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Background & Motivation
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Background — Tensor Network Operations
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Motivation

Matrix Product State / PEPS Figure Cl‘edit=k http;//
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Motivation

Matrix Product State / PEPS Figure credit: http:/
Tensor Train tensornetwork.org/
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system without any structure?




Motivation

Z eV 2 Hil3:) #P problem generally
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> Mean-field approximation

> Tree approximation with Belief Propagation

- .
> 2 1 [ Tg, Tensor network contraction o-o—
(

S 1

]

S ) U L




Theoretical Foundation and Methods of arbitrary TN
algorithm



Complexity lower bound

Theorem: The space complexity lower bound of an arbitrary tensor network
contraction 1s exponential to the tree width of 1ts line graph.
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Markov and Shi. SIAM Journal on Computing 38 (3), 963-981.



Tree decomposition and contraction order




Methods for finding good contraction orders

Finding a good contraction order is a hard combinatorial optimization
problem, due to

complex target function + large solution space + sequence dependence

Here we introduce four ways to find contraction orders
* Greedy method
* Branch and Bound method
» Graph partition method
 Local update method



Greedy method: Branch and Bound method:
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Gray, Kourtis. Quantum S (2021): 410. Kalachev, Pavel and Yung. arXiv:2108.5665 (2021).




Other techniques in the real numerical contraction

* Tensor slicing

* Computational efficiency
Balance the memory read/write operations and floating-point operations



Approximate arbitrary TN algorithm



Approximate arbitrary TN algorithm

1. Exponentially large complexity Using matrix product state (MPS)
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2. How to do approximation? DMRG like low-rank approximation scheme

D max X max

3. How to control the error? Using the canonical form of MPS
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4. Contraction order? Greedily chosen trom the current TN



MPS calculus operations
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Contract an Arbitrary TN with an example
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Pan, et al. Phys. Rev. Lett. 125.060503 (2020)



Map calculation of physical properties to TN
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Some results on partition function calculation
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Exact arbitrary TN algorithm



Exact arbitrary TN algorithm

There are some circumstances when problems require exact results or
there 1s no intrinsic low-rank structure:

For example, Simulation of quantum circuits with quantum gate (£fSim)
whose decomposition spectrum is flat.

Hence, we will also need exact arbitrary TN algorithms.



Exact arbitrary TN algorithm - Challenges

* Exponentially large complexity
* How-to-do-approxtmation?

* How-to-control-the-error?

* Contraction order

* For quantum circuit simulations: how to sample bitstrings



Sycamore chip and Random Circuit Sampling
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200 seconds 1,000,000 bit-strings 0.2% XEB fidelity Arute, et al. Nature 574.7779 (2019): 505-510.



Tensor Network and QCircuits
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Quantum Supremacy demonstration

Classical simulation candidates:
1. Schrodinger-Feynman algorithm (Google’s choice)

2. Tensor network contraction algorithm
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Quantum Supremacy demonstration

Classical simulation candidates:
1. Schrodinger-Feynman algorithm (Google’s choice)

2. Tensor network contraction algorithm
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Classical simulation candidates:
1. Schrodinger-Feynman algorithm (Google’s choice)

2. Tensor network contraction algorithm



Quantum Supremacy demonstration

Classical ssmulation candidates:

1. Schrodinger-Feynman algorithm (Google’s choice)

2. Tensor network contraction algorithm

qubits, n|cycles, m|total #paths|fidelity run time
53 12 47°2% 1.4% 2 hours
53 14 421251 0.9% 2 weeks
53 16 4%°2°| 0.6% 4 years
53 18 48231 0.4%| 175 years
53 20 4312% 0.2% (10000 years

TABLE XI. Approximate gsimh run times using one million
CPU cores extrapolated from the average simulation run time

for 1000 simulation paths on one CPU core.

b Supremacy regime

|
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Fidelity and Linear cross entropy benchmark (XEB)
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+ Traditional definition of fidelity JF = (17| p|bgr)

* DM of the output state 0 — F

* It 1s impossible to calculate the fidelity for such experiment, use XEB

fidelity instead on L
FXEB = T leU(%) —1

« XEB can be spoofed: samples with large probabilities



Big-batch method
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Results and the spoofing of XEB

# bitstrings | Time complexity | Space complexity | Computational time| Computational hardware
Google [1] 10° — — 10,000 years Summit supercomputer
Cotengra [12] 1 3.10 x 10?? 227 3,088 years One NVIDIA Quadro P2000
Alibaba [18] 64 6.66 x 10'® 2% 267 days One V100 GPU
Ours 2097152 451 x 108 230 149 Days One A100 GPU

TABLE II. Comparison of computational cost among different methods on Sycamore circuit with 53 qubits and 20 cycles.

5 days in 60 GPUs 10°

bitstring amplitude probability
00000000000000000000000100000110100000010000100000000| —2.97 x 1078 +2.06 x 1073 {1.31 x 107"
00000000000000000000000000000000000000000100001000000| 1.50 x 10~% +3.85 x 10~ [2.39 x 107!¢
00000000000111000001111100001111100001111100110000000| —=3.17 x 107 —5.45 x 107%i [3.97 x 107"
00000000000111000001111100001111100001111000101000000|—1.89 x 107'° +3.13 x 107%i{9.86 x 1078
0000000000000000000000000000010000000001 1100010000000 | 8.07 x 1071 +4.35 x 107197 [8.41 x 10~

2,097,152 bitstring samples with 0% XEB fidelity

‘ a 0 2 4 6 8

1,000,000 bitstring samples with 73.9% XEB fidelity Np
>>(0.2% Pan, and Zhang. Phys. Rev. Lett. 128.030501 (2022).




Full amplitude simulation

We can also use big-batch method to do full amplitude simulation, by
enumerating configurations of closed qubits.

10°

1073

Téiti

Prob(Np)

107°

10 15 20 25

Np
50 qubits, 14 cycles, EFGH sequence using
100 GPUs in 10 days



Feedbacks of this work

'f Shtetl-Optimized °,

The Blog of Scott Aaronson
If you take nothing else from this blog: quantum computalé won't
solve hard problems instantly by just'trying all solutions in parallel.

l

\
Also, next pandemic, let's approve tHe vaccines faster!

« The Zen Anti-Interpretation of Quantum Mechanics Sayonara Majorana? » Can be defended USing a Slightly
Another axe swung at the Sycamore more Compllcated benChmark SuCh

So there’s an interesting new paper on the arXiv by Feng Pan and Pan Zhang,

entitled "Simulating the Sycamore supremacy circuits.” It's about a new tensor b °

contraction strategy for classically simulating Google’s 53-qubit quantum as addlng a preproceSSIHg Step tO
supremacy experiment from Fall 2019. Using their approach, and using just 60

GPUs running for a few days, the authors say they managed to generate a million

e e Tonage 1o St o detect correlated samples,

20 or so bits—that achieve a high linear cross-entropy score.

Alas, I haven’t had time this weekend to write a “proper” blog post about this, but
several people have by now emailed to ask my opinion, so I thought I'd share the
brief response I sent to a journalist.

ﬁhis does look like a significant advance on simulating Sycamore-like randoh
quantum circuits! Since it's based on tensor networks, you don’t need the literally
largest supercomputer on the planet filling up tens of petabytes of hard disk
space with amplitudes, as in the brute-force strategy proposed by IBM. Pan and
Zhang's strategy seems most similar to the strategy previously proposed by
Alibaba, with the key difference being that the new approach generates millions
of correlated samples rather than just one.

I guess my main thoughts for now are:

1. Once you knew about this particular attack, you could evade it and get back to
where we were before by switching to a more sophisticated verification test —
namely, one where you not only computed a Linear XEB score for the observed
samples, you also made sure that the samples didn't share too many bits in
common. (Strangely, though, the paper never mentions this point.)

2. The other response, of course, would just be to redo random circuit sampling
\ with a slightly bigger quantum computer, like the ~70-qubit devices thv

Google, IBM, and others are now building!

Anyway, very happy for thoughts from anyone who knows more.



Sparse-state tensor network simulation

Observation of quantum supremacy experiments:

> The number of bitstrings obtained by experiments will not be
exponentially large.

>These bitstrings will compose a sparse-state of the full Hilbert space.

Thus, calculating multiple bitstring amplitudes becomes the tensor
network contraction below



Sparse-state tensor network simulation

Observation of quantum supremacy experiments:

> The number of bitstrings obtained by experiments will not be
exponentially large.

>These bitstrings will compose a sparse-state of the full Hilbert space.

Thus, calculating multiple bitstring amplitudes becomes the tensor
network contraction below
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Sparse-state contraction

The core of sparse-state contraction 1s explicitly listing the dimension of
open qubits and determine which entries should be calculated
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Arbitrary bit-string means we can circumvent the correlated bitstring problems,
and there 1s no way to tell from our samples from the quantum samples
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Data

Original

Branch merge

T. head one sub-task

2.3816 x 1013 | 6.967 x 1013

T. tail one sub-task

2.9425 x 10" | 8.796 x 10"

A
Overall T, (2'° sub-tasks) 3.489 x 103 D1.033 x 10"?
Space complexity 230




Results

Data Original |Branch merge
T. head one sub-task 2.3816 x 10"*| 6.967 x 10"3
T. tail one sub-task 2.9425 x 10| 8.796 x 10"
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Space complexity 230
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Results

Data Original |Branch merge
T. head one sub-task 2.3816 x 10"*| 6.967 x 10"3
T. tail one sub-task 2.9425 x 10| 8.796 x 10"
Overall T, (2'° sub-tasks) 3.489 x 103 D1.033 x 10"?
Space complexity 230

# bitstrings | Time complexity | Space complexity

Google [1] 10° — —
Cotengra [12] 1 3.10 x 10% 227
Alibaba [18] 64 6.66 x 10'8 229

Ours 2097152 | C4.51 x 1018 D 230

15 hours in 512 GPUs — dozens of seconds in exaflops supercomputer
Quantum supremacy on SycamoreS3 does not hold!
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Results
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Results
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Pan, Chen and Zhang. Phys. Rev. Lett. 129.090502 (2022).



Advantage on Power Consumption?

10*

2021 Sunway new 2022 2022
supercong\puter[ﬁ] 512 GPU[18] 60 GPU[19]

7

10°F 1. improved slicing scheme
2. post-selection

Enengy consumption(kWh)

10T
= 1 million uncorrelated samples
2023 1432 GfU(OUF work) o 1 million correlated samples
101 L 1 million correlated samples
2019 Syc;amore[Q] 1 million uncorrelated samples

m 3 million uncorrelated samples
e 3 million uncorrelated samples

2019 Sycamore[9]

. 0
10 '
10 10° 10° 10* 10° 10
Time-to-solution(sec)

Zhao, Zhong, Pan, et al in preparation



Conclusion



Conclusion

 Arbitrary tensor network algorithms are very efficient tools for solving
specific #P problems, either with low-rank structure or not.

* Their improvements are highly related to algorithmic and hardware
developments (the hardware requirements are highly similar to large
language models).

e There are many applications:
 Classical simulation/validation of quantum computational tasks
e Calculation of physical properties defined on complex systems

« Exploring solution space of combinatorial optimization problems (tropical
algebra)



Thanks for your
attention!
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Jin-Guo Liu, Lei Wang, and Pan Zhang. ""Tropical tensor network for ground states of spin glasses."
Physical Review Letters 126.9 (2021): 090506.

Jin-Guo Liu, et al. ""Computing solution space properties of combinatorial optimization problems via
generic tensor networks.'" SIAM Journal on Scientific Computing 45.3 (2023): A1239-A1270.



