Topology and Quantum Computing

quant-ph/0603131 and quant-ph/0606114

www.math.uic.edu/~kauffman/Unitary.pdf

Spin Networks and Anyonic Topological Computing

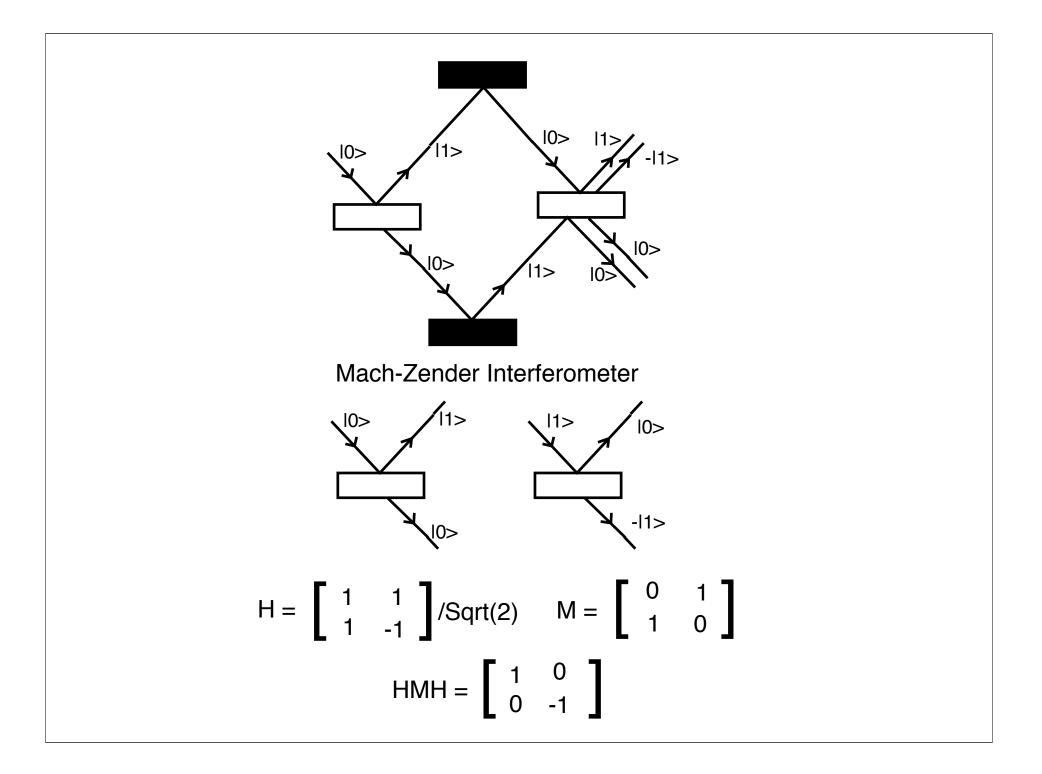
Louis H. Kauffman^a and Samuel J. Lomonaco Jr.^b

 ^a Department of Mathematics, Statistics and Computer Science (m/c 249), 851 South Morgan Street, University of Illinois at Chicago, Chicago, Illinois 60607-7045, USA
 ^b Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA Quantum Mechanics in a Nutshell

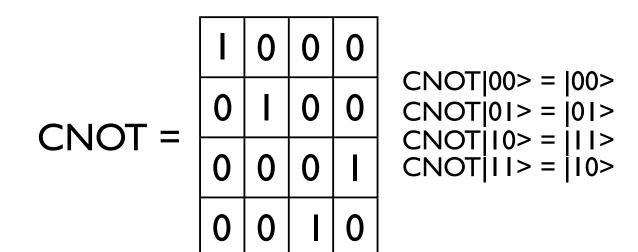
0. A state of a physical system corresponds to a unit vector |S> in a complex vector space.

I. (measurement free) Physical processes are modeled by unitary transformations applied to the state vector: |S> -----> U|S>

2. If $|S\rangle = zI|eI\rangle + z2|e2\rangle + ... + zn|en\rangle$ in a measurement basis {eI,e2,...,en}, then measurement of $|S\rangle$ yields |ei> with probability |zi|^2.



Quantum Gates are unitary transformations enlisted for the purpose of computation.



Universal Gates

A two-qubit gate G is a unitary linear mapping

$$G: V \otimes V \longrightarrow V \otimes V$$
 where V is

a two complex dimensional vector space. We say that the gate G is universal for quantum computation (or just universal) if G together with local unitary transformations (unitary transformations from V to V) generates all unitary transformations of the complex vector space of dimension 2^n to itself. It is well-known [44] that CNOT is a universal gate.

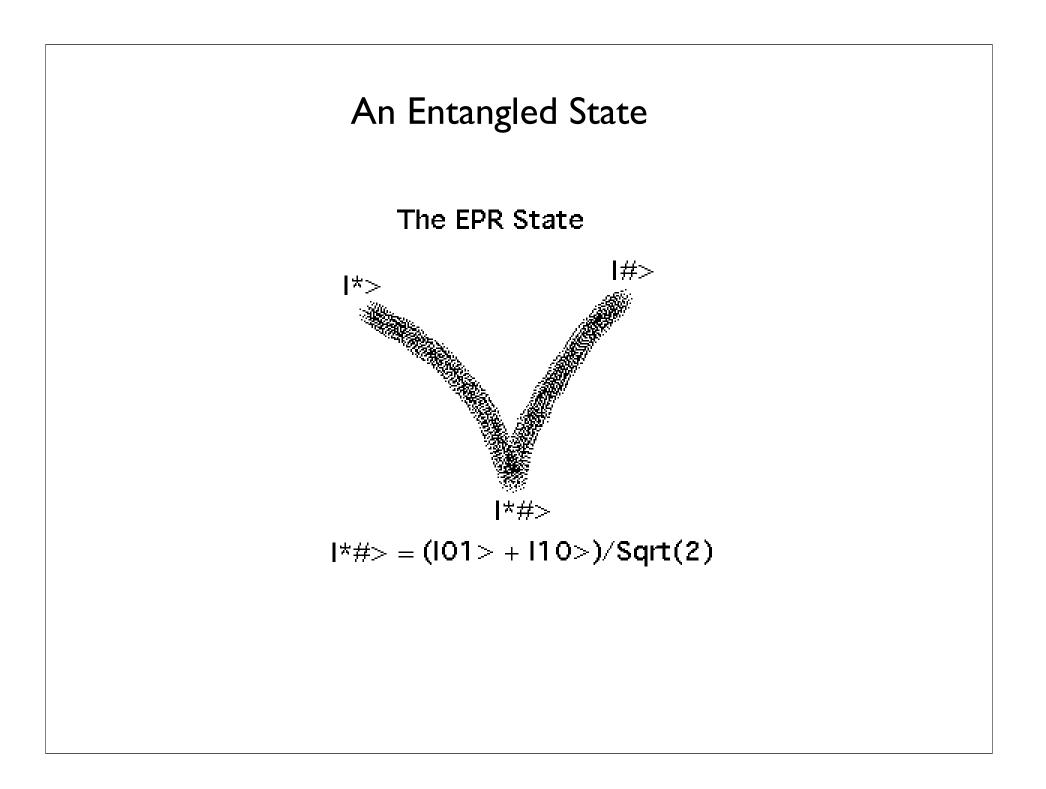
A gate G is universal iff G is entangling.

A gate G, as above, is said to be *entangling* if there is a vector

 $|\alpha\beta\rangle = |\alpha\rangle \otimes |\beta\rangle \in V \otimes V$

such that $G|\alpha\beta\rangle$ is not decomposable as a tensor product of two qubits. Under these circumstances, one says that $G|\alpha\beta\rangle$ is *entangled*.

In [6], the Brylinskis give a general criterion of G to be universal. They prove that a two-qubit gate G is universal if and only if it is entangling.



An Entanglement Criterion

Remark. A two-qubit pure state

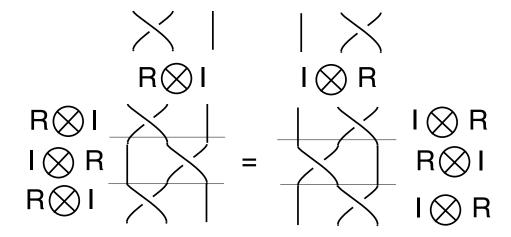
 $|\phi\rangle = a|00\rangle + b|01\rangle + c|10\rangle + d|11\rangle$

is entangled exactly when $(ad - bc) \neq 0$. It is easy to use this fact to check when a specific matrix is, or is not, entangling.

The Bell States

$$\begin{split} R|00\rangle &= (1/\sqrt{2})|00\rangle - (1/\sqrt{2})|11\rangle,\\ R|01\rangle &= (1/\sqrt{2})|01\rangle + (1/\sqrt{2})|10\rangle,\\ R|10\rangle &= -(1/\sqrt{2})|01\rangle + (1/\sqrt{2})|10\rangle,\\ R|11\rangle &= (1/\sqrt{2})|00\rangle + (1/\sqrt{2})|11\rangle. \end{split}$$

Braiding and the Yang-Baxter Equation



 $(R \otimes I)(I \otimes R)(R \otimes I) = (I \otimes R)(R \otimes I)(I \otimes R).$

Braiding Operators are Universal Quantum Gates Let V be a two complex dimensional vector space. Universal gates can be constructed from certain solutions to the Yang-Baxter Equation $R: V \otimes V \longrightarrow V \otimes V$

 $(R \otimes I)(I \otimes R)(R \otimes I) = (I \otimes R)(R \otimes I)(I \otimes R).$

Representative Examples of Unitary Solutions to the Yang-Baxter Equation that are Universal Gates.

$$R = \begin{pmatrix} 1/\sqrt{2} & 0 & 0 & 1/\sqrt{2} \\ 0 & 1/\sqrt{2} & -1/\sqrt{2} & 0 \\ 0 & 1/\sqrt{2} & 1/\sqrt{2} & 0 \\ -1/\sqrt{2} & 0 & 0 & 1/\sqrt{2} \end{pmatrix}$$
 Bell Basis Change Matrix

$$R' = \begin{pmatrix} a & 0 & 0 & 0 \\ 0 & 0 & b & 0 \\ 0 & c & 0 & 0 \\ 0 & 0 & 0 & d \end{pmatrix} \qquad \qquad R'' = \begin{pmatrix} 0 & 0 & 0 & a \\ 0 & b & 0 & 0 \\ 0 & 0 & c & 0 \\ d & 0 & 0 & 0 \end{pmatrix}$$

$$R_0 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$
 Swap Gate with Phase

Issues

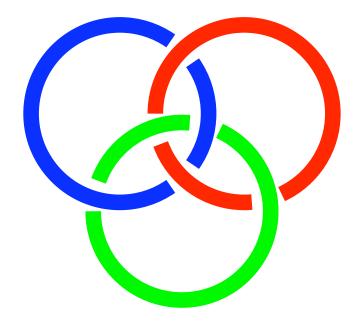
I. Giving a Universal Gate that is topological does not create
"topological quantum computing" because the U(2) local operations have not been made topological.

2. Nevertheless, Yang-Baxter gates are interesting to construct and help to discuss Topological Entanglement versus Quantum Entanglement.

Quantum Entanglement and Topological Entanglement

An example of Aravind [1] makes the possibility of such a connection even more tantalizing. Aravind compares the Borromean rings (see figure 2) and the GHZ state

 $|\psi\rangle = (|\beta_1\rangle|\beta_2\rangle|\beta_3\rangle - |\alpha_1\rangle|\alpha_2\rangle|\alpha_3\rangle)/\sqrt{2}.$



Is the Aravind analogy only superficial?!

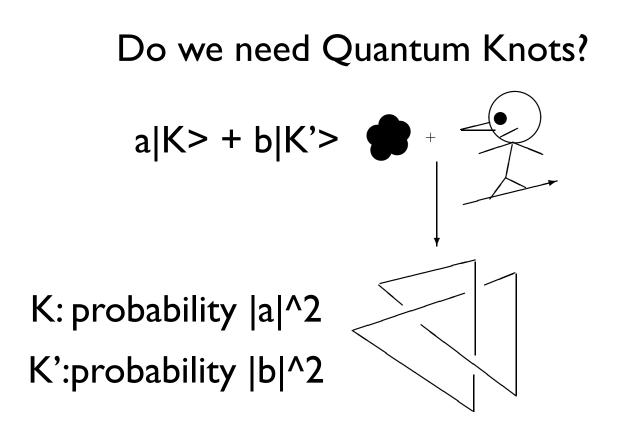
Consider this state.

 $|\psi\rangle = (1/2)(|000\rangle + |001\rangle + |101\rangle + |110\rangle)$

Observation in any coordinate yields entangled and unentangled states with equal probability.

e.g.

 $|\psi\rangle = (1/2)(|0\rangle(|00\rangle + |01\rangle) + |1\rangle(|01\rangle + |10\rangle)$ First coordinate measurement gives $|00\rangle + |01\rangle$ and $|01\rangle + |10\rangle$ with equal probability.



Observing a Quantum Knot

SU(2) Representations of the Artin Braid Group

Theorem. If g = a + bu and h = c + dv are pure unit quaternions, then, without loss of generality, the braid relation ghg = hgh is true if and only if h = a + bv, and $\phi_g(v) = \phi_{h^{-1}}(u)$. Furthermore, given that g = a + bu and h = a + bv, the condition $\phi_g(v) = \phi_{h^{-1}}(u)$ is satisfied if and only if $u \cdot v = \frac{a^2 - b^2}{2b^2}$ when $u \neq v$. If u = v then then g = h and the braid relation is trivially satisfied.

$$g = a + bu$$

h= a + bv
 $u \circ v = (a^2 - b^2)/2b^2$

An Example. Let

$$g = e^{i\theta} = a + bi$$

where $a = cos(\theta)$ and $b = sin(\theta)$. Let

$$h = a + b[(c^2 - s^2)i + 2csk]$$

where $c^2 + s^2 = 1$ and $c^2 - s^2 = \frac{a^2 - b^2}{2b^2}$. Then we can reexpress g and h in matrix form as the matrices G and H. Instead of writing the explicit form of H, we write $H = FGF^*$ where F is an element of SU(2) as shown below.

$$G = \begin{pmatrix} e^{i\theta} & 0\\ 0 & e^{-i\theta} \end{pmatrix}$$
$$F = \begin{pmatrix} ic & is\\ is & -ic \end{pmatrix}$$

SU(2) Fibonacci Model

$$au^2 + au = 1.$$

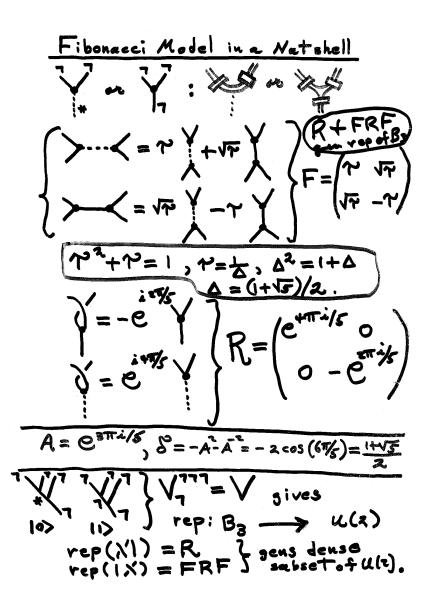
 $g = e^{7\pi i/10}$

$$f = i\tau + k\sqrt{\tau}$$

$$h = frf^{-1}$$

{g,h} represents 3-strand braids, generating a dense subset of SU(2).

We shall see that the representation labeled "SU(2) Fibonacci Model" in the last slide extends beyond SU(2) to representations of many-stranded braid groups rich enough to generate quantum computation.



But first, a digression: We show how to make a quantum computation of the the trace of a unitary matrix. This is

I.A good example of a quantum algorithm.

2. Useful for the quantum computation of knot polynomials such as the Jones polynomial.

Quantum Computation of the Trace of a Unitary Matrix

The Hadamard Test

In order to (quantum) compute the trace of a unitary matrix U, one can use the *Hadamard test* to obtain the diagonal matrix elements $\langle \psi | U | \psi \rangle$ of U. The trace is then the sum of these matrix elements as $|\psi\rangle$ runs over an orthonormal basis for the vector space. We first obtain

$$\frac{1}{2} + \frac{1}{2} Re \langle \psi | U | \psi \rangle$$

as an expectation by applying the Hadamard gate H

$$H|0\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$
$$H|1\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$$

to the first qubit of

$$C_U \circ (H \otimes 1)|0\rangle |\psi\rangle = \frac{1}{\sqrt{2}} (|0\rangle \otimes |\psi\rangle + |1\rangle \otimes U|\psi\rangle.$$

Here C_U denotes controlled U, acting as U when the control bit is $|1\rangle$ and the identity mapping when the control bit is $|0\rangle$. We measure the expectation for the first qubit $|0\rangle$ of the resulting state

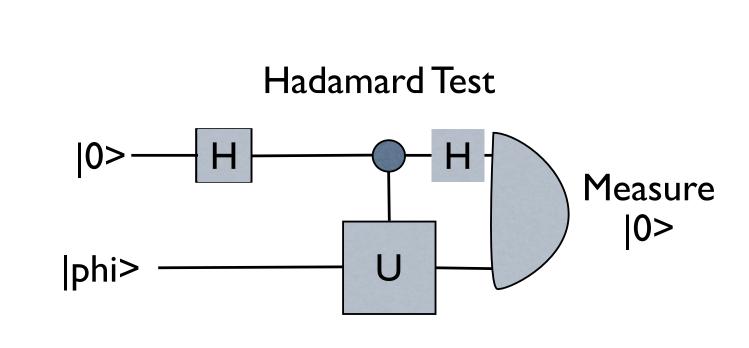
$$\frac{1}{2}(H|0\rangle \otimes |\psi\rangle + H|1\rangle \otimes U|\psi\rangle) = \frac{1}{2}((|0\rangle + |1\rangle) \otimes |\psi\rangle + (|0\rangle - |1\rangle) \otimes U|\psi\rangle)$$
$$= \frac{1}{2}(|0\rangle \otimes (|\psi\rangle + U|\psi\rangle) + |1\rangle \otimes (|\psi\rangle - U|\psi\rangle)).$$

This expectation is

$$\frac{1}{2}(\langle\psi|+\langle\psi|U^{\dagger})(|\psi\rangle+U|\psi\rangle) = \frac{1}{2} + \frac{1}{2}Re\langle\psi|U|\psi\rangle.$$

The imaginary part is obtained by applying the same procedure to

$$\frac{1}{\sqrt{2}}(|0\rangle \otimes |\psi\rangle - i|1\rangle \otimes U|\psi\rangle$$



|0> occurs with probability I/2 + Re[<phi|U|phi>]/2

Quantum Hall Effect

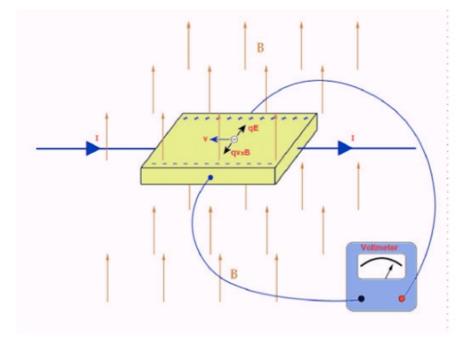
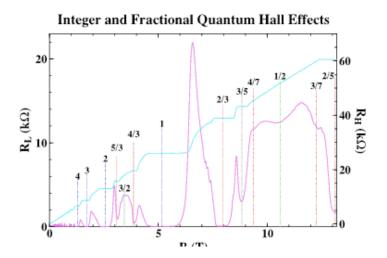


Figure 1: A schematics of the experimental setup of the Hall effect. A current driven through the conductor, drawn as a prism, leads to the emergence of voltage in the perpendicular direction. This is the Hall voltage, which Maxwell erroneously predicted to be zero.

Fractional Quantum Hall Effect (Cambridge Univ Website)

The fractional quantum Hall effect (FQHE) is a fascinating manifestation of simple collective behaviour in a two-dimensional system of strongly interacting electrons. At particular magnetic fields, the electron gas condenses into a remakable state with liquid-like properties. This state is very delicate, requiring high quality material with a low carrier concentration, and extremely low temperatures. As in the integer **Quantum Hall Effect**, a series of plateaux forms in the Hall resistance. Each particular values of magnetic field corresponds to a filling factor (the ratio of electrons to magnetic flux quanta) nu=p/q, where *p* and *q* are integers with no common factors). *q* always turns out to be an odd number. The principal series of such fractions are 1/3, 2/5, 3/7 etc, and 2/3, 3/5, 4/7, etc.



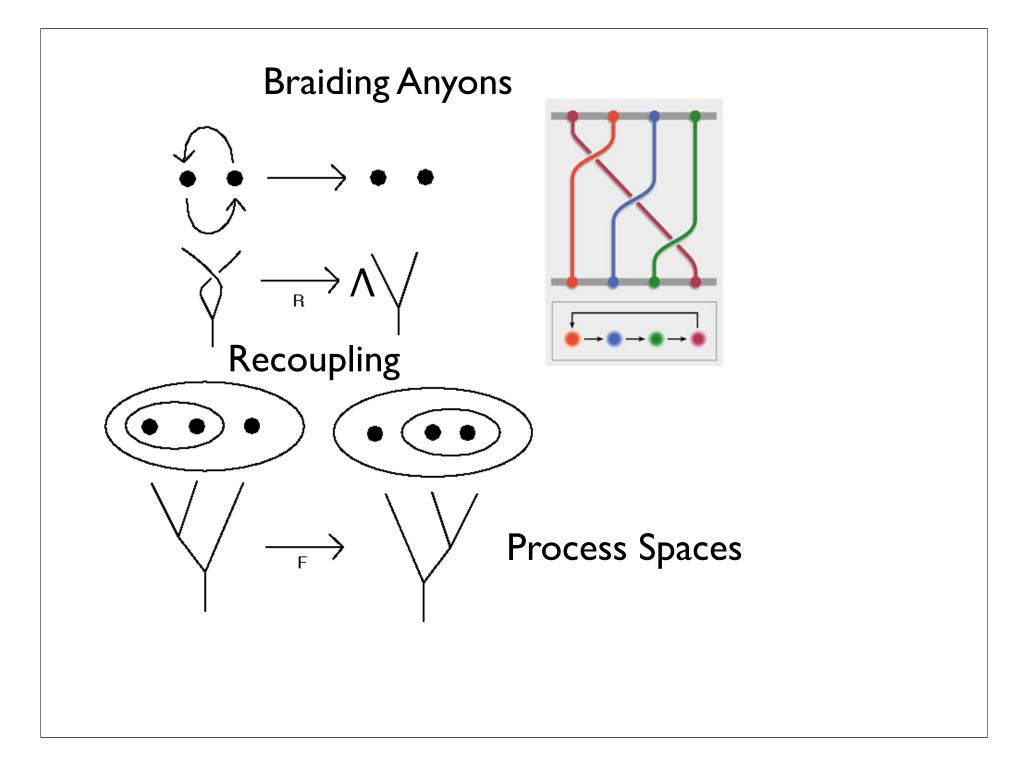
There are two main theories of the FQHE:

- Fractionally-charged quasiparticles. This theory, proposed by Laughlin, hides the interactions by constructing a set of quasiparticles with charge $e^* = e/q$, where the fraction is p/q as above.
- Composite Fermions. This theory was proposed by Jain, and Halperin, Lee and Read. In order to hide the interactions, it attaches two (or, in general, an even number) flux quanta *h*/*e* to each electron, forming integer-charged quasiparticles called Composite Fermions. The fractional states are mapped to the Integer QHE. This makes electrons at a filling factor 1/3, for example, behave in the same way as at filing factor 1. A remarkable result is that filling factor 1/2 corresponds to zero magnetic field. Experiments support this.

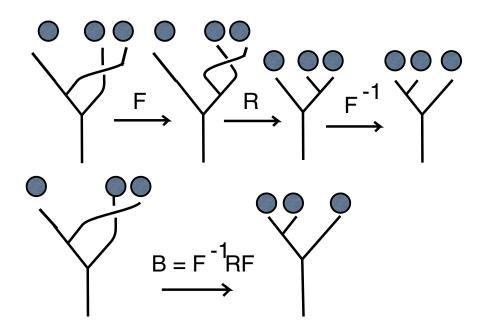
There are two main theories of the FQHE:

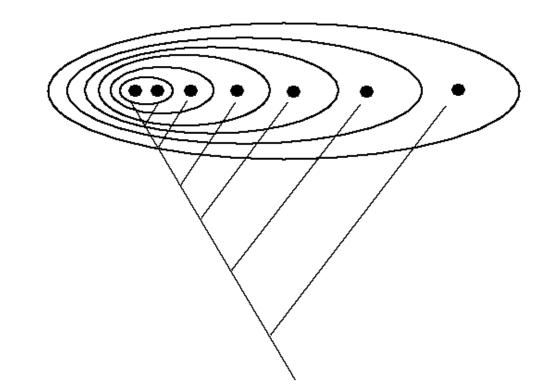
- Fractionally-charged quasiparticles. This theory, proposed by Laughlin, hides the interactions by constructing a set of quasiparticles with charge $e^* = e/q$, where the fraction is p/q as above.
- Composite Fermions. This theory was proposed by Jain, and Halperin, Lee and Read. In order to
 hide the interactions, it attaches two (or, in general, an even number) flux quanta *h*/*e* to each
 electron, forming integer-charged quasiparticles called Composite Fermions. The fractional states
 are mapped to the Integer QHE. This makes electrons at a filling factor 1/3, for example, behave in
 the same way as at filing factor 1. A remarkable result is that filling factor 1/2 corresponds to zero
 magnetic field. Experiments support this.

The quasi-particle theory is connected with Chern-Simons Theory and it explains the FQHE on the basis of "anyons": particles that have non-trivial (not +1 or -1) phase change when they exchange places in the plane.



Non-Local Braiding is Induced via Recoupling





Process Spaces Can be Abitrarily Large. With a coherent recoupling theory, all transformations are in the representation of one braid group. Mathematical Models for Recoupling Theory with Braiding come from a Combination of Penrose Spin Networks and Knot Theory.

See "Temperley Lieb Recoupling Theory and Invariants of Three-Manifolds" by L. Kauffman and S. Lins, PUP, 1994.

Penrose Spin Networks

$$E = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

 $SL(2, C) = \{A \mid A \ge x \ge matrin \neq f \}$
 $A \in A^{T} = E$
 $Let \stackrel{a}{\amalg} = TL = Eab$
 $\stackrel{a}{\longleftarrow} = vector pa$
 $\langle N_{3} w \rangle = TL = Eab N^{a}w^{b}$
 $\stackrel{a}{\longleftrightarrow} = \hat{J} \begin{pmatrix} -X \\ -X \end{pmatrix} : E^{a}E_{cd} = \hat{J}_{c} \hat{J}_{d}^{b}$
 $\stackrel{a}{\longleftarrow} = \hat{J}_{d} \hat{J}_{d}^{c}$
Wated diagrammatic representation
that is convenient and
topologically invariant in the
plane.

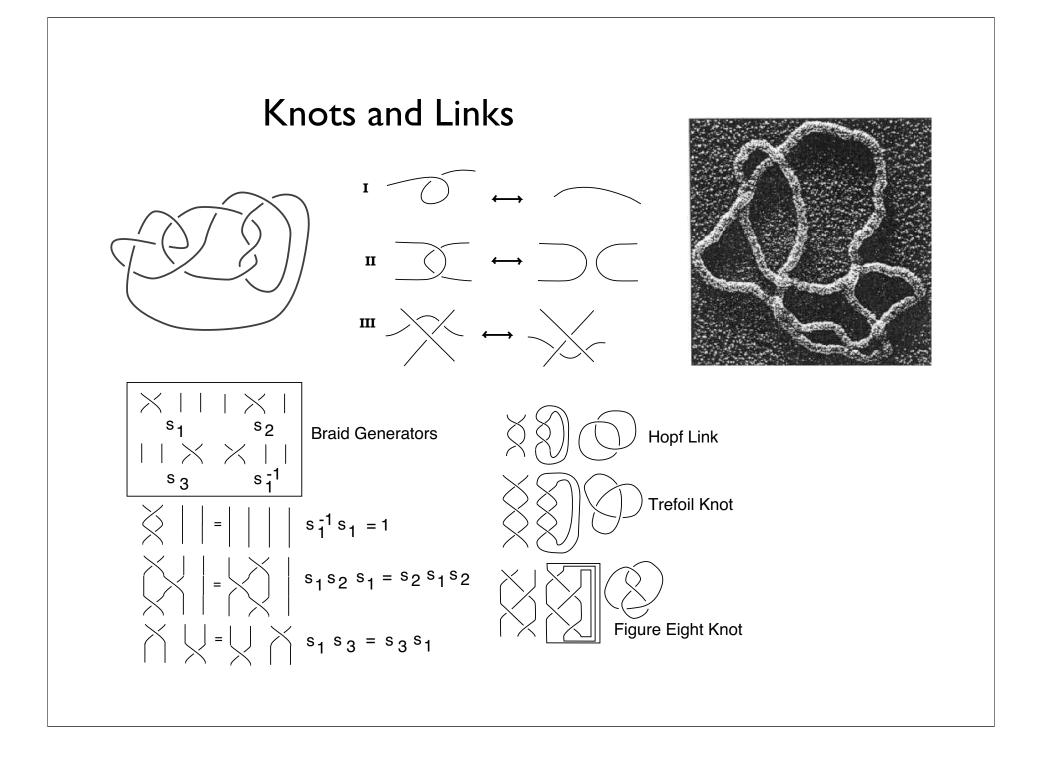
$$X = -\Pi$$

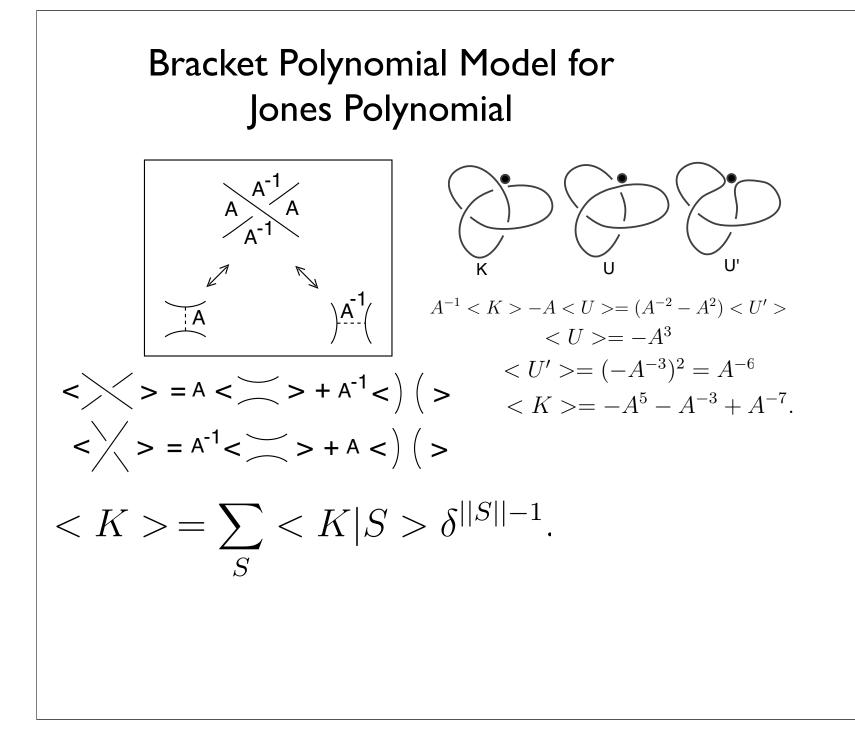
$$\Pi = \varepsilon_{ab}$$

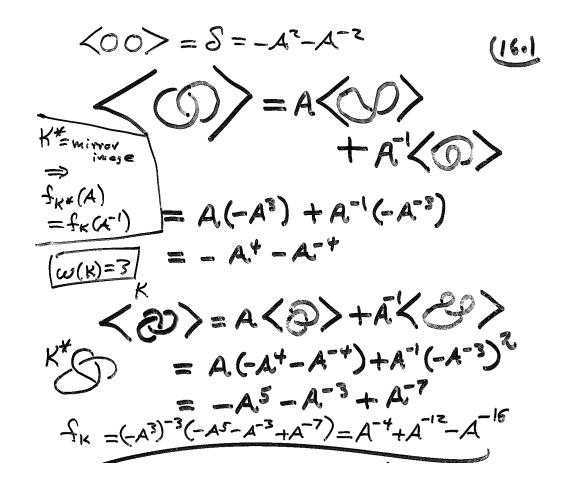
$$\Pi = \varepsilon_{ab}$$

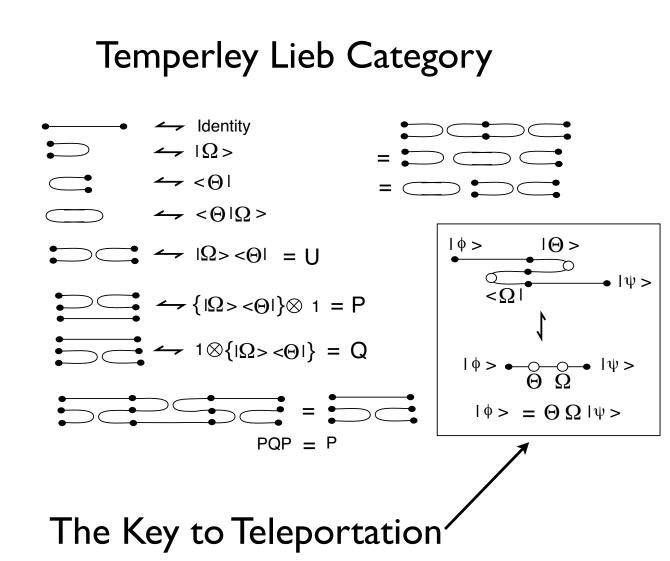
$$\Pi = \xi_{ab} \varepsilon^{ab} = z$$

$$(i.e. \xi_{ab} = -\delta_{ab} \varepsilon^{ab} = z$$









Any two one-dimensional projectors generate a Temperley-Lieb algebra.

This trick can be used to manufacture unitary representations of the three-strand braid group.

$$\mathcal{U}_{1} = \delta \begin{bmatrix} i & 0 \\ 0 & 0 \end{bmatrix} \qquad (b)$$

$$\mathcal{U}_{2} = \delta \begin{bmatrix} e^{2} & e^{ib} \\ ab & b^{2} \end{bmatrix} \qquad e^{2} + b^{2} = 1$$

$$\mathcal{U}_{2} = e^{2}$$

$$\mathcal{U}_{1} = \begin{bmatrix} i & 0 \\ 0 & 0 \end{bmatrix} = 1 \\ (b) > \langle (i \\ b) \\ 0 \end{bmatrix} \qquad e^{2} = e^{2}$$

$$\mathcal{U}_{1} = \begin{bmatrix} e^{2} & e^{ib} \\ e^{2} & 0 \end{bmatrix} = \left| \begin{pmatrix} e^{2} & e^{ib} \\ e^{2} & 0 \end{bmatrix} \\ (b) > \langle (i \\ b) \end{bmatrix} \qquad e^{2}$$

$$\mathcal{U}_{1} = \begin{bmatrix} e^{2} & e^{ib} \\ e^{2} & 0 \end{bmatrix} \qquad (b) > \langle (i \\ e^{2} & 0 \end{bmatrix}$$

$$\mathcal{U}_{1} = \begin{bmatrix} e^{2} & e^{ib} \\ e^{2} & 0 \end{bmatrix} \qquad (b) > \langle (i \\ e^{2} & 0 \end{bmatrix}$$

$$\mathcal{U}_{1} = \begin{bmatrix} e^{2} & e^{ib} \\ e^{2} & 0 \end{bmatrix} \qquad (c) > (c) = e^{2}$$

$$\mathcal{U}_{1} = \begin{bmatrix} e^{2} & e^{ib} \\ e^{2} & 0 \end{bmatrix} \qquad (c) = e^{2}$$

$$\mathcal{U}_{1} = \begin{bmatrix} e^{2} & e^{ib} \\ e^{2} & 0 \end{bmatrix} \qquad (c) = e^{2}$$

$$\mathcal{U}_{1} = \begin{bmatrix} e^{2} & e^{ib} \\ e^{2} & 0 \end{bmatrix} \qquad (c) = e^{2}$$

$$p(XI) = AU_1 + A^{-1}I$$

$$p(IX) = AU_2 + A^{-1}I$$

$$S = -A^2 - A^{-2}, A = e^{i\Theta}$$

$$= -2 \cos(2\theta)$$
Need $\delta^2 > I$: $\cos^2(2\theta) > \frac{1}{4}$

$$P \text{ gives unitary vep of}$$

$$= -3 \cos(2\theta)$$

$$R_3 = -3 \cos(2\theta)$$

Diagrammatic Matrices, Knots and Teleportation

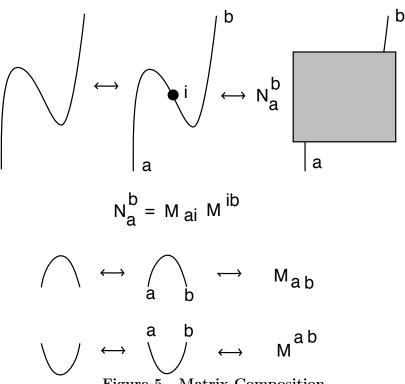
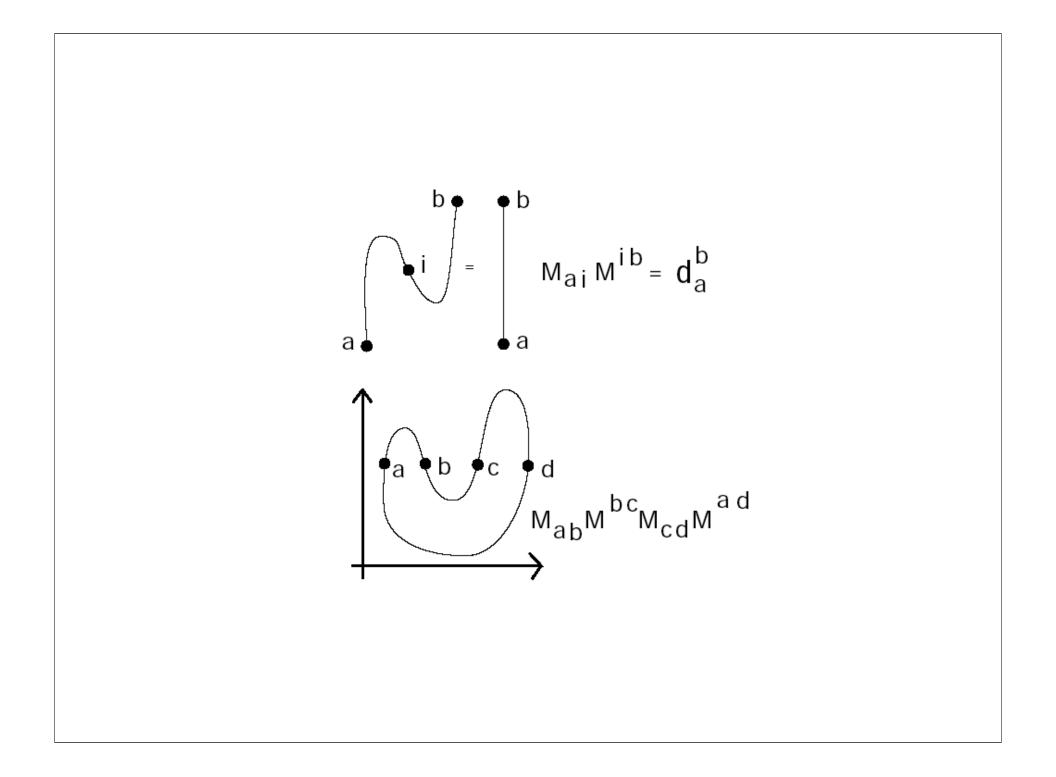
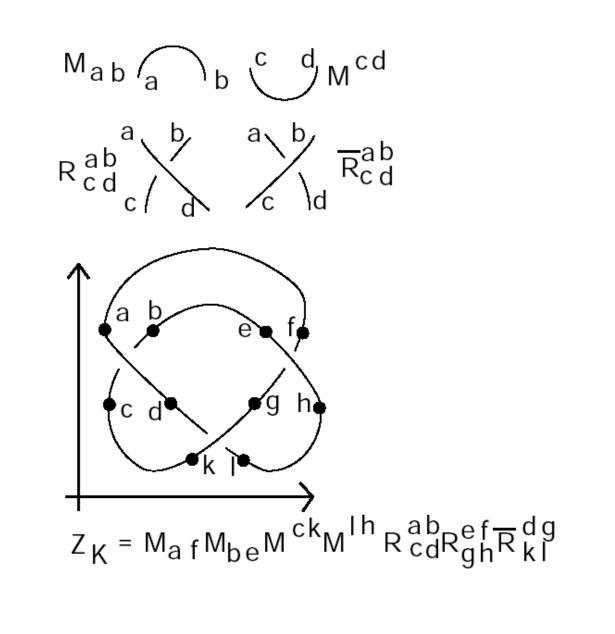
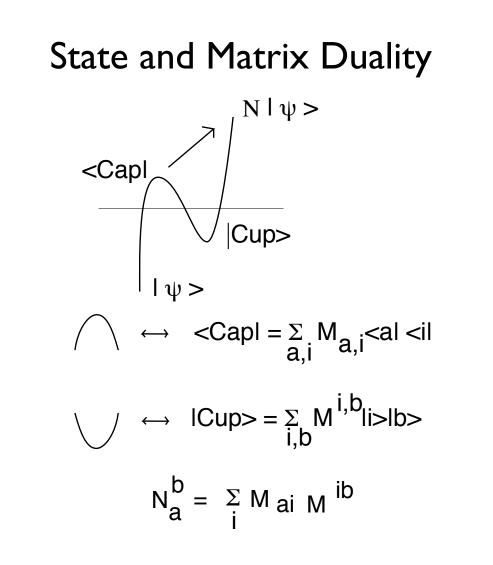


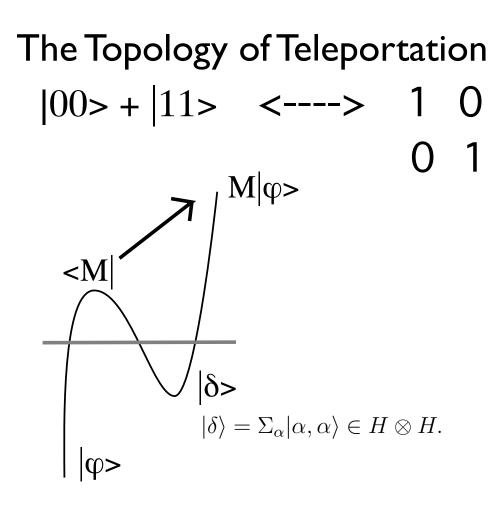
Figure 5 - Matrix Composition

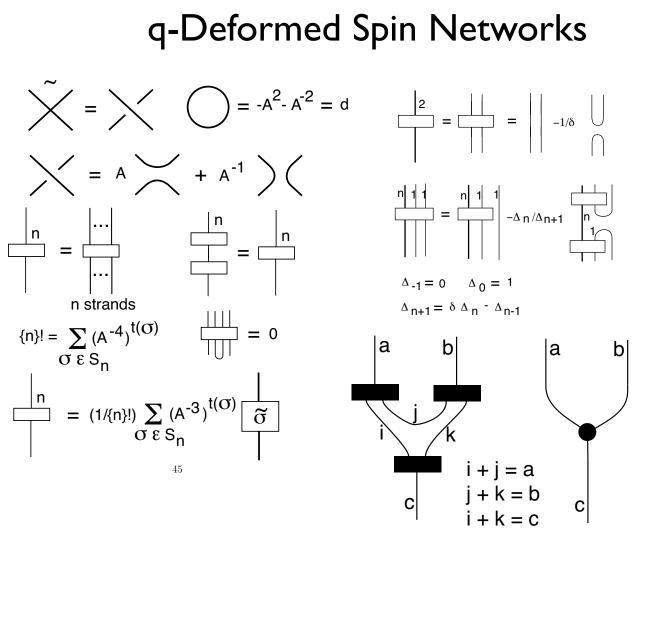
$$\begin{array}{c} \begin{array}{c} & & & \\ a & & \\ b & & \\ c & & \\ d & & \\ c & & \\ d & & \\ c & & \\ c$$

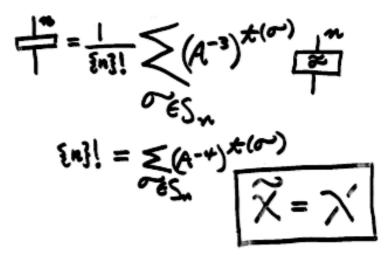








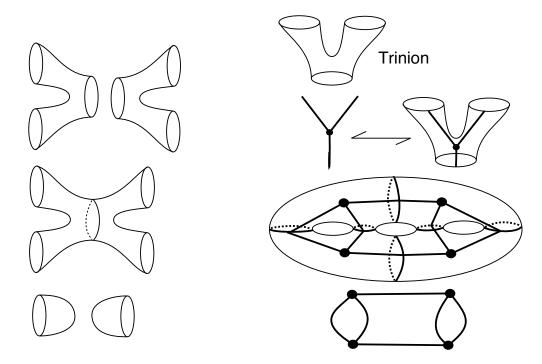




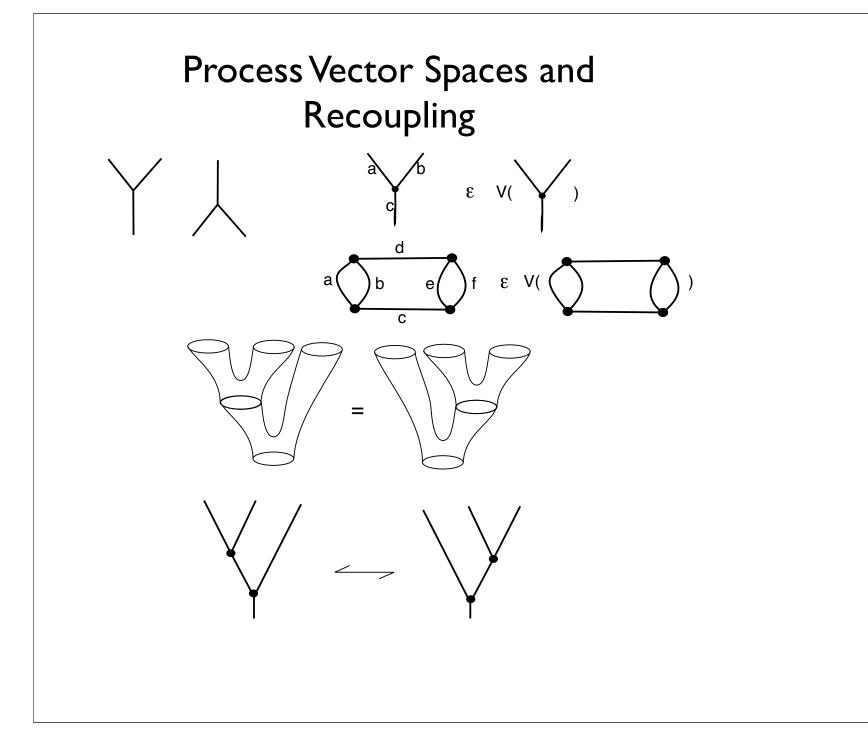
Projectors are Sums over Permuations, Lifted to Braids and Expanded via the Bracket into the Temperley Lieb Algebra

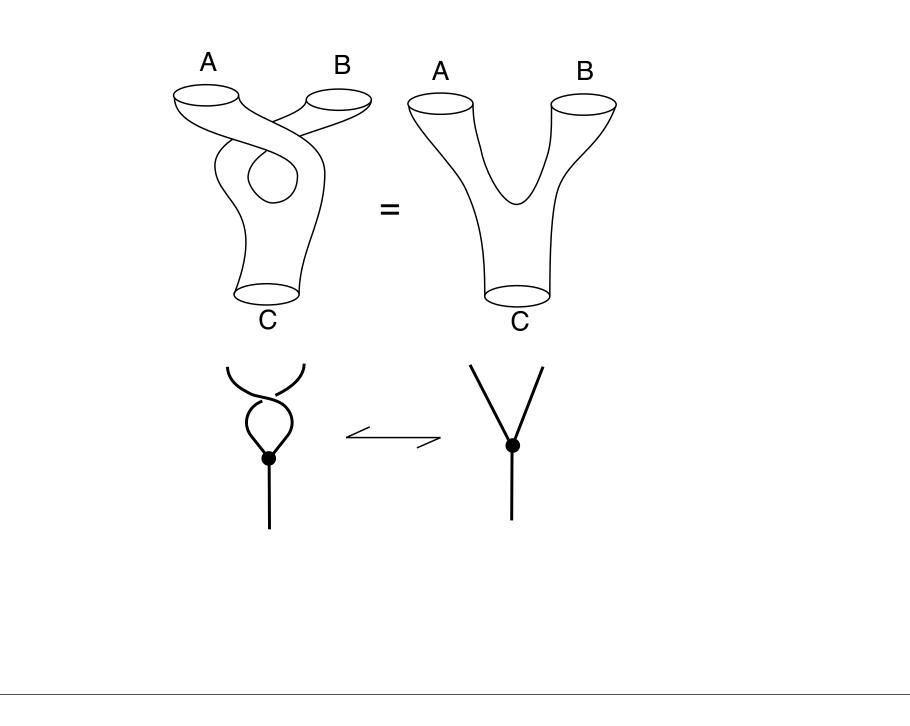
$$\begin{split} & \{2,3\}\} = 1 + \overline{A}^{+} \\ & = \frac{1}{1 + A^{-+}} \left[\left[1 + \overline{A}^{-3} \right] \right] \\ &= \frac{1}{1 + A^{-+}} \left[\left[1 + \overline{A}^{-3} \left[A \cup + \overline{A}^{-1} \right] \right] \right] \\ &= \frac{1}{1 + A^{-+}} \left[\left[1 + \overline{A}^{-3} \left[A \cup + \overline{A}^{-1} \right] \right] \right] \\ &= \frac{1}{1 + A^{-+}} \left[\left[(1 + \overline{A}^{-+}) \right] \left(+ A^{-+} \bigcup \right] \right] \\ &= \frac{1}{1 + A^{-+}} \left[\left[(1 + \overline{A}^{-+}) \right] \left(+ A^{-+} \bigcup \right] \right] \\ &= \frac{1}{1 + A^{-+}} \left[\left[(1 + \overline{A}^{-+}) \right] \left(+ A^{-+} \bigcup \right] \right] \\ &= \frac{1}{1 + A^{-+}} \left[\left[(1 + \overline{A}^{-+}) \right] \left(+ A^{-+} \bigcup \right] \right] \\ &= \frac{1}{1 + A^{-+}} \left[\left[(1 + \overline{A}^{-+}) \right] \left(+ A^{-+} \bigcup \right] \right] \\ &= \frac{1}{1 + A^{-+}} \left[\left(1 + \overline{A}^{-+} \bigcup \right] \right] \\ &= \frac{1}{1 + A^{-+}} \left[\left(1 + \overline{A}^{-+} \bigcup \right] \right] \\ &= \frac{1}{1 + A^{-+}} \left[\left(1 + \overline{A}^{-+} \bigcup \right] \right] \\ &= \frac{1}{1 + A^{-+}} \left[\left(1 + \overline{A}^{-+} \bigcup \right] \right] \\ &= \frac{1}{1 + A^{-+}} \left[\left(1 + \overline{A}^{-+} \bigcup \right] \right] \\ &= \frac{1}{1 + A^{-+}} \left[\left(1 + \overline{A}^{-+} \bigcup \right] \right] \\ &= \frac{1}{1 + A^{-+}} \left[\left(1 + \overline{A}^{-+} \bigcup \right] \right] \\ &= \frac{1}{1 + A^{-+}} \left[\left(1 + \overline{A}^{-+} \bigcup \right] \right] \\ &= \frac{1}{1 + A^{-+}} \left[\left(1 + \overline{A}^{-+} \bigcup \right] \right] \\ &= \frac{1}{1 + A^{-+}} \left[\left(1 + \overline{A}^{-+} \bigcup \right] \right] \\ &= \frac{1}{1 + A^{-+}} \left[\left(1 + \overline{A}^{-+} \bigcup \right] \right] \\ &= \frac{1}{1 + A^{-+}} \left[\left(1 + \overline{A}^{-+} \bigcup \right] \right] \\ &= \frac{1}{1 + A^{-+}} \left[\left(1 + \overline{A}^{-+} \bigcup \right] \right] \\ &= \frac{1}{1 + A^{-+}} \left[\left(1 + \overline{A}^{-+} \bigcup \right] \right] \\ &= \frac{1}{1 + A^{-+}} \left[\left(1 + \overline{A}^{-+} \bigcup \right] \right] \\ &= \frac{1}{1 + A^{-+}} \left[\left(1 + \overline{A}^{-+} \bigcup \right] \right] \\ &= \frac{1}{1 + A^{-+}} \left[\left(1 + \overline{A}^{-+} \bigcup \right] \right] \\ &= \frac{1}{1 + A^{-+}} \left[\left(1 + \overline{A}^{-+} \bigcup \right] \right] \\ &= \frac{1}{1 + A^{-+}} \left[\left(1 + \overline{A}^{-+} \bigcup \right] \right] \\ &= \frac{1}{1 + A^{-+}} \left[\left(1 + \overline{A}^{-+} \bigcup \right] \right] \\ &= \frac{1}{1 + A^{-+}} \left[\left(1 + \overline{A}^{-+} \bigcup \right] \right] \\ &= \frac{1}{1 + A^{-+}} \left[\left(1 + \overline{A}^{-+} \bigcup \right] \right] \\ &= \frac{1}{1 + A^{-+}} \left[\left(1 + \overline{A}^{-+} \bigcup \right] \right] \\ &= \frac{1}{1 + A^{-+}} \left[\left(1 + \overline{A}^{-+} \bigcup \right] \right] \\ &= \frac{1}{1 + A^{-+}} \left[\left(1 + \overline{A}^{-+} \bigcup \right] \right] \\ &= \frac{1}{1 + A^{-+}} \left[\left(1 + \overline{A}^{-+} \bigcup \right] \right] \\ &= \frac{1}{1 + A^{-+}} \left[\left(1 + \overline{A}^{-+} \bigcup \right] \right] \\ &= \frac{1}{1 + A^{-+}} \left[\left(1 + \overline{A}^{-+} \bigcup \right] \right] \\ &= \frac{1}{1 + A^{-+}} \left[\left(1 + \overline{A}^{-+} \bigcup \right] \right] \\ &= \frac{1}{1 + A^{-+}} \left[\left(1 + \overline{A}^{-+} \bigcup$$

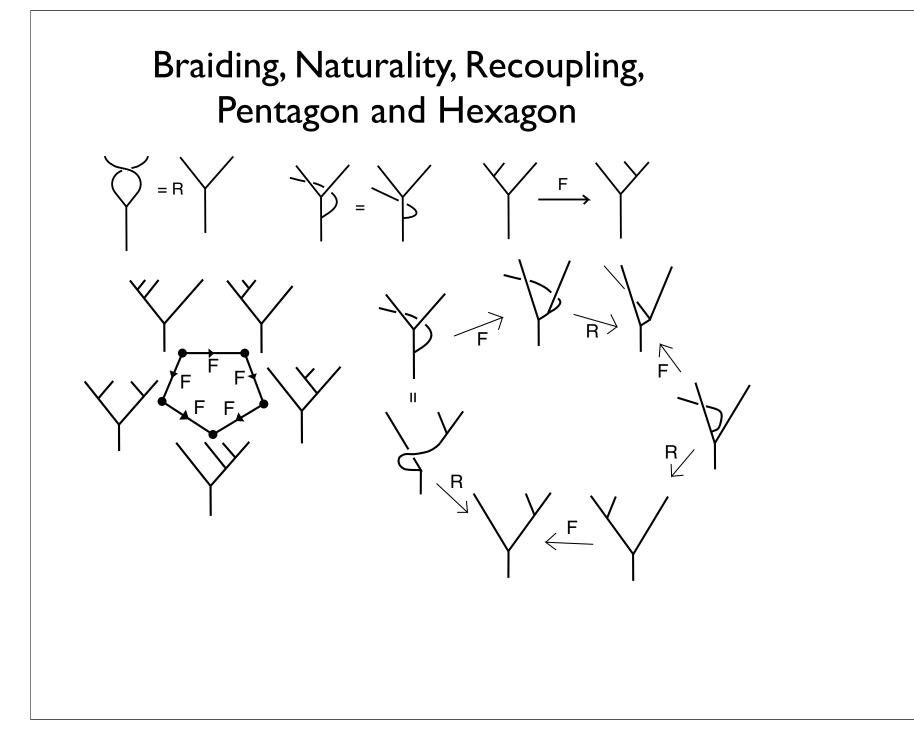
Topological Quantum Field Theory



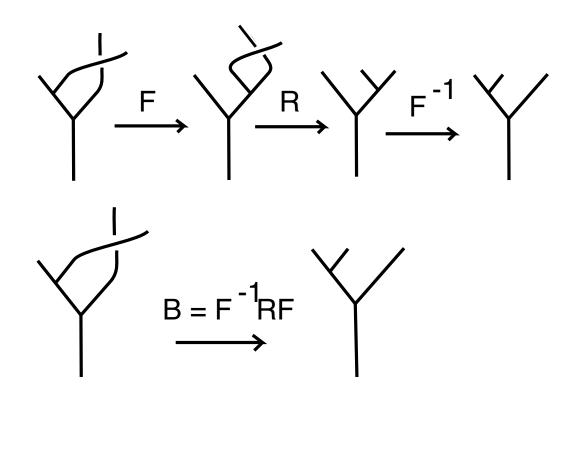
Process Spaces on Surfaces Lead to Three-Manifold Invariants.

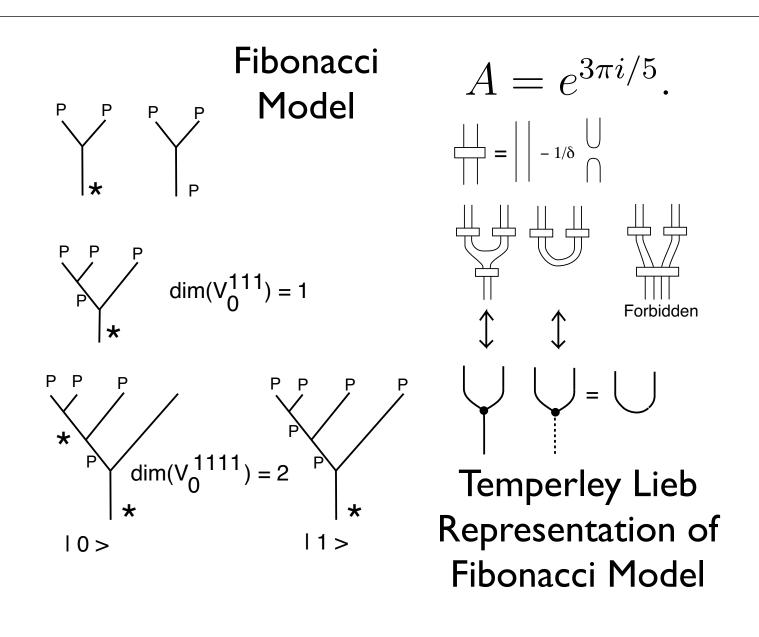




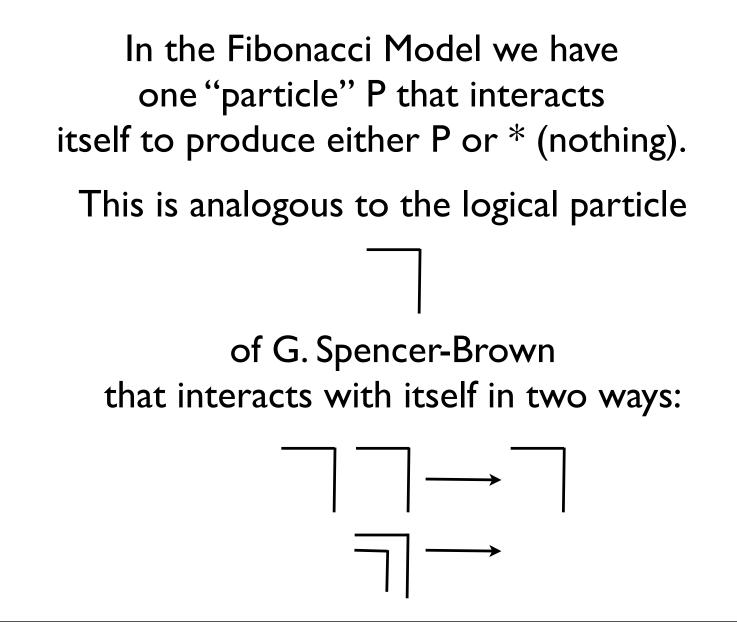


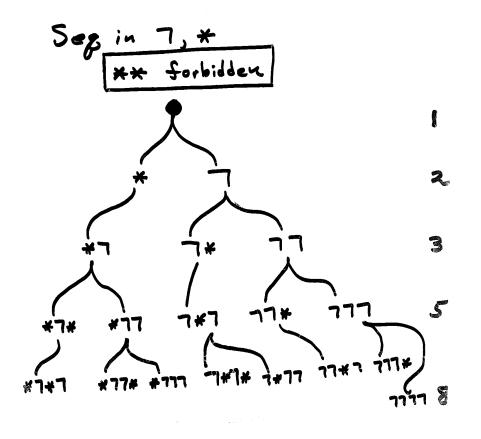
Non-Local Braiding is Induced via Recoupling





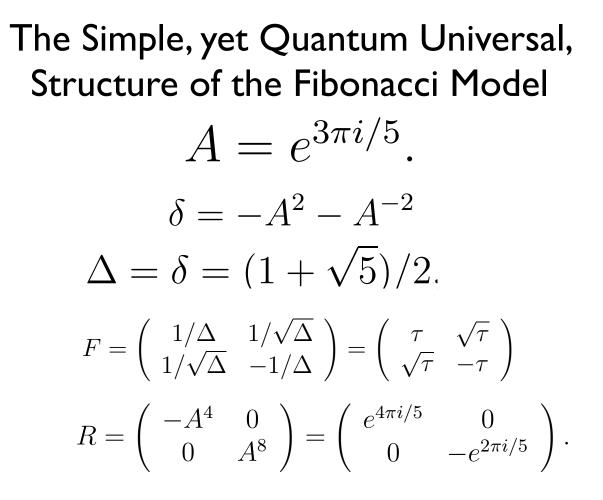
Iconics



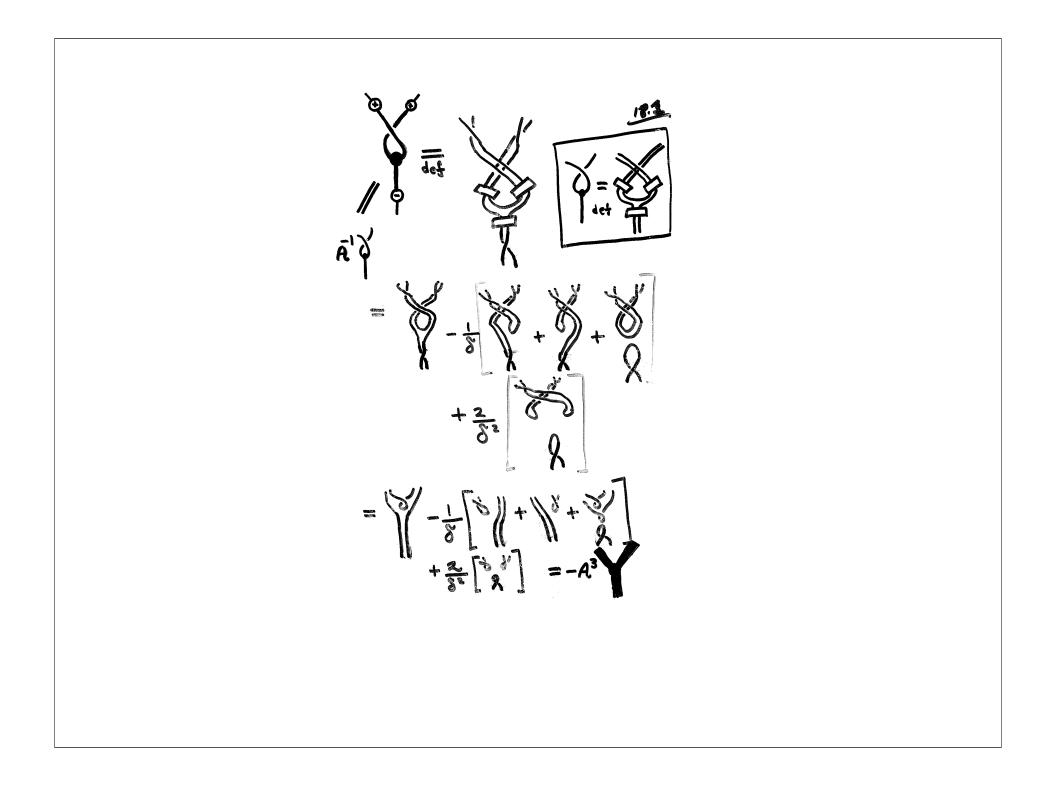


A sketch of the derivation [20.]

$$\frac{H}{H} = || - \frac{1}{2} \lor n, \quad Y = \frac{1}{2} \lor y, \quad Y =$$



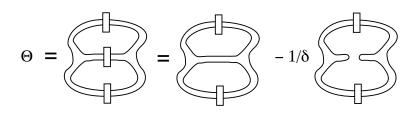
1703 中=ニーシン ・ 学= リーン ジョン・ショッキー ~ 帯=サーショー ポータ=サ 3. The 2-strend inversent < 207 = < 82 *4.* ¥ = ₩ (n=2) $V = V - \frac{1}{3} \left[V + \frac{1}{3} \right]$ +2.00



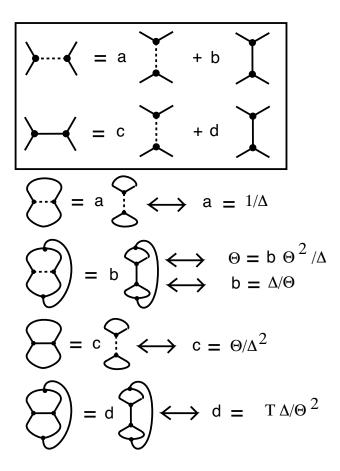
$$= \left| \bigcirc -\frac{1}{\delta} \right| = \left| (\delta - \frac{1}{\delta}) \right|$$

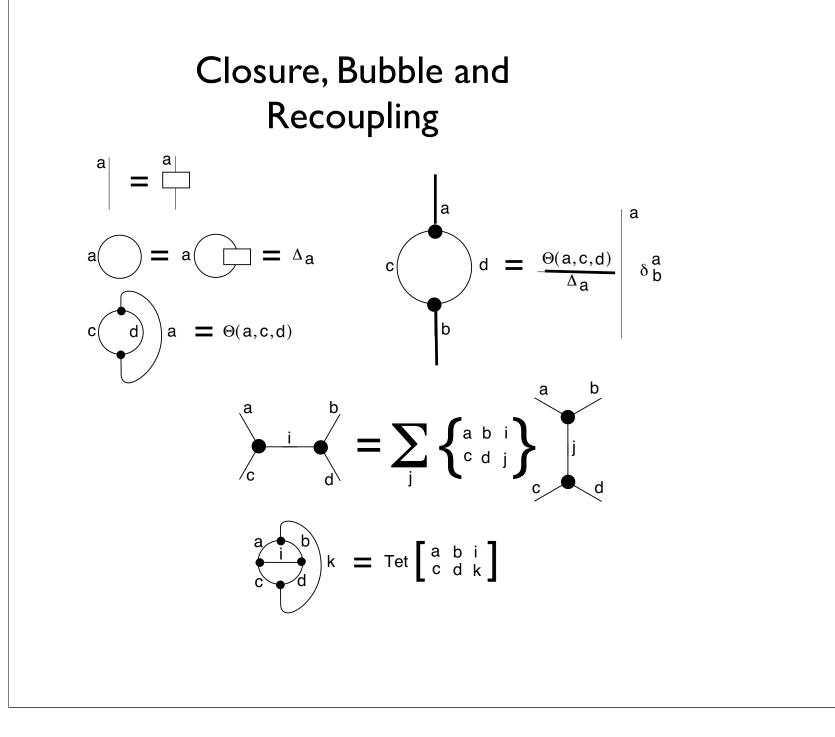
$$\Delta = \left| \bigcirc \right| = \left| (\delta - \frac{1}{\delta}) \right|$$

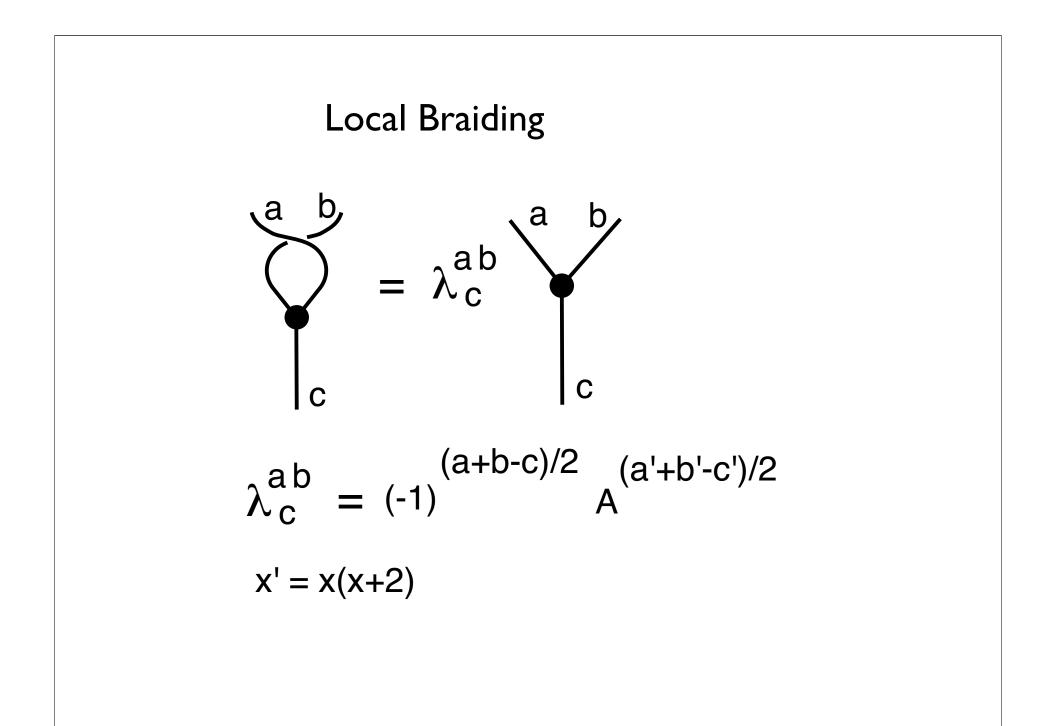
$$\Delta = \delta^{2} - 1$$



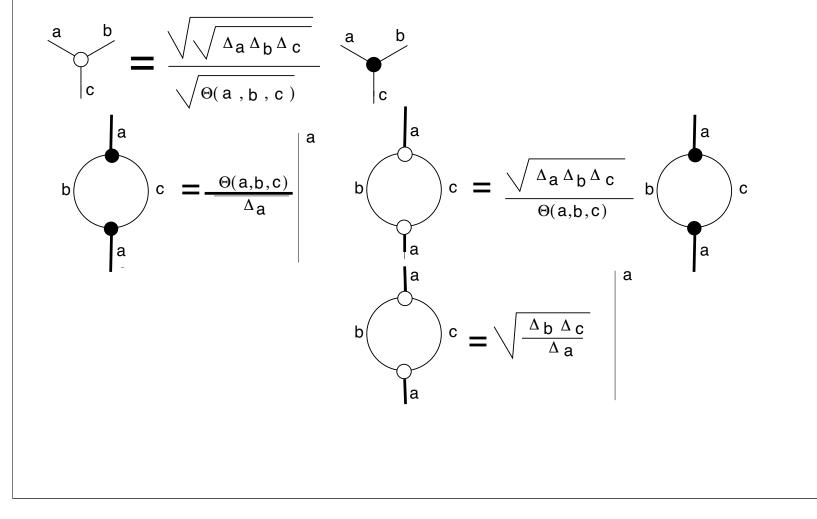
$$\Theta = (\delta - 1/\delta)^2 \delta - \Delta/\delta$$







Redefining the Vertex is the key to obtaining Unitary Recoupling Transformations.



$$\Delta_n = (-1)^n \frac{\sin((n+1)\pi/r)}{\sin(\pi/r)}.$$

Here the corresponding quantum integer is

$$[n] = \frac{\sin(n\pi/r)}{\sin(\pi/r)}.$$

Note that [n + 1] is a positive real number for n = 0, 1, 2, ..., r - 2 and that [r - 1] = 0.

The evaluation of the theta net is expressed in terms of quantum integers by the formula

$$\Theta(a, b, c) = (-1)^{m+n+p} \frac{[m+n+p+1]![n]![m]![p]!}{[m+n]![n+p]![p+m]!}$$

where

$$a = m + p, b = m + n, c = n + p.$$

Note that

$$(a+b+c)/2 = m+n+p.$$

When $A = e^{i\pi/2r}$, the recoupling theory becomes finite with the restriction that only three-vertices (labeled with a, b, c) are *admissible* when $a + b + c \leq 2r - 4$. All the summations in the formulas for recoupling are restricted to admissible triples of this form.

Lemma. For the bracket evaluation at the root of unity $A = e^{i\pi/2r}$ the factor

$$f(a, b, c) = \frac{\sqrt{\sqrt{\Delta_a \Delta_b \Delta_c}}}{\sqrt{\Theta(a, b, c)}}$$

is real, and can be taken to be a positive real number for (a, b, c) admissible (i.e. $a + b + c \le 2r - 4$).

Proof. By the results from the previous subsection,

$$\Theta(a, b, c) = (-1)^{(a+b+c)/2} \hat{\Theta}(a, b, c)$$

where $\hat{\Theta}(a, b, c)$ is positive real, and

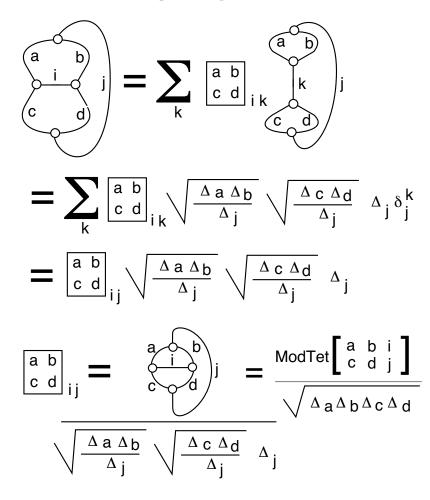
$$\Delta_a \Delta_b \Delta_c = (-1)^{(a+b+c)} [a+1] [b+1] [c+1]$$

where the quantum integers in this formula can be taken to be positive real. It follows from this that

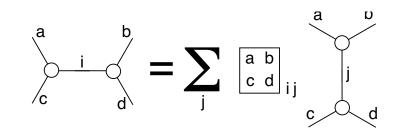
$$f(a, b, c) = \sqrt{\frac{\sqrt{[a+1][b+1][c+1]}}{\hat{\Theta}(a, b, c)}},$$

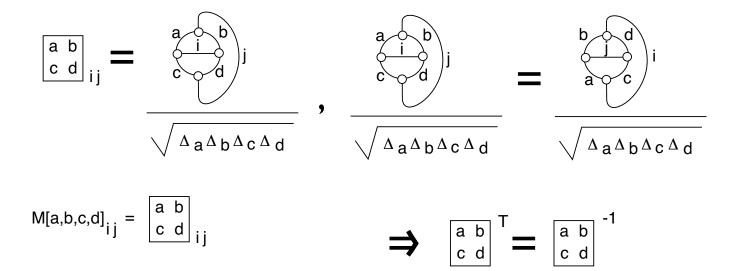
showing that this factor can be taken to be positive real.

New Recoupling Formula



The Recoupling Matrix is Real Unitary at Roots of Unity.

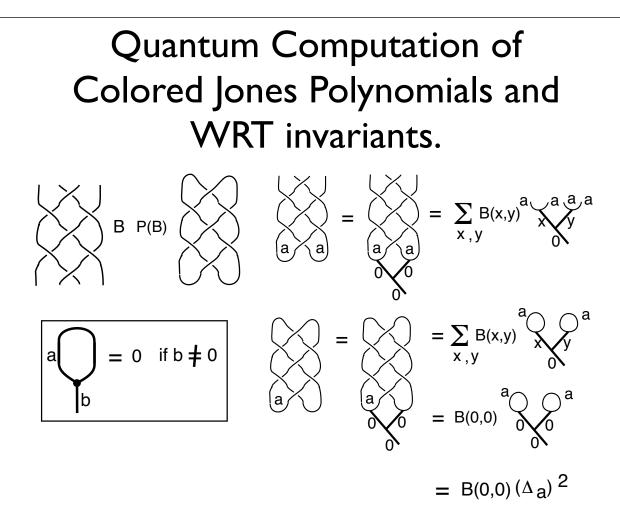




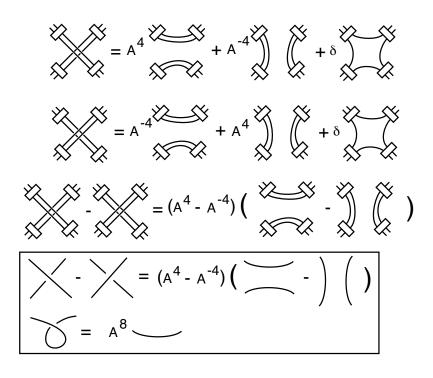
Theorem. Unitary Representations of the Braid Group come from Temperley Lieb Recoupling Theory at roots of unity.

$$A = e^{i\pi/2r}$$

Sufficient to Produce Enough Unitary Transformations for Quantum Computing.



Need to compute a diagonal element of a unitary transformation. Use the Hadamard Test. Colored Jones Polynomial for n = 2 is Specialization of the Dubrovnik version of Kauffman polynomial.



Will these models actually be used for quantum computation? Will quantum computation actually happen? Will topology play a key role? Time will tell.