. Note that the Hadamard test
enables this quantum computation to estimate the trace of any unitary ma-
trix U by repeated trials that estimate individual matrix entries 〈ψ|U |ψ〉. We
shall return to quantum algorithms for the Jones polynomial and other knot
polynomials in a subsequent paper.

5 Quantum Topology, Cobordism Categories,
Temperley-Lieb Algebra and Topological Quan-
tum Field Theory

The purpose of this section is to discuss the general idea behind topological
quantum field theory, and to illustrate its application to basic quantum me-
chanics and quantum mechanical formalism. It is useful in this regard to have
available the concept of category, and we shall begin the section by discussing
this far-reaching mathematical concept.

Definition. A category Cat consists in two related collections:

1. Obj(Cat), the objects of Cat, and

2. Morph(Cat), the morphisms of Cat.

satisfying the following axioms:

29



U

H|0>

|phi>

Measure

Hadamard Test

|0>

|0> occurs with probability
1/2 + Re[<phi|U|phi>]/2

H



Quantum Hall Effect



Fractional Quantum Hall Effect 
(Cambridge Univ Website)



The quasi-particle theory is connected 
with Chern-Simons Theory and it 
explains the FQHE on the basis of  

“anyons”: particles that have non-trivial 
(not +1 or -1) phase change when they 

exchange places in the plane.



Braiding Anyons

Recoupling

Process Spaces

Λ
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F R

B = F   RF-1

F -1

Figure 16 - A More Complex Braiding Operator

A key point in the application of TQFT to quantum information theory
is contained in the structure illustrated in Figure 16. There we show a more
complex braiding operator, based on the composition of recoupling with the
elementary braiding at a vertex. (This structure is implicit in the Hexagon
identity of Figure 27.) The new braiding operator is a source of unitary rep-
resentations of braid group in situations (which exist mathematically) where
the recoupling transformations are themselves unitary. This kind of pattern is
utilized in the work of Freedman and collaborators [14, 15, 16, 17, 18] and in
the case of classical angular momentum formalism has been dubbed a “spin-
network quantum simlator” by Rasetti and collaborators [43]. In the next
section we show how certain natural deformations [26] of Penrose spin net-
works [46] can be used to produce these unitary representations of the Artin
braid group and the corresponding models for anyonic topological quantum
computation.

6 Spin Networks and Temperley-Lieb Recou-
pling Theory

In this section we discuss a combinatorial construction for spin networks that
generalizes the original construction of Roger Penrose. The result of this gen-
eralization is a structure that satisfies all the properties of a graphical TQFT
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Non-Local Braiding is Induced 
via Recoupling



Process Spaces Can be Abitrarily Large.
With a coherent recoupling theory, all 

transformations are in the 
representation of one braid group.



Mathematical Models for Recoupling 
Theory with Braiding come from a 

Combination of 
Penrose Spin Networks and 

Knot Theory.

See “Temperley Lieb Recoupling Theory 
and Invariants of Three-Manifolds” by 

L. Kauffman and S. Lins, PUP, 1994.







   

Figure 1 - A knot diagram.

I

II

III

Figure 2 - The Reidemeister Moves.

That is, two knots are regarded as equivalent if one embedding can be obtained
from the other through a continuous family of embeddings of circles in three-
space. A link is an embedding of a disjoiint collection of circles, taken up to
ambient isotopy. Figure 1 illustrates a diagramm for a knot. The diagram is
regarded both as a schematic picture of the knot, and as a plane graph with
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extra structure at the nodes (indicating how the curve of the knot passes over
or under itself by standard pictorial conventions).

1 2

3 1
-1

=

=

=

s

s s

s

Braid Generators

1s1
-1s = 1

1s 2s 1s 2s 1s 2s=

1s 3s 1s3s=

Figure 3 - Braid Generators.

Ambient isotopy is mathematically the same as the equivalence relation
generated on diagrams by the Reidemeister moves. These moves are illustrated
in Figure 2. Each move is performed on a local part of the diagram that is
topologically identical to the part of the diagram illustrated in this figure
(these figures are representative examples of the types of Reidemeister moves)
without changing the rest of the diagram. The Reidemeister moves are useful in
doing combinatorial topology with knots and links, notaby in working out the
behaviour of knot invariants. A knot invariant is a function defined from knots
and links to some other mathematical object (such as groups or polynomials
or numbers) such that equivalent diagrams are mapped to equivalent objects
(isomorphic groups, identical polynomials, identical numbers).
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Hopf Link

Figure Eight Knot

Trefoil Knot

Figure 4 - Closing Braids to form knots and links.

b CL(b)
Figure 5 - Borromean Rings as a Braid Closure.

7

Knots and Links
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where the small diagrams represent parts of larger diagrams that are identical
except at the site indicated in the bracket. We take the convention that the
letter chi, χ, denotes a crossing where the curved line is crossing over the
straight segment. The barred letter denotes the switch of this crossing, where
the curved line is undercrossing the straight segment. See Figure 6 for a graphic
illustration of this relation, and an indication of the convention for choosing
the labels A and A−1 at a given crossing.

AA
-1A

-1A

A
-1A

< > = A < > + < >-1A

< > = A< > + < >-1A

Figure 6 - Bracket Smoothings

It is easy to see that Properties 2 and 3 define the calculation of the bracket
on arbitrary link diagrams. The choices of coefficients (A and A−1) and the
value of δ make the bracket invariant under the Reidemeister moves II and III.
Thus Property 1 is a consequence of the other two properties.

In computing the bracket, one finds the following behaviour under Reide-
meister move I:

< γ >= −A3 <$>

and
< γ >= −A−3 <$>

15
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equivalence relation generated by the second and third Reidemeister moves).
Here is an example. View Figure 7.1.

K U U'
Figure 7.1 – Trefoil and Two Relatives

Figure 7.1 shows a trefoil diagram K, an unknot diagram U and another
unknot diagram U ′. Applying the switching formula, we have

A−1 < K > −A < U >= (A−2 − A2) < U ′ >

and < U >= −A3 and < U ′ >= (−A−3)2 = A−6. Thus

A−1 < K > −A(−A3) = (A−2 − A2)A−6.

Hence
A−1 < K >= −A4 + A−8 − A−4.

Thus
< K >= −A5 − A−3 + A−7.

This is the bracket polynomial of the trefoil diagram K.

Since the trefoil diagram K has writhe w(K) = 3, we have the normalized
polynomial

fK(A) = (−A3)−3 < K >= −A−9(−A5 − A−3 + A−7) = A−4 + A−12 − A−16.

The bracket model for the Jones polynomial is quite useful both theoreti-
cally and in terms of practical computations. One of the neatest applications
is to simply compute, as we have done, fK(A) for the trefoil knot K and de-
termine that fK(A) is not equal to fK(A−1) = f−K(A). This shows that the
trefoil is not ambient isotopic to its mirror image, a fact that is much harder
to prove by classical methods.

17
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The State Summation. In order to obtain a closed formula for the bracket,
we now describe it as a state summation. Let K be any unoriented link
diagram. Define a state, S, of K to be a choice of smoothing for each crossing
of K. There are two choices for smoothing a given crossing, and thus there are
2N states of a diagram with N crossings. In a state we label each smoothing
with A or A−1 according to the left-right convention discussed in Property 3
(see Figure 6). The label is called a vertex weight of the state. There are
two evaluations related to a state. The first one is the product of the vertex
weights, denoted

< K|S > .

The second evaluation is the number of loops in the state S, denoted

||S||.

Define the state summation, < K >, by the formula

< K > =
∑

S

< K|S > δ||S||−1.

It follows from this definition that < K > satisfies the equations

< χ > = A <! > +A−1 <)(>,

< K "O > = δ < K >,

< O > = 1.

The first equation expresses the fact that the entire set of states of a given
diagram is the union, with respect to a given crossing, of those states with
an A-type smoothing and those with an A−1-type smoothing at that crossing.
The second and the third equation are clear from the formula defining the state
summation. Hence this state summation produces the bracket polynomial as
we have described it at the beginning of the section.

Remark. By a change of variables one obtains the original Jones polynomial,
VK(t), for oriented knots and links from the normalized bracket:

VK(t) = fK(t−
1
4 ).

Remark. The bracket polynomial provides a connection between knot theory
and physics, in that the state summation expression for it exhibits it as a
generalized partition function defined on the knot diagram. Partition functions
are ubiquitous in statistical mechanics, where they express the summation
over all states of the physical system of probability weighting functions for the

18

Bracket Polynomial Model for 
Jones Polynomial
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in Cob[0] the composition with the morphism 〈Θ|Ω〉 commutes with any other
morphism. In that way 〈Θ|Ω〉 behaves like a scalar in the cobordism category.
In general, an n + 1 manifold without boundary behaves as a scalar in Cob[n],
and if a manifold Mn+1 can be written as a union of two submanifolds Ln+1

and Rn+1 so that that an n-manifold W n is their common boundary:

Mn+1 = Ln+1 ∪ Rn+1

with
Ln+1 ∩ Rn+1 = W n

then, we can write

〈Mn+1〉 = 〈Ln+1 ∪ Rn+1〉 = 〈Ln+1|Rn+1〉,

and 〈Mn+1〉 will be a scalar (morphism that commutes with all other mor-
phisms) in the category Cob[n].

Identity 
|     >
<     |

<     | >

<    ||    >  =

U

Θ
Ω

Θ

Θ

Ω

Ω

 =
 =

U U  = |    >Ω <    |ΘΩΘ<    |    >

 = |    >Ω <    |ΘΩΘ<    |    >
 = ΩΘ<    |    >

U
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φ|    >

ψ|    >

Θ

Ω

ΩΘ
φ|    > ψ|    >

ΩΘφ|    > ψ|    > =

|     >

<     |

Θ|     >

Ω<     | Ω

Θ

Figure C4

Figure C4 illustrates the staightening of |Θ〉 and 〈Ω|, and the straightening
of a composition of these applied to |ψ〉, resulting in |φ〉. In the left-hand
part of the bottom of Figure C4 we illustrate the preparation of the tensor
product |Θ〉 ⊗ |ψ〉 followed by a successful measurement by 〈Ω| in the second
two tensor factors. The resulting single qubit state, as seen by straightening,
is |φ〉 = Θ ◦ Ω|ψ〉.
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Temperley Lieb Category

The Key to Teleportation



P = ><,  Q = ][
PP = ><>< = <> >< = <> P

QQ = [] Q

PQP = >< ][ >< = <][>  ><  = <][>  P
QPQ = [><] Q

Any two one-dimensional
projectors generate a 

Temperley-Lieb algebra.

This trick can be used to manufacture
unitary representations of the three-strand

braid group.







Diagrammatic Matrices, Knots and 
Teleportation

Figure 4 - Algebraic Cancellation of Maxima and Minima

In Figure 4, we show the diagrammatic representative of the equation
ΣMaiM ib = δb

a.

In the simplest case cup and cap are represented by 2 × 2 matrices. The
topological condition implies that these matrices are inverses of each other.
Thus the problem of the existence of topological amplitudes is very easily
solved for simple closed curves in the plane.

Now view Figure 5.

a b

a b

M

M

a b

a b

N      = M Mai
ib

a

b

a

i

b

N      
a

b

a

b

Figure 5 - Matrix Composition

In this Figure we have summarized the essential diagrammatic mathe-
matics of this section. To a minimum is assigned a matrix Mab, and to a

7









The upshot is that the state transmitted to Bob by this process is N |ψ〉
where N is the composition of the matrices corresponding to the preparation
state |Cup〉 and the measurement state 〈Cap|. This tells us that if we had
wanted Bob to receive directly a copy of |ψ〉, then we would need the matrix
for the preparation state |Cup〉 to be invertible. The reader should note
that the condition for the invertibility of the matrix associated with |Cup〉 is
exactly equivalent to the condition that this two-qubit state be entangled (not
a decomposable tensor product).

|Cup> = !  M    |i>|b>

<Cap| = !  M    <a| <i|
a,i

i,b

i,b

a,i

| " >

| " >#

|Cup>

<Cap|

N      = M Mai
ib

a
b

!
i

Figure 6 - Matrix Composition for Preparation and Measurement
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State and Matrix Duality



The Topology of Teleportation

4 Teleportation

The formalism we used at the end of the previous section to describe the
(absolute value) of the trace of a unitary matrix contains a hidden teleporta-
tion. It is the purpose of this section to bring forth that hidden connection
and to show how this structure illuminates the concept of teleportation and
its generalizations.

First consider the state

|δ〉 = Σα|α, α〉 ∈ H ⊗ H.

from the last section, where H = V ⊗n and V is a single-qubit space. One
can regard |δ〉 as a generalization of the EPR state |00〉 + |11〉.

Let |ψ〉 ∈ H be an arbitrary pure state in H. Let 〈M| be an abitrary
element of the dual of H ⊗ H and consider the possibility of a successful
measurement via 〈M| in the first two tensor factors of

|ψ〉|δ〉 ∈ H ⊗ H ⊗ H.

The resulting state from this measurement will be

〈M|[|ψ〉|δ〉].

If
〈M| = Σα,βMα,β〈α|〈β|,

then
〈M|[|ψ〉|δ〉] = Σα,βMα,β〈α|〈β|Σγ,λψγ |γ〉|λ〉|λ〉

= Σα,βMα,βΣγ,λψγ〈α|γ〉〈β|λ〉|λ〉

= Σα,βMα,βψα|β〉

= Σβ [ΣαMα,βψα]|β〉

= Σβ(Mψ)β |β〉

= M |ψ〉.

Thus we have proved the

12

|00> + |11>   <---->   1  0
                             0  1

|!>

"|!>

<"|

|#>

Figure 8 - Matrix Teleportation

In the case of success, and if the matrix M is unitary, Bob can apply
M−1 to the transmitted state and know that he now has the original state
|ψ〉 itself. The usual teleportation scenario, is actually based on a list of
unitary transformations sufficent to form a basis for the measurement states.
Lets recall how this comes about.

First take the case where M is a unitary 2 × 2 matrix and let σ1, σ2, σ3

be the three Pauli matrices

σ1 =

[

0 1
1 0

]

, σ2 =

[

0 −i
i 0

]

, σ3 =

[

1 0
0 −1

]

We replace σ2 by iσ2 (for ease of calculation) and obtain the three matrices
X, Y , Z :

X =

[

0 1
1 0

]

, Y =

[

0 1
−1 0

]

, Z =

[

1 0
0 −1

]

Basis Lemma. Let M be a 2 × 2 matrix with complex entries. Let the
measuring state for M be the state

〈M| = M00|00〉 + M01|01〉 + M10|10〉 + M11|11〉.
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as described in the previous section, and specializes to classical angular mo-
mentum recoupling theory in the limit of its basic variable. The construction
is based on the properties of the bracket polynomial (as already described in
Section 2). A complete description of this theory can be found in the book
“Temperley-Lieb Recoupling Theory and Invariants of Three-Manifolds” by
Kauffman and Lins [26].

The “q-deformed” spin networks that we construct here are based on the
bracket polynomial relation. View Figure 17 and Figure 18.
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n
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Figure 17 - Basic Projectors
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Figure 18 - Two Strand Projector
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i + j = a
j + k = b
i + k = c

Figure 19 -Vertex

In Figure 17 we indicate how the basic projector (symmetrizer, Jones-Wenzl
projector)

is constructed on the basis of the bracket polynomial expansion. In this tech-
nology a symmetrizer is a sum of tangles on n strands (for a chosen integer n).
The tangles are made by summing over braid lifts of permutations in the sym-
metric group on n letters, as indicated in Figure 17. Each elementary braid is
then expanded by the bracket polynomial relation as indicated in Figure 17 so
that the resulting sum consists of flat tangles without any crossings (these can
be viewed as elements in the Temperley-Lieb algebra). The projectors have the
property that the concatenation of a projector with itself is just that projector,
and if you tie two lines on the top or the bottom of a projector together, then
the evaluation is zero. This general definition of projectors is very useful for
this theory. The two-strand projector is shown in Figure 18. Here the formula
for that projector is particularly simple. It is the sum of two parallel arcs and
two turn-around arcs (with coefficient −1/d, with d = −A2 − A−2 is the loop
value for the bracket polynomial. Figure 18 also shows the recursion formula
for the general projector. This recursion formula is due to Jones and Wenzl
and the projector in this form, developed as a sum in the Temperley–Lieb
algebra (see Section 5 of this paper), is usually known as the Jones–Wenzl
projector.
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Figure C5

5 Braiding and Topological Quantum Field The-
ory

The purpose of this section is to discuss in a very general way how braid-
ing is related to topological quantum field theory. In the section to follow,
we will use the Temperley-Lieb recoupling theory to produce specfic unitary
representations of the Artin braid group.

The ideas in the subject of topological quantum field theory (TQFT) are
well expressed in the book [3] by Michael Atiyah and the paper [57] by Edward
Witten. Here is Atiyah’s definition:

Definition. A TQFT in dimension d is a functor Z(Σ) from the cobordism
category Cob[d] to the category V ect of vector spaces and linear mappings
which assigns
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Trinion

Figure 15 - Decomposition of a Surface into Trinions
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permutation corresponding to the process and not on the individual sequences
of interactions.

In taking over the Yang-Baxter equation for topological purposes, we can
use the same intepretation, but think of the diagrams with their under- and
over-crossings as modeling events in a spacetime with two dimensions of space
and one dimension of time. The extra spatial dimension is taken in displacing
the woven strands perpendicular to the page, and allows us to use braiding
operators R and R−1 as scattering matrices. Taking this picture to heart, one
can add other particle properties to the idealized theory. In particular one
can add fusion and creation vertices where in fusion two particles interact to
become a single particle and in creation one particle changes (decays) into two
particles. These are the trivalent vertices discussed above. Matrix elements
corresponding to trivalent vertices can represent these interactions. See Figure
8.

Figure 8 -Creation and Fusion

Once one introduces trivalent vertices for fusion and creation, there is the
question how these interactions will behave in respect to the braiding operators.
There will be a matrix expression for the compositions of braiding and fusion or
creation as indicated in Figure 10. Here we will restrict ourselves to showing the
diagrammatics with the intent of giving the reader a flavor of these structures.
It is natural to assume that braiding intertwines with creation as shown in
Figure 11 (similarly with fusion). This intertwining identity is clearly the sort
of thing that a topologist will love, since it indicates that the diagrams can
be interpreted as embeddings of graphs in three-dimensional space, and it fits
with our interpretation of the vertices in terms of trinions. Figure 9 illustrates
the Yang-Baxter equation. The intertwining identity is an assumption like the
Yang-Baxter equation itself, that simplifies the mathematical structure of the
model.

39

Process Vector Spaces and 
Recoupling



    

Figure 15.1 - Trinion Associativity
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C

=

Figure 15.3 - Tube Twist

From the point of view that we shall take in this paper, the key to the
mathematical structure of three-dimensional TQFT lies in the trivalent graphs,
including the braiding of grapical arcs. We can think of these braided graphs
as representing idealized Feynmann diagrams, with the trivalent vertex as the
basic particle interaction vertex, and the braiding of lines representing an in-
teraction resulting from an exchange of particles. In this view one thinks of
the particles as moving in a two-dimensional medium, and the diagrams of
braiding and trivalent vertex interactions as indications of the temporal events
in the system, with time indicated in the direction of the morphisms in the
category. Adding such graphs to the category of knots and links is an exten-
sion of the tangle category where one has already extended braids to allow any
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Figure 9 - YangBaxterEquation

= R

Figure 10 - Braiding

=

Figure 11 - Intertwining

It is to be expected that there will be an operator that expresses the re-
coupling of vertex interactions as shown in Figure 12 and labeled by Q. This
corresponds to the associativity at the level of trinion combinations shown in
Figure 15.1. The actual formalism of such an operator will parallel the math-
ematics of recoupling for angular momentum. See for example [26]. If one just
considers the abstract structure of recoupling then one sees that for trees with
four branches (each with a single root) there is a cycle of length five as shown
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ematics of recoupling for angular momentum. See for example [26]. If one just
considers the abstract structure of recoupling then one sees that for trees with
four branches (each with a single root) there is a cycle of length five as shown
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in Figure 13. One can start with any pattern of three vertex interactions and
go through a sequence of five recouplings that bring one back to the same
tree from which one started. It is a natural simplifying axiom to assume that
this composition is the identity mapping. This axiom is called the pentagon
identity.

F

Figure 12 - Recoupling

F
F F
FF

Figure 13 - Pentagon Identity

Finally there is a hexagonal cycle of interactions between braiding, recou-
pling and the intertwining identity as shown in Figure 14. One says that the
interactions satisfy the hexagon identity if this composition is the identity.
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Figure 14 - Hexagon Identity

A graphical three-dimensional topological quantum field theory is an alge-
bra of interactions that satisfies the Yang-Baxter equation, the intertwining
identity, the pentagon identity and the hexagon identity. There is not room
in this summary to detail the way that these properties fit into the topology
of knots and three-dimensional manifolds, but a sketch is in order. For the
case of topological quantum field theory related to the group SU(2) there is a
construction based entirely on the combinatorial topology of the bracket poly-
nomial (See Section ?? of this article.). See [30, 26] for more information on
this approach.

Now return to Figure 15 where we illustrate trinions, shown in relation
to a trivalent vertex, and a surface of genus three that is decomposed into
four trinions. It turns out that the vector space V (Sg) = V (G(Sg, t)) to
a surface with a trinion decomposition as t described above, and defined in
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F R

B = F   RF-1

F -1

Figure 16 - A More Complex Braiding Operator

A key point in the application of TQFT to quantum information theory
is contained in the structure illustrated in Figure 16. There we show a more
complex braiding operator, based on the composition of recoupling with the
elementary braiding at a vertex. (This structure is implicit in the Hexagon
identity of Figure 27.) The new braiding operator is a source of unitary rep-
resentations of braid group in situations (which exist mathematically) where
the recoupling transformations are themselves unitary. This kind of pattern is
utilized in the work of Freedman and collaborators [14, 15, 16, 17, 18] and in
the case of classical angular momentum formalism has been dubbed a “spin-
network quantum simlator” by Rasetti and collaborators [43]. In the next
section we show how certain natural deformations [26] of Penrose spin net-
works [46] can be used to produce these unitary representations of the Artin
braid group and the corresponding models for anyonic topological quantum
computation.

6 Spin Networks and Temperley-Lieb Recou-
pling Theory

In this section we discuss a combinatorial construction for spin networks that
generalizes the original construction of Roger Penrose. The result of this gen-
eralization is a structure that satisfies all the properties of a graphical TQFT
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state and a blank space for the unmarked state. Then one has two modes of
interaction of a box with itself:

1. Adjacency:

and

2. Nesting: .

With this convention we take the adjacency interaction to yield a single box,
and the nesting interaction to produce nothing:

=

=

We take the notational opportunity to denote nothing by an asterisk (*). The
syntatical rules for operating the asterisk are Thus the asterisk is a stand-in
for no mark at all and it can be erased or placed wherever it is convenient to
do so. Thus

= ∗.

We shall make a recoupling theory based on this particle, but it is worth
noting some of its purely combinatorial properties first. The arithmetic of
combining boxes (standing for acts of distinction) according to these rules
has been studied and formalized in [52] and correlated with Boolean algebra
and classical logic. Here within and next to are ways to refer to the two
sides delineated by the given distinction. From this point of view, there are
two modes of relationship (adjacency and nesting) that arise at once in the
presence of a distinction.

*

P P P P

P

Figure 25 - Fibonacci Particle Interaction
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0dim(V         ) = 2

dim(V      ) = 1
P P P

P

P

P

P P P PP P

P

P

Figure 26 - Fibonacci Trees

From here on we shall denote the Fibonacii particle by the letter P. Thus
the two possible interactions of P with itself are as follows.

1. P, P −→ ∗

2. P, P −→ P

In Figure 25 we indicate in small tree diagrams the two possible interactions
of the particle P with itself. In the first interaction the particle vanishes,
producing the asterix. In the second interaction the particle a single copy of
P is produced. These are the two basic actions of a single distinction relative
to itself, and they constitute our formalism for this very elementary particle.
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=

Forbidden

Figure 29 - Fibonacci Particle as 2-Projector

Note that in Figure 29 we have adopted a single strand notation for the particle
interactions, with a solid strand corresponding to the marked particle, a dotted
strand (or nothing) corresponding to the unmarked particle. A dark vertex
indicates either an interaction point, or it may be used to indicate the the
single strand is shorthand for two ordinary strands. Remember that these are
all shorthand expressions for underlying bracket polynomial calculations.

In Figures 30, 31, 32, 33, 34 and 35 we have provided complete diagram-
matic calculations of all of the relevant small nets and evaluations that are
useful in the two-strand theory that is being used here. The reader may wish
to skip directly to Figure 36a and Figure 36b where we determine the form of
the recoupling coefficients for this theory. We will discuss the resulting algebra
below.
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properties (the operator is idempotent and a self-attached strand yields a zero
evaluation) and give diagrammatic proofs of these properties.

=

= = = 0

= 0

= =

=

− 1/δ

−(1/δ)δ− 1/δ

− 1/δ

Figure 28 - The 2-Projector

In Figure 29, we show the essence of the Temperley-Lieb recoupling model
for the Fibonacci particle. The Fibonaccie particle is, in this mathematical
model, identified with the 2-projector itself. As the reader can see from Figure
29, there are two basic interactions of the 2-projector with itself, one giving
a 2-projector, the other giving nothing. This is the pattern of self-iteraction
of the Fibonacci particle. There is a third possibility, depicted in Figure 29,
where two 2-projectors interact to produce a 4-projector. We could remark at
the outset, that the 4-projector will be zero if we choose the bracket polynomial
variable A = e3π/5. Rather than start there, we will assume that the 4-projector
is forbidden and deduce (below) that the theory has to be at this root of unity.
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For this specialization we see that the matrix F becomes

F =

(
1/∆ ∆/Θ

Θ/∆2 T∆/Θ2

)

=

(
1/∆ ∆/Θ

Θ/∆2 (−Θ2/∆2)∆/Θ2

)

=

(
1/∆ ∆/Θ

Θ/∆2 −1/∆

)

This version of F has square equal to the identity independent of the value of
Θ, so long as ∆2 = ∆ + 1.

The Final Adjustment. Our last version of F suffers from a lack of symme-
try. It is not a symmetric matrix, and hence not unitary. A final adjustment
of the model gives this desired symmetry. Consider the result of replacing each
trivalent vertex (with three 2-projector strands) by a multiple by a given quan-
tity α. Since the Θ has two vertices, it will be multiplied by α2. Similarly, the
tetradhedron T will be multiplied by α4. The ∆ and the δ will be unchanged.
Other properties of the model will remain unchanged. The new recoupling
matrix, after such an adjustment is made, becomes

(
1/∆ ∆/α2Θ

α2Θ/∆2 −1/∆

)

For symmetry we require

∆/(α2Θ) = α2Θ/∆2.

We take
α2 =

√
∆3/Θ.

With this choice of α we have

∆/(α2Θ) = ∆Θ/(Θ
√

∆3) = 1/
√

∆.

Hence the new symmetric F is given by the equation

F =

(
1/∆ 1/

√
∆

1/
√

∆ −1/∆

)

=

(
τ

√
τ√

τ −τ

)

where ∆ is the golden ratio and τ = 1/∆. This gives the Fibonacci model.
Using Figures 37 and 38, we have that the local braiding matrix for the model
is given by the formula below with A = e3πi/5.

R =

(
−A4 0

0 A8

)

=

(
e4πi/5 0

0 −e2πi/5

)

.

The simplest example of a braid group representation arising from this
theory is the representation of the three strand braid group generated by S1 =
R and S2 = FRF (Remember that F = F T = F−1.). The matrices S1 and S2

are both unitary, and they generate a dense subset of the unitary group U(2),
supplying the first part of the transformations needed for quantum computing.

79



Iconics

In the Fibonacci Model we have
one “particle” P that interacts

itself to produce either P or * (nothing).

This is analogous to the logical particle

of G. Spencer-Brown
that interacts with itself in two ways:







 �  � � �    

For this specialization we see that the matrix F becomes

F =

(
1/∆ ∆/Θ

Θ/∆2 T∆/Θ2

)

=

(
1/∆ ∆/Θ

Θ/∆2 (−Θ2/∆2)∆/Θ2

)

=

(
1/∆ ∆/Θ

Θ/∆2 −1/∆

)

This version of F has square equal to the identity independent of the value of
Θ, so long as ∆2 = ∆ + 1.

The Final Adjustment. Our last version of F suffers from a lack of symme-
try. It is not a symmetric matrix, and hence not unitary. A final adjustment
of the model gives this desired symmetry. Consider the result of replacing each
trivalent vertex (with three 2-projector strands) by a multiple by a given quan-
tity α. Since the Θ has two vertices, it will be multiplied by α2. Similarly, the
tetradhedron T will be multiplied by α4. The ∆ and the δ will be unchanged.
Other properties of the model will remain unchanged. The new recoupling
matrix, after such an adjustment is made, becomes

(
1/∆ ∆/α2Θ

α2Θ/∆2 −1/∆

)

For symmetry we require

∆/(α2Θ) = α2Θ/∆2.

We take
α2 =

√
∆3/Θ.

With this choice of α we have

∆/(α2Θ) = ∆Θ/(Θ
√

∆3) = 1/
√

∆.

Hence the new symmetric F is given by the equation

F =

(
1/∆ 1/

√
∆

1/
√

∆ −1/∆

)

=

(
τ

√
τ√

τ −τ

)
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R =
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are both unitary, and they generate a dense subset of the unitary group U(2),
supplying the first part of the transformations needed for quantum computing.
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Notice that it follows from the symmetry of the diagrammatic recoupling for-
mulas of Figure 36 that the square of the recoupling matrix F is equal to the
identity. That is,

(
1 0
0 1

)

= F 2 =

(
1/∆ ∆/Θ

Θ/∆2 T∆/Θ2

) (
1/∆ ∆/Θ

Θ/∆2 T∆/Θ2

)

=

(
1/∆2 + 1/∆ 1/Θ + T∆2/Θ3

Θ/∆3 + T/(∆Θ) 1/∆ + ∆2T 2/Θ4

)

.

Thus we need the relation

1/∆ + 1/∆2 = 1.

This is equivalent to saying that

∆2 = 1 + ∆,

a quadratic equation whose solutions are

∆ = (1±
√

5)/2.

Furthermore, we know that
∆ = δ2 − 1

from Figure 33. Hence
∆2 = ∆ + 1 = δ2.

We shall now specialize to the case where

∆ = δ = (1 +
√

5)/2,

leaving the other cases for the exploration of the reader. We then take

A = e3πi/5

so that
δ = −A2 − A−2 = −2cos(6π/5) = (1 +

√
5)/2.

Note that δ − 1/δ = 1. Thus

Θ = (δ − 1/δ)2δ −∆/δ = δ − 1.

and
T = (δ − 1/δ)2(δ2 − 2)− 2Θ/δ = (δ2 − 2)− 2(δ − 1)/δ

= (δ − 1)(δ − 2)/δ = 3δ − 5.

Note that
T = −Θ2/∆2,

from which it follows immediately that

F 2 = I.

This proves that we can satisfy this model when ∆ = δ = (1 +
√

5)/2.
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R and S2 = FRF (Remember that F = F T = F−1.). The matrices S1 and S2

are both unitary, and they generate a dense subset of the unitary group U(2),
supplying the first part of the transformations needed for quantum computing.
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Notice that it follows from the symmetry of the diagrammatic recoupling for-
mulas of Figure 36 that the square of the recoupling matrix F is equal to the
identity. That is,

(
1 0
0 1

)

= F 2 =

(
1/∆ ∆/Θ

Θ/∆2 T∆/Θ2

) (
1/∆ ∆/Θ

Θ/∆2 T∆/Θ2

)

=

(
1/∆2 + 1/∆ 1/Θ + T∆2/Θ3

Θ/∆3 + T/(∆Θ) 1/∆ + ∆2T 2/Θ4

)

.

Thus we need the relation

1/∆ + 1/∆2 = 1.

This is equivalent to saying that

∆2 = 1 + ∆,

a quadratic equation whose solutions are

∆ = (1±
√

5)/2.

Furthermore, we know that
∆ = δ2 − 1

from Figure 33. Hence
∆2 = ∆ + 1 = δ2.

We shall now specialize to the case where

∆ = δ = (1 +
√

5)/2,

leaving the other cases for the exploration of the reader. We then take

A = e3πi/5

so that
δ = −A2 − A−2 = −2cos(6π/5) = (1 +

√
5)/2.

Note that δ − 1/δ = 1. Thus

Θ = (δ − 1/δ)2δ −∆/δ = δ − 1.

and
T = (δ − 1/δ)2(δ2 − 2)− 2Θ/δ = (δ2 − 2)− 2(δ − 1)/δ

= (δ − 1)(δ − 2)/δ = 3δ − 5.

Note that
T = −Θ2/∆2,

from which it follows immediately that

F 2 = I.

This proves that we can satisfy this model when ∆ = δ = (1 +
√

5)/2.
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Figure 20 - Orthogonality of Trivalent Vertices

There is a recoupling formula in this theory in the form shown in Figure 21.
Here there are “6-j symbols”, recoupling coefficients that can be expressed, as
shown in Figure 23, in terms of tetrahedral graph evaluations and theta graph
evaluations. The tetrahedral graph is shown in Figure 22. One derives the
formulas for these coefficients directly from the orthogonality relations for the
trivalent vertices by closing the left hand side of the recoupling formula and
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Figure 20 - Orthogonality of Trivalent Vertices

There is a recoupling formula in this theory in the form shown in Figure 21.
Here there are “6-j symbols”, recoupling coefficients that can be expressed, as
shown in Figure 23, in terms of tetrahedral graph evaluations and theta graph
evaluations. The tetrahedral graph is shown in Figure 22. One derives the
formulas for these coefficients directly from the orthogonality relations for the
trivalent vertices by closing the left hand side of the recoupling formula and
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using orthogonality to evaluate the right hand side. This is illustrated in Figure
23.
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Figure 21 - Recoupling Formula
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Figure 22 - Tetrahedron Network
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using orthogonality to evaluate the right hand side. This is illustrated in Figure
23.
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Figure 23 - Tetrahedron Formula for Recoupling Coefficients

Finally, there is the braiding relation, as illustrated in Figure 24.
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a b
cλ

a ab b

c c

(a+b-c)/2 (a'+b'-c')/2

x' = x(x+2)

a b
cλ

=

= (-1) A

Figure 24 - LocalBraidingFormula

With the braiding relation in place, this q-deformed spin network theory
satisfies the pentagon, hexagon and braiding naturality identities needed for
a topological quantum field theory. All these identities follow naturally from
the basic underlying topological construction of the bracket polynomial. One
can apply the theory to many different situations.

6.1 Evaluations

In this section we discuss the structure of the evaluations for ∆n and the theta
and tetrahedral networks. We refer to [] for the details behind these formulas.
Recall that ∆n is the bracket evaluation of the closure of the n-strand projector,
as illustrated in Figure 20. For the bracket variable A, one finds that

∆n = (−1)n A2n+2 − A−2n−2

A2 − A−2
.

One sometimes writes the quantum integer

[n] = (−1)n−1∆n−1 =
A2n − A−2n

A2 − A−2
.

If
A = eiπ/2r
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Redefining the Vertex is the key to obtaining 
Unitary Recoupling Transformations.
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where r is a positive integer, then

∆n = (−1)n sin((n + 1)π/r)

sin(π/r)
.

Here the corresponding quantum integer is

[n] =
sin(nπ/r)

sin(π/r)
.

Note that [n + 1] is a positive real number for n = 0, 1, 2, ...r − 2 and that
[r − 1] = 0.

The evaluation of the theta net is expressed in terms of quantum integers
by the formula

Θ(a, b, c) = (−1)m+n+p [m + n + p + 1]![n]![m]![p]!

[m + n]![n + p]![p + m]!

where

a = m + p, b = m + n, c = n + p.

Note that

(a + b + c)/2 = m + n + p.

When A = eiπ/2r, the recoupling theory becomes finite with the restriction
that only three-vertices (labeled with a, b, c) are admissible when a + b + c ≤
2r − 4. All the summations in the formulas for recoupling are restricted to
admissible triples of this form.

6.2 Symmetry and Unitarity

The formula for the recoupling coefficients given in Figure 23 has less symmetry
than is actually inherent in the structure of the situation. By multiplying all
the vertices by an appropriate factor, we can reconfigure the formulas in this
theory so that the revised recoupling transformation is orthogonal, in the sense
that its transpose is equal to its inverse. This is a very useful fact. It means
that when the resulting matrices are real, then the recoupling transformations
are unitary. We shall see particular applications of this viewpoint later in the
paper.
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Figure 24.1 illustrates this modification of the three-vertex. Let V ert[a, b, c]
denote the original 3-vertex of the Temperley-Lieb recoupling theory. Let
ModV ert[a, b, c] denote the modified vertex. Then we have the formula

ModV ert[a, b, c] =

√√
∆a∆b∆c√

Θ(a, b, c)
V ert[a, b, c].

Lemma. For the bracket evaluation at the root of unity A = eiπ/2r the factor

f(a, b, c) =

√√
∆a∆b∆c√

Θ(a, b, c)

is real, and can be taken to be a positive real number for (a, b, c) admissible
(i.e. a + b + c ≤ 2r − 4).

Proof. By the results from the previous subsection,

Θ(a, b, c) = (−1)(a+b+c)/2Θ̂(a, b, c)

where Θ̂(a, b, c) is positive real, and

∆a∆b∆c = (−1)(a+b+c)[a + 1][b + 1][c + 1]

where the quantum integers in this formula can be taken to be positive real.
It follows from this that

f(a, b, c) =

√√√√√

√
[a + 1][b + 1][c + 1]

Θ̂(a, b, c)
,

showing that this factor can be taken to be positive real. !

In Figure 24.2 we show how this modification of the vertex affects the
non-zero term of the orthogonality of trivalent vertices (compare with Figure
20). We refer to this as the “modified bubble identity.” The coefficient in the
modified bubble identity is

√
∆b∆c

∆a
= (−1)(b+c−a)/2

√√√√ [b + 1][c + 1]

[a + 1]

where (a, b, c) form an admissible triple. In particular b + c − a is even and
hence this factor can be taken to be positive real.
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Figure 24.6 - Modified Matrix Transpose

Theorem. In the Temperley-Lieb theory we obtain unitary (in fact real or-
thogonal) recoupling transformations when the bracket variable A has the form
A = eiπ/2r. Thus we obtain families of unitary representations of the Artin
braid group from the recoupling theory at these roots of unity.

Proof. The proof is given the discussion above. !

In Section ? we shall show explictly how this works in the case of the
Fibonacci model where A = e3iπ/5.

6.3 Spin Networks and Quantum Gravity

This section will be expanded to remarks about the original Penrose spin net-
work theory, and the Spin Geometry Theorem. In loop quantum gravity, via
the loop transform, one can represent states of quantum gravity via Wilson
loops (and integrals of Wilson loops over the underlying gauge field A), and
hence by the geometry of knots and links embedded in the three space. The
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thogonal) recoupling transformations when the bracket variable A has the form
A = eiπ/2r. Thus we obtain families of unitary representations of the Artin
braid group from the recoupling theory at these roots of unity.

Proof. The proof is given the discussion above. !

In Section ? we shall show explictly how this works in the case of the
Fibonacci model where A = e3iπ/5.

6.3 Spin Networks and Quantum Gravity

This section will be expanded to remarks about the original Penrose spin net-
work theory, and the Spin Geometry Theorem. In loop quantum gravity, via
the loop transform, one can represent states of quantum gravity via Wilson
loops (and integrals of Wilson loops over the underlying gauge field A), and
hence by the geometry of knots and links embedded in the three space. The
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10 Quantum Computation of Colored Jones
Polynomials and the Witten-Reshetikhin-
Turaev Invariant

In this section we make some brief comments on the quantum computation
of colored Jones polynomials. This material will be expanded in a subsequent
publication.
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Figure 57 - Evaluation of the Plat Closure of a Braid
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First, consider Figure 57. In that figure we illustrate the calculation of the
evalutation of the (a) - colored bracket polynomial for the plat closure P (B) of
a braid B. The reader can infer the definition of the plat closure from Figure
57. One takes a braid on an even number of strands and closes the top strands
with each other in a row of maxima. Similarly, the bottom strands are closed
with a row of minima. It is not hard to see that any knot or link can be
represented as the plat closure of some braid.

δA4 -4= A + +

δA 4-4= A+ +

- = 4A A-4-( ) -( )

- = 4A A-4-( ) -( )
= A8

Figure 58 - Dubrovnik Polynomial Specialization at Two Strands

The (a) - colored bracket polynonmial of a link L, denoted < L >a, is the
evaluation of that link where each single strand has been replaced by a parallel
strands and the insertion of Jones-Wenzl projector (as discussed in Section 7).
We then see that we can use our discussion of the Temperley-Lieb recoupling
theory as in sections 7,8 and 9 to compute the value of the colored bracket
polynomial for the plat closure PB. As shown in Figure 57, we regard the
braid as acting on a process space V a,a,···,a

0 and take the case of the action on
the vector v whose process space coordinates are all zero. Then the action of
the braid takes the form

Bv(0, · · · , 0) = Σx1,···,xnB(x1, · · · , xn)v(x1, · · · , xn)
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Colored Jones Polynomial for n = 2 is
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Dubrovnik version of 
Kauffman polynomial.



Will these models actually be used
for quantum computation?

Will quantum computation actually happen?
Will topology play a key role?

Time will tell.


