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Motivations - Why TNS

From Quantum Physics

Tensor space has high dimension: dim(V⊗d) = dim(Vi )
d .

Quickly intractable. Requires too large memory to reprensent
a tensor.

Given a quantum many-body wave function, specifying its
coefficients in a given local basis does not give any intuition
about the structure of the entanglement between its
constituents:

e0 ⊗ e0 ⊗ e0 + e1 ⊗ e1 ⊗ e1

T =
d∑

i ,j ,k=1

ti ,j ,kei ⊗ ej ⊗ ek

with {el} orthonormal and ti ,j ,k ∈ R>0
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Motivations - Why TNS

A Tensor Network has this information directly available in its
description in terms of a network of quantum correlations
(physicists ”mantra”: The interesting states live in a corner of the
Hilbert space, the same where TNS are).

Matrix product AB = C :
∑m

k=1 ai ,kbk,j = (ci ,j)i=1,...,n1,j=1,...,n2 .

The network of correlations makes explicit the effective lattice
geometry in which the state actually lives

A TN is a set of tensors where some, or all, indices are contracted
according to some pattern.
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Motivations - Why TNS

Matrix product states

Reduced number of parameters

dm2 dim(V ) << dim(V )d

MPS are accurate representations of physical states with limited
bond length m.

Highlight entangled structure of state. The corresponding spaces
of tensors are only locally entangled because interactions
(entanglement) in the physical world appear to just happen locally.
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Motivations - Why TNS

So if physicists know in advance that the object of interest has to
be a TNS (or very close to), than one looks only inside the region
where TNS are.
For example: Computing the ground state of a Hamiltonian

ρ : H → R, v 7→ ρ(v) =
v †Hv

v †v

λ0 = min{ρ(v) : v ∈ H}

one can look only at

λ0 ∼ min{ρ(v) : v ∈ TNS}.

Algorithms for approximating tensors on TNS, algorithms to evolve
Hamiltonians on TN...
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Motivations - Why dimension of TNS

T =
∑
i ,j ,k

TmijTlikTnjk ∈ Vm ⊗ Vl ⊗ Vn. (1)

TNSΓ(v ,e) = {T ∈ Vm ⊗ Vl ⊗ Vn | ∃Tmij ,Tlik ,Tnjks.t.T = (1)}
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Motivations - Why dimension of TNS

If we are interested in study a paremetrized object we need to
know if the number of parameters is essential, and, if not, to
reduce them as much as possible.
The right number of parameters is the Dimension:

ϕ : Parameter space → TNS variety
dim(ϕ−1(T )) =?
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Definition - Graph Tensor

Fix a graph Γ(v(Γ), e(Γ)), d := ♯v(Γ)

Fix the weights m = (me , e ∈ e(Γ)) = bond dimensions

Consider Ime ∈ Cme ⊗ Cme at e and Tensor them:
⊗

e∈e(Γ) Ime

It naturally lives in
⊗

e∈e(Γ) C
me ⊗ Cme but we think it as an element of⊗

v∈v(Γ)(
⊗

e∋v C
me ) :=

⊗
v∈v(Γ) Wv obtained by grouping together the

spaces incident at the same vertex:

T (Γ,m) :=
⊗
e∈e(Γ)

Ime ∈
⊗

v∈v(Γ)

We
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Definition - TNS

TNSΓ
m,n ⊂ V1 ⊗ · · · ⊗Vd associated to the tensor network (Γ,m,n)

Φ : Hom(W1,V1) × · · · × Hom(Wd ,Vd) → V1 ⊗ · · · ⊗ Vd

(X1, . . . ,Xd) 7→ (X1 ⊗ · · · ⊗ Xd)(T (Γ,m))

Im(Φ) = TNSΓ,0
m,n

TNSΓ
m,n = Im(Φ) ⊂ V1 ⊗ · · · ⊗ Vd
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Example Matrix multiplication

T (Γ,m) = Im ∈ Cm ⊗ Cm = W1 ⊗W2 Fix V1,V2

Φ : Hom(W1,V1) × Hom(W2,V2) → V1 ⊗ V2

Φ(X1,X2) = (X1,X2)·Im = (X1,X2)·
m∑
i=1

ei⊗ei =
m∑
i=1

X1ei⊗X2ei =

=
m∑
i=1

X1ei (X2ei )
T = X1ImX

T
2 = X1X

T
2

In this case TNSΓ
m,n = {M ∈ V1 ⊗ V2 : rank(M) ≤ m} = TNSΓ,0

m,n
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Why graph tensor is better

The multilinear multiplication is nothing but evaluation. Evaluating
the graph tensor T (Γ,m) is easier than evaluating other tensors.

Given T ∈ V1 ⊗ · · · ⊗ Vd and a graph Γ

start with small m and evaluate T (Γ,m): hope to find linear
maps X1, . . . ,Xd s.t.

(X1 ⊗ · · · ⊗ Xd)(T (Γ,m)) = T

([Christandl-Gesmundo-Stilck Franca- Werner ’20] find a class of tensors
for which the evaluation is easy)
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Properties

One can assume that all me > 1, otherwise remove the edge
from the graph.

Monotonicity:

If m′ ≤ m (entry-wise) then TNSΓ
m′,n ⊆ TNSΓ

m,n

Universality: If Γ is connected then

TNSΓ
m,n = V1 ⊗ · · · ⊗ Vd

if me is large enough for every e ∈ e(Γ).
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Reductions

We may assume all bond dimensions associated to the edges
incident a fixed vertex are balanced: Fix a vertex v and
e1, . . . , ek ∈ v ; If

mek > nv ·me1 · · ·mek−1
, mek is overabundant

then
TNSm,n = TNSm,n

where me = me if e ̸= ek and mek = nv ·m1 · · ·mek−1
.
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Reductions

Definition (Landsberg-Qi-Ye ’12)

A vertex v ∈ v is called

subcritical if
∏

e∋v me ≥ nv ;

supercritical if
∏

e∋v me ≤ nv ;

critical if v is both subcritical and supercritical.

Theorem (BDG’23)

If the vertex v is supercritical let N = dimWd =
∏

e∋d me and
n′ = (n′v : v ∈ v(Γ)) be the d-tuple of local dimensions s.t. n′v = nv if
v ̸= d and n′d = N. Then

dimTNSΓ
m,n = N(nd − N) + dimTNSΓ

m,n′ .
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Studying the orbit of T (Γ,m) does not say anything about tensors
in TNSΓ(m, n) \ TNS0

Γ(m, n).

Theorem (Landsberg-Qi-Ye ’12)

If Γ doesn’t have cycles, then TNS0
Γ(m, n) = TNSΓ(m, n)

otherwise TNSΓ(m, n) \ TNS0
Γ(m, n) ̸= ∅

[Christandl-Lucia-Vrana-Werner ’20] There exist tensors of physical interest on
the boundary.
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What’s known

[Haegeman, Marien, Osborne, Verstraete, 2014]: MPS with
open boundary conditions.

[Buczynska, Buczynski, Michalek, 2015]: Perfect binary
trees, Train train.
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Dimension

If f : X → Y map between varieties, then

dim(Im(f )) = dimX − dim f −1(y)

for y generic in Im(f ).

We study the fibers of

Φ : Hom(W1,V1) × · · · ×Hom(Wd ,Vd) → V1 ⊗ · · · ⊗ Vd

(X1, . . . ,Xd) 7→ (X1 ⊗ · · · ⊗ Xd)(T (Γ,m))
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Obviously in the fiber

Ex: Matrix case

Φ : Hom(Cm,V1) × Hom(Cm,V2) → V1 ⊗ V2

with Φ(X1,X2) = X1 · Im · X t
2 .

Φ(X1,X2) = Φ(X1g ,X2(g−1)t) for every g ∈ GLm.
The fiber containing (X1,X2) contains the entire GLm-orbit.

The fiber containing (Xv : v ∈ v(Γ)) contains its entire GΓ,m-orbit,
where GΓ,m = ×e∈e(Γ)GLme gauge subgroup of Γ.
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The role of this group in the theory of tensor network was known
and it is expected that it entirely controls the value of dimTNS . In
fact, it is expected that in ”most” cases the exact value of the
dimension is

min{
∑
v

(nv ×
∏
e∋v

me) − d + 1︸ ︷︷ ︸
dim×vP(Hom(Wv ,Vv ))

−
∑
e

(m2
e − 1)︸ ︷︷ ︸

dimGΓ,m

,
∏
v

nv}

This computation does not take care of two facts:

the possible existence of the stabilizer under the action of the
gauge subgroup of a generic d-tuple of linear maps,

there may be something else in the fiber.
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Main theorem

Theorem (BDG’23)

dim(TNSΓ
m,n) ≤

min{
∑
v

(nv ×
∏
e∋v

me) − d + 1︸ ︷︷ ︸
dim ×vP(Hom(Wv ,Vv ))

−(
∑
e

(m2
e − 1)︸ ︷︷ ︸

dim GΓ,m

− dim StabGΓ,m
(X ))︸ ︷︷ ︸

??

,
∏
v

nv}
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Luckily...

Theorem (Derksen-Makam-Walter’20)

dim(StabGΓ,m
(X )) = 0 in ”most” cases

(the action of GΓ,m on ×vHom(Wv ,Vv ) is generically stable, i.e. there exists an

element v in the parameter space s.t. StabG (v) is a finite group).

Two important ones:

Γ is a cycle, called matrix product states;

Γ is a grid, called projected entangled pair states.
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Theorem (Haegeman-Mariën-Osborne-Verstraete ’14)

Matrix product states with open boundary conditions
(m0 = md = 1)

dimTNSΓ
m,n = min


d∑

i=1

nimi−1mi −
d−1∑
j=1

m2
i ,

d∏
1

ni


Theorem (Buczynska, Buczynski, Michalek ’15)

Perfect binary, TT have expected dimension.
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Main theorem

Theorem (BDG’23)

If (Γ,m,n) is a subcritical tensor network with no overabundant bond
dimension, then

dim(TNSΓ
m,n) ≤

min{
∑
v

(nv ×
∏
e∋v

me) − d + 1︸ ︷︷ ︸
dim ×vP(Hom(Wv ,Vv ))

−(
∑
e

(m2
e − 1)︸ ︷︷ ︸

dim GΓ,m

− dim StabGΓ,m
(X ))︸ ︷︷ ︸

??

,
∏
v

nv}

If (Γ,m,n) is a supercritical case the the bound is sharp and
dimStabGΓ,m

(X )) = 0

dim(TNSΓ
m,n) = min{

∑
v

(nv ×
∏
e∋v

me) − d + 1 −
∑
e

(m2
e − 1),

∏
v

nv}
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Subcritical defective examples

∆ : m = (2, 2, 2)

n lower bound upper bound

(2, 2, 2) 8 8
(2, 2, 3) 12 12
(2, 2, 4) 16 16
(2, 3, 3) 18 18

∗ (2, 3, 4) 22 24
∗ (2, 4, 4) 26 29

(3, 3, 3) 25 25
(3, 3, 4) 29 29
(3, 4, 4) 31 31
(4, 4, 4) 37 37

□ : m = (2, 2, 2, 2)

n lower bound upper bound
∗ (2, 2, 2, 2) 15 16
∗ (2, 2, 2, 3) 20 21
∗ (2, 2, 2, 4) 24 25

(2, 2, 3, 3) 25 25
(2, 2, 3, 4) 29 29
(2, 2, 4, 4) 33 33

∗ (2, 3, 2, 3) 24 25
∗ (2, 3, 2, 4) 28 29

(2, 3, 3, 3) 29 29
(2, 3, 3, 4) 33 33
(2, 3, 4, 3) 33 33
(2, 3, 4, 4) 37 37

∗ (2, 4, 2, 4) 32 33
(2, 4, 3, 4) 37 37
(2, 4, 4, 4) 41 41
(3, 3, 3, 3) 33 33
(3, 3, 3, 4) 37 37
(3, 3, 4, 4) 41 41
(3, 4, 3, 4) 41 41
(3, 4, 4, 4) 45 45
(4, 4, 4, 4) 49 49
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∆: m = (2, 2, 2), n = (2, 3, 4)

T (Γ,m) ∈ C2×2 ⊗ C2×2 ⊗ C2×2

TNSΓ(m,n) ⊆ P(C2 ⊗ C3 ⊗ C4).

Let T ∈ C2 ⊗ C3 ⊗ C4. Consider the flattening

T1 : C2 → C3 ⊗ C4.

Then LT = P(Im(T1)) is a line in P(C3 ⊗ C4) (or a single point).

Theorem (BDG’23)

T ∈ TNSΓ(m,n) if and only if

either rank(LT ) = 1

or LT intersects {A : rank(A) ≤ 2} in at least two points
(counted with multiplicity).

dimTNSΓ(m,n) = 2m(n1 + n2 −m) + 1 = 21 < 23 (proj dim).
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In progress

Theorem (BG)

Fix m = (2, 2,m) and n = (2, n1, n2), on the triangle graph ∆.
Write Vi = Cni and V0 = C2.

T NS∆
m,n =

T ∈ P(V0 ⊗ V1 ⊗ V2) :
Im(T : V ∗

0 → V1 ⊗ V2)
is a line intersecting
σn1×n2
m in at least two points

.

In particular, its projective dimension is

dim T NS∆
m,n = 2m(n1 + n2 −m) + 1.

defectiveness δ = m2 − 1
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Further Questions

Classify all sub-critical cases where the upper bound is not
reached: they have some interesting peculiar geometric
properties.

Which is ”the best” TNSΓ
m,n a given T belongs to?

Γ can be reasonably chosen from the context. One may work
on decreasing m. How to choose m s.t. a given T ∈ TNSΓ,0

m,n?
Very well established procedures to find a ”good enough”
approximation of T on a given TNSΓ

m,n.

How much the reduction of parameters can improve the
efficiency of algorithms?
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Further Work

Preliminary [DL]:

She applied the reduction of parameters in a global search
(variational NLCG) to possibly improve the search of ground
state of the AKLT model on MPS with open boundary
conditions (only the Gauge in the fiber).

The variation of the NLCG she propose modifies the line
search method, which is the most expensive routine of the
NLCG and it is based on a reparametrization of the gradient:
we reduce the number of coordinates of the gradient.

We notice a gain in runtime to convergence, compared to the
standard NLCG. (The global method preserves the symmetries
of the tensor network, differently from the majority of
sequential methods.)

Alessandra Bernardi Defectivness of Tensor Network Varieties



Overview
Motivations

Definition and Properties
Dimension

Further Questions

Further Work

Results on MPS(m = 2,n = 3, ♯sites = d)
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Advertisement - hiring PhD

TENORS
Tensor modEliNg, geOmetRy and optimiSation

Marie Sk lodowska-Curie Doctoral Network
2024-2027

Tensors are nowadays ubiquitous in many domains of applied mathematics, computer science,

signal processing, data processing, machine learning and in the emerging area of quantum

computing. TENORS aims at fostering cutting-edge research in tensor sciences, stimulating

interdisciplinary and intersectoriality knowledge developments between algebraists, geometers,

computer scientists, numerical analysts, data analysts, physicists, quantum scientists, and

industrial actors facing real-life tensor-based problems.

Partners:
1 Inria, Sophia Antipolis, France (B. Mourrain, A. Mantzaflaris)

2 CNRS, LAAS, Toulouse, France (D. Henrion, V. Magron, M. Skomra)

3 NWO-I/CWI, Amsterdam, the Netherlands (M. Laurent)

4 Univ. Konstanz, Germany (M. Schweighofer, S. Kuhlmann, M.
Micha lek)

5 MPI, Leipzig, Germany (B. Sturmfels, S. Telen)

6 Univ. Tromsoe, Norway (C. Riener, C. Bordin, H. Munthe-Kaas)

7 Univ. degli Studi di Firenze, Italy (G. Ottaviani)

8 Univ. degli Studi di Trento, Italy (A. Bernardi, A. Oneto, I. Carusotto)

9 CTU, Prague, Czech Republic (J. Marecek)

10 ICFO, Barcelona, Spain (A. Acin)

11 Artelys SA, Paris, France (M. Gabay)

Associate partners:
1 Quandela, France

2 Cambridge Quantum Computing, UK.

3 Bluetensor, Italy.

4 Arva AS, Norway.

5 HSBC Lab., London, UK.

15 PhD positions
(2024-2027)

(recruitment expected around Oct. 2024)

Scientific coord: B. Mourrain
Adm. manager: Linh Nguyen 1
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