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1) Simulating IBM’s kicked quantum Ising experiment with TNs
arXiv:2309.15642

2) Compressing Large Language Models with TNs

\ arXiv:2401.14109 /
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Hilbert space is a convenient illusion

Hilbert space of a N-body
many-body system




Hilbert space is a convenient illusion

Hilbert space of a N-body
many-body system

Set of area-law states
Y. Ge, J. Eisert, NJP 18 083026 (2016)

Set of TN states (low-energy eigenstates of
local Hamiltonians)

— Set of product states (mean field)




Hilbert space is a convenient illusion

Hilbert space of a N-body
many-body system

[ “Exploration” time ~ 0(101023) sec. ]

Compare to...

. 17
Age of the universe ~ O(10"") sec.
Most states here are not even

reachable by a time evolution
with a local Hamiltonian in

Set of area-law states
polynomial time

Y. Ge, J. Eisert, NJP 18 083026 (2016)

Poulin, Qarry, Somma, Verstraete, PRL

106 170501 (2011) Set of TN states (low-energy eigenstates of

local Hamiltonians)

— Set of product states (mean field)

We need a language to target the relevant
corner of quantum states directly

|
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Tensor Networks .

e.g. RO, Annals of Physics 349 (2014) 117-158
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Tensor Networks .

e.g. RO, Annals of Physics 349 (2014) 117-158
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Projected Entangled Pair States (PEPS),
Tensor Product States (TPS)

12 ZQK physical 1...p bond 1..D (entanglement)

Tensor Product Variational Approach, PEPS & iPEPS

algorithms, Tensor-Entanglement Renormalization,
TRG/SRG/HOTRG/HOSRG, gPEPS...




Tensor Networks .

e.g. RO, Annals of Physics 349 (2014) 117-158
f\ p-level

‘lp> = i1> ®‘i2> - ®‘iN> systems

- 4 N

IIJ ......... / Matrix Product States (MPS)
I 1503l 15lgl71g1g o
1d | ?—?—?W
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I : ] DMRG, PWFRG, TEBD... )

12 l9 2d, 3d... physical 1...p bond 1..D (entanglement)
34 Scale-invariaN / \

/ Multiscale Entanglement \ Projected Entangled Pair States (PEPS),
Renormalization Ansatz (MERA) Tensor Product States (TPS)
N

RG

Tensor Product Variational Approach, PEPS & iPEPS
algorithms, Tensor-Entanglement Renormalization,
AdS/CFT, Entanglement Renormalization TRG/SRG/HOTRG/HOSRG, gPEPS...

[ Efficient O(poly(N)), satisfy area-law, low-energy eigenstates of local Hamiltonians ]




Tensor Network Advantage

[ Entanglement and Tensor Networks J




Tensor Network Advantage
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Choose your fighter!
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Simulating IBM’s QC
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Error mitigation empowers quantum
processor to probe physics that classical
methods can't reach
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Article l Open access | Published: 14 June 2023

Evidence for the utility of quantum computing before
fault tolerance

Nature 618, 500-505 (2023) | Cite this article

101k Accesses | 12 Citations \ 942 Altmetric \ Metrics

IBM Quantum team published in June 2023 a quantum simulation

paper using unprecedented error-mitigation techniques for a 127-qubit
(“Eagle”) guantum processor.
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Eagle, 127 qubits
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K Spin-1/2 transverse field Ising model \
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127 qubits
Step 1
Stepn

ZZ layer 1
ZZ layer 2
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K Spin-1/2 transverse field Ising model \
on a heavy-hexagon lattice

H=—J Z Z; 7 +hZX

\ <1,7> J
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“the quantum computer provides correct results for which leading classical
approximations such as pure- state based (...) tensor network methods break
down”.

“We have now reached reliability at a scale (...) which can provide utility
beyond classical approximation methods.”



What if we use other

2d TN algorithms?
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Universal tensor-network algorithm for any infinite lattice O u r fl g hte r @

Saeed S. Jahromi and Roman Orus
Phys. Rev. B 99, 195105 — Published 3 May 2019

Article References Citing Articles (13) ﬂ f Graph-PEPS algorithm (gPEPS) \

e Simple tensor update

We present a general graph-based projected entangled-pair state (JPEPS) algorithm to approximate
ground states of nearest-neighbor local Hamiltonians on any lattice or graph of infinite size. By
introducing the structural matrix, which codifies the details of tensor networks on any graphs in any o M ean fleld enVi ronments

dimension d, we are able to produce a code that can be essentially launched to simulate any lattice.
We further introduce an optimized algorithm to compute simple tensor updates as well as expectation

values and correlators with a mean-field-like effective environments. Though not being variational, this ° Flexi b|e to ada pt to a ny |attice
strategy allows to cope with PEPS of very large bond dimension (e.g., D = 100) and produces . .
remarkably accurate results in the thermodynamic limit in many situations, and specially when the d nd d ny d Imension

correlation length is small and the connectivity of the lattice is large. We prove the validity of our
approach by benchmarking the algorithm against known results for several models, i.e., the . Ve ry accurate away from
antiferromagnetic Heisenberg model on a chain, star and cubic lattices, the hardcore Bose-Hubbard

model on square lattice, the ferromagnetic Heisenberg model in a field on the pyrochlore lattice, as \ Crltlcallty /
well as the three-state quantum Potts model in field on the kagome lattice and the spin-1 bilinear-

biquadratic Heisenberg model on the triangular lattice. We further demonstrate the performance of

gPEPS by studying the quantum phase transition of the 2d quantum Ising model in transverse
magnetic field on the square lattice, and the phase diagram of the Kitaev-Heisenberg model on the
hyperhoneycomb lattice. Our results are in excellent agreement with previous studies.




Simulating the IBM experiment

Works shortly after IBM’s paper
(all focused on 127 qubits)

Our work (much beyond previous references)

[3] J. Tindall, M. Fishman, M. Stoudenmire, and D. Sels,
Efficient tensor network simulation of ibm’s eagle kicked
ising experiment (2023), arXiv:2306.14887 [quant-ph].

[4] H.-J. Liao, K. Wang, Z.-S. Zhou, P. Zhang, and T. Xiang,
Simulation of ibm’s kicked ising experiment with pro-
jected entangled pair operator (2023), arXiv:2308.03082
[quant-ph].

[5] S. Anand, K. Temme, A. Kandala, and M. Zaletel, Clas-
sical benchmarking of zero noise extrapolation beyond
the exactly-verifiable regime (2023), arXiv:2306.17839
[quant-ph)].

[6] T. Begusic, J. Gray, and G. K.-L. Chan, Fast and con-
verged classical simulations of evidence for the utility
of quantum computing before fault tolerance (2023),
arXiv:2308.05077 [quant-ph].

[7] T. Begusic and G. K.-L. Chan, Fast classical simulation
of evidence for the utility of quantum computing before
fault tolerance (2023), arXiv:2306.16372 [quant-ph].

[8] M. S. Rudolph, E. Fontana, Z. Holmes, and L. Cincio,
Classical surrogate simulation of quantum systems with
lowesa (2023), arXiv:2308.09109 [quant-ph].
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Quantum Physics
[Submitted on 27 Sep 2023 (v1), last revised 16 Oct 2023 (this version, v2)]

Efficient tensor network simulation of IBM's
largest quantum processors

Siddhartha Patra, Saeed S. Jahromi, Sukhbinder Singh, Roman Orus

We show how quantum-inspired 2d tensor networks can be used to efficiently
and accurately simulate the largest quantum processors from IBM, namely
Eagle (127 qubits), Osprey (433 qubits) and Condor (1121 qubits). We simulate
the dynamics of a complex quantum many-body system -- specifically, the
kicked Ising experiment considered recently by IBM in Nature 618, p. 500-505
(2023) -- using graph-based Projected Entangled Pair States (gPEPS), which
was proposed by some of us in PRB 99, 195105 (2019). Our results show that
simple tensor updates are already sufficient to achieve very large
unprecedented accuracy with remarkably low computational resources for this
model. Apart from simulating the original experiment for 127 qubits, we also
extend our results to 433 and 1121 qubits, and for evolution times around 8
times longer, thus setting a benchmark for the newest IBM quantum machines.
We also report accurate simulations for infinitely-many qubits. Our results
show that gPEPS are a natural tool to efficiently simulate quantum computers
with an underlying lattice-based qubit connectivity, such as all quantum
processors based on superconducting qubits.




(a) Eagle (127), (b) Osprey (433), (c) Condor (1121)
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... and we also considered the thermodynamic limit, infinitely-many qubits
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Eagle results, 127 qubits
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gPEPS simulated perfectly the
system

* Unprecedented low error, even
better than other TN techniques
(eg TNS-BP)

* Average of 2s/point on a PC
(QC was 5h/point). Superfast!!!

Results hold for local and non-

k local observables

J

(approx 5 Trotter steps)



Larger systems
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e Large accuracy also for larger systems: 127, 433, 1121 and infinitely-many qubits

e Simulations also extremely efficient




Long time evolutions
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Long time evolutions
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What does all this imply?

/- We simulated the original IBM experiment for (at least) 10x more qubits and 8x longer time evolutions. \

* The original experiment is fine for testing error mitigation, but cannot claim advantage beyond classical simulation
methods, in particular with respect to tensor networks.

* The Hamiltonian is too tailored to the topology of interactions in the quantum circuit.
* The heavy-hexagon lattice is one of the easiest 2d lattices to simulate (very close to a tree!)

* Can lattice-based quantum computers (superconducting, guantum dots...) reach the low level of noise required not to
be simulated by an appropriate TN algorithm? (reminder: gPEPS was the simplest 2d algorithm we could think of).

* Lattice is a huge constraint. Why imposing a lattice at all? Why not going for lattice-free quantum processors? And

\ lattice-free simulators? /




Compressing
Large Language Models
(LLMs)



What is Generative Al?

Generative artificial intelligence is a type of
artificial intelligence (Al) system capable of
generating text, images, media, or other type of
data.

Generative Al models learn the patterns and
structure of their input training data, and then
generate new data that has similar
characteristics.

Impact goes from improving current solutions, to
destroying humanity ©.



Write a monologue about future in heaven and hell from the perspective of a sentient
cactus.

"| am a cactus, a being that has stood here for centuries, watching the world go by. | have d3 GP
seen the rise and fall of civilizations, the birth and death of countless living creatures. But
there is one thing that has always fascinated me, and that is the concept of the afterlife.

They say that when we die, we will either go to heaven or hell. And as a cactus, | cannot
help but wonder what that would be like.

In heaven, they say there are gardens of paradise, where the flowers bloom all year round
and the sun always shines. But what would that be like for a cactus? Would | be
surrounded by lush greenery, or would | be in a desert oasis with nothing but sand and
rocks?

And then there's hell, where they say there is fire and brimstone. But would that be so bad

Ch atG PT for a cactus? After all, | am a desert plant and | thrive in harsh conditions. Perhaps hell

would be like a vacation for me.

But then again, | cannot help but think that heaven and hell are not so different. They are
both places where we go after we die, and they are both places where we will be judged.
And as a cactus, | cannot help but wonder what judgment would be passed upon me.

But perhaps it doesn't matter. After all, | am just a cactus, a simple plant that has stood
here for centuries. | will continue to watch the world go by, and | will continue to wonder
about the afterlife. But in the end, | will accept whatever fate is in store for me, be it
heaven or hell."




0 Meta Al

LlaMA

(Large Language Model Meta Al)
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Today we're releasing a new state-of-the-art Al large language model
called LLaMA designed to help researchers advance their work. LLMs
have shown a lot of promise in generating text, having conversations,
summarizing written material, and more complicated tasks like solving
math theorems or predicting protein structures. Meta is committed to
this open model of research and we'll make our new model available
to the Al research community.
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### 1000 WORD STORY

It was a typical day for Nate. He had just finished his classes at college and
he was heading home. On his way back, he stopped by his favorite gaming
store to pick up some snacks and drinks. As he walked in, he noticed that
there were two people playing on one of the demo computers. They were
both playing the popular multiplayer online battle arena (MOBA) game,
League of Legends. The players were both using champions that Nate
wasn't familiar with. One player was controlling a champion named
"Okono" while the other controlled a champion called "Kayle".

The match started and it looked like Kayle was dominating. She was quickly
gaining levels and items, while Okono was barely able to keep up. Nate
watched the match closely and soon realized why Kayle was so much more
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The problem with Al

The cost is h u ge

Training ChatGPT-4 = 100MS in electricity
bill. And it still doesn’t speak well!

Given the exponential demand, this is
completely unsustainable.
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MPO Decomposition of Weigth Matrices
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See also Ma et al. arXiv:1906.09777 and Patel et al., arXiv:2208.02235
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CompactifAl: Extreme Compression of Large Language
Models using Quantum-Inspired Tensor Networks

Andrei Tomut, Saeed S. Jahromi, Sukhbinder Singh, Faysal Ishtiag, Cesar Mufioz,
Prabdeep Singh Bajaj, Ali Elborady, Gianni del Bimbo, Mehrazin Alizadeh, David
Montero, Pablo Martin-Ramiro, Muhammad Ibrahim, Oussama Tahiri Alaoui, John
Malcolm, Samuel Mugel, Roman Orus

Large Language Models (LLMs) such as ChatGPT and LlaMA are advancing rapidly in
generative Artificial Intelligence (Al), but their immense size poses significant
challenges, such as huge training and inference costs, substantial energy demands,
and limitations for on-site deployment. Traditional compression methods such as
pruning, distillation, and low-rank approximation focus on reducing the effective
number of neurons in the network, while quantization focuses on reducing the
numerical precision of individual weights to reduce the model size while keeping the
number of neurons fixed. While these compression methods have been relatively
successful in practice, there's no compelling reason to believe that truncating the
number of neurons is an optimal strategy. In this context, this paper introduces
CompactifAl, an innovative LLM compression approach using quantum-inspired
Tensor Networks that focuses on the model's correlation space instead, allowing for a
more controlled, refined and interpretable model compression. Our method is
versatile and can be implemented with - or on top of - other compression techniques.
As a benchmark, we demonstrate that CompactifAl alone enables compression of the
LlaMA-2 7B model to only 30% of its original size while recovering over 90% of the
original accuracy after a brief distributed retraining.
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What does all this imply?

We compressed LIaMA2 7B LLM using TNs down to 15% size keeping more than 90% of accuracy.
This saves a huge amount of energy costs in Al, and also in training and inference times (2x faster).

It is perfectly compatible with other “standard” compression techniques in Al (quantization, distillation, pruning,
LoRa...). Also more controllable and interpretable than these approaches.

We had to come up with distributed training a TN over an large amount of data among several GPUs.
The compression also allows to deploy LLMs on premises, without cloud access.

What about more complex TN structures and compression & training techniques?
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